
Visually Mining on Multiple Relational Tables at Once1

Maria Camila Barioni, Humberto Razente, Caetano Traina Jr, Agma Traina

Department of Computer Science and Statistics
University of São Paulo at São Carlos – Brazil

Av. Trab. Sãocarlense, 400, Centro, Cx. Postal 668, São Carlos, SP 13560-970
{mcamila, hlr, caetano, agma}@icmc.sc.usp.br

Abstract. Data mining (DM) processes require data to be supplied in only one
table or data file. Therefore, data stored in multiple relations of relational
databases must be joined before submission to DM analysis. A problem faced
during this preparation step is that, most of the times, the analyst does not have
a clear idea of what portions of data should be mined. This paper reckons the
strong human ability to interpret data in graphical format to develop a process
called “wagging”, to visualize data from multiple relations, helping the analyst
when preparing data to DM. The data obtained from the wagging process allow
to execute further processes as if they were operating over multiple relations,
bringing the join operations to become part of the data mining process.
Experimental evaluation shows that the wagging process reduces the join cost
significantly, turning it possible to visually explore data from multiple tables
interactively.

1 Introduction

The last decade saw an amazing increase in the generation and accumulation of
information in digital format. With the explosive growth in the volume of data, new
techniques and tools are now being sought to process and to automatically discover
useful information from the data. This scenic boosted a prominent research area
known as Knowledge Discovery in Databases - KDD. According to Fayyad [1], KDD
is “the process of identifying structures that represent valid, novel, potentially useful,
and ultimately understandable information, in a mass of data”. The term “structure”
means any patterns or models that give a parsimonious representation of an
interesting subset of the data.

Although different authors describes KDD as composed by a varying number of
steps [2], at least three interactively executed processes are always recognized. The
first one is the pre-processing, when the raw data in the database is prepared to be
analyzed, including the operations of data cleaning, data integration, data selection
and data transformation. In the second process, known as Data Mining - DM - the
prepared data is submitted to a set of analyzer algorithms including cluster, trend and

1 This research has been partially supported by FAPESP (Fundação de Amparo à Pesquisa do

Estado de São Paulo - Brazil) and by CNPq (Conselho Nacional de Desenvolvimento
Científico e Tecnológico - Brazil).

outliers detection, as well as classification, rule discoveries, etc. Finally, the third one
is the evaluation process, where the findings of the data mining algorithms are
inspected to retrieve useful information, through evaluation of patterns and
knowledge presentation.

Nowadays, much effort has been done to develop techniques and algorithms
aiming DM. However, every DM algorithm developed so far always analyzes data
structured in a single table. If data is spread into more than one table, they must be
integrated in the preparation process, that is, the join operations are not part of the
data mining process. In this way, the miner analyst must prepare many datasets to be
sent one at a time to the DM tools. Each dataset is prepared choosing a set of tables
and/or data selections from more than one table, which are joined to be sent to the
data mining process. This preparation is not automated by any data mining process.
This situation is at least uncomfortable for the analyst as, by nature, the whole KDD
processes do not have a precise definition of what is being pursued, and thus of what
data to select.

Some works about data mining processes consider including human beings as part
of the data analysis process combining visualization with data mining techniques, thus
providing a visual mining environment [3]. An important problem faced in the
development of these techniques is that the amount of data to be analyzed can be very
large, becoming difficult to prepare data visualizations interactively. The usual
approach to keep processing time low is to work with small portions of the database,
such as sampling and dimensionality reduction, and to avoid costly database retrieval
operations, as the join operation.

In this paper we describe a conceptual framework to support visual data mining on
multiple database tables, that we called the wagging process. Our technique allows
the DM process to work in multiple relations at once bringing the join operations to
become part of this process. This is achieved through the use of aggregate information
at each relation, avoiding the need to repeatedly execute expensive join operations.
Our work considers the relations involved in the whole KDD process can be
understood as an hierarchical structure oriented by subject or a star schema. Using
this schema, the user starts from a main relation (the basis table) and proceeds
including additional tables (subordinate tables). The inclusion of additional tables
proceeds iteratively in two main steps: first analyzing attributes from the basis table,
and second analyzing attributes from the subordinate tables. These two steps go back
and forth in a “wagging” way between the basis and subordinate tables. Attributes
from the newly included subordinate table use aggregate operations to compose the
result table to be sent to other data mining and visualization processes. The star
schema is built using cardinality relationships opposed to those in a star-shaped
schema of OLAP-based analysis. The aggregates are also built in a per-attribute base,
and not following the static “snow-flake model”, as in the current OLAP techniques.
The high cost of the join and aggregate operations can be reduced by pre-processing
the aggregate attributes that summarize each additional table. In this way, the high
computational cost is paid in the pre-processing phase of KDD as before, but the data
mining process can selectively access the information derived from the wagging
process, emulating the multiple generation of datasets.

