Palestras e Seminários

26/06/2025

13:00

Palestrante: Francesco Ferraresso

https://sites.google.com/usp.br/evol-eq-and-dyn-systems

Responsável: Estefani Moraes Moreira (Este endereço de email está sendo protegido de spambots. Você precisa do JavaScript ativado para vê-lo.)

Modo: À distância

Salvar atividade no Google Calendar Webinar on Evolution Equations

Biharmonic and elasticity eigenvalue problems in singularly perturbed domains

Domain perturbation theory for the eigenvalues of the Laplace operator on families of bounded, Lipschitz domains of R

N is nowadays a well-understood, yet complicated subject. For the biharmonic operator or the elasticity operator, the situation is more involved, mainly due to two additional hurdles: 1) boundary conditions are very sensitive to the variation of the curvature of the boundary; 2) standard techniques, such as the separation of variables, are not available. After a review of the main results and counterexamples for the Laplace operator and the biharmonic operator, I will focus on three specific singular perturbations where spectral continuity fails: the dumbbell domain (Neumann b.c); a Lipschitz domain, whose boundary is locally defined as the graph of a fast oscillating smooth function (Intermediate b.c.); thin annuli in R2 (Neumann b.c).

I will conclude with a discussion on the spectral convergence of the Reissner-Mindlin system on thin domains of RN .

Based on joint projects with J.M. Arrieta (Madrid), D. Buoso (Piemonte Orientale), P.D. Lamberti (Padova), and L. Provenzano (Sapienza Roma).

 

Mais informações no site.

CONECTE-SE COM A GENTE
 

© 2025 Instituto de Ciências Matemáticas e de Computação