The rest of the paper is organized as follows. Section 2 presents related works.
Section 3 describes problems associated to the use of join operations in the data

mining context, and compares the wagging solution with the Data Warehouse - DW -
analysis solution. Section 4 details the wagging process, shows how to bypass the
problems to bring the join operations to be part of the data mining process, and
describes the operational process of generating the visualization of the data stored in
multiple relations. Section 5 presents how it was implemented in the tool FastMapDB
and shows experiment results. Finally, section 6 presents the conclusions of this
paper.

2 Related Works

Data pre-processing is an important step in KDD, preparing the data for data mining
processes [4]. This step is needed to solve several types of problems that occur in
large datasets such as noisy or incomplete data, data selection, and conflicting data
[5].

Nowadays, with the explosive growth on the volume of data available to analyze,
the step of data pre-processing becomes fundamental on the KDD process. In
particular, data reduction and selection are critical steps to decrease the size of the
available dataset to one that can be efficiently mined. Several works have been
proposed, aiming to solve this problem. Becher in [6] and Traina et al. in [7] focus on
the problem of attribute selection, proposing an approach to automate the exploratory
data analysis step of the KDD process. In [8] is proposed a general framework to
enable exploratory data analysis of massive datasets. Considering the processing of
large datasets, Derthick showed in [9] an interactive visualization environment for
data exploration intending to help in several stages of the exploration process (from
the creation of the target dataset to the projection and visualization of the reduced
data), finding interesting subsets of data to mine.

In traditional DM techniques, the major effort is spent in preparatory steps and
evaluating the results [9]. However, regarding the exploration of high volumes of
data, some works are considering to include human beings in the main stream of the
KDD process, trying to combine the best features of humans and computers,
integrating visual techniques in the DM process. According to Wong [10] the
visualization has been used in the DM process as a presentation tool in order to
navigate the data organized in complicated structures, generating both initial views,
and also presenting the final results required by the users. A large number of
visualization techniques can be used in data mining, and many of them are presented
in [11]. Example of these techniques are based on: geometric projection [12], icons
[13], hierarchical presentation [14], pixels [15], and combinations of them.

It is also important to note that the databases have grown not only in the number of
records, but also in the number of attributes. When describing complex data, as
multimedia objects, the number of parameters to be stored increases, resulting in high
dimensional data. Thus, dimensionality reduction techniques are being extensively
applied in DM process [16]. Among the most common dimensionality reduction
techniques are: Principal Components Analysis [17] [18], Factor Analysis [19] and
Multidimensional Scaling [20] [21] [22]. One of the landmarks of these techniques is
FastMap [23], that maps data from high dimensional spaces to lower dimensional

spaces, preserving the distances between the objects as much as possible. Using this
technique, others were developed for specific domains of applications [24], as images
[25] and DNA sequences [26]. However, it has been shown that the FastMap
technique is robust for applications in general, and wasn’t developed a method with
better performance, even in specific applications.

3 Describing the Problem

Obtaining successful results from knowledge discovery requires proper data
preparation. Thus, the KDD process is usually preceded by a pre-processing step
where the available data are prepared to be mined. It is usual in this step different
tables having data to be mined are integrated through join operations, and the
resultant tables are reduced by selection. The DM processes demand substantial
computational resources (both processing power and disk and memory space), thus
they are highly dependant on how adequately the preparation of data is done,
including how much data will be processed. It’s important to note that the steps of
cleaning and pre-processing are, in most cases, performed manually. The data analyst
has to decide what portions of data should be mined even before he could have any
information about the searching goal.

In this paper we exploit the steps required to prepare data from multiple tables, so a
data mining process can take over to find useful information as part of the pre-
processing step. We consider that the user can interact and receive feedback within
the table integration process, and we propose an extension on the concept of object
visualization, describing a conceptual framework that supports data visualization
obtained from join operations. Our technique allows the DM process to work in
multiple relations at once, bringing the join operations to become part of this process.
In general, join operations are not part of the data mining tools, mainly due to its huge
processing costs, which hinders then from practical usage. Moreover, the volume of
data generated in a join operation can be very high, and this can further overload the
DM process, turning it impractical. Nevertheless, our proposal aim to explore the
human capacity of visually interpret the data and utilize the results of this
interpretation in an interactive process to control the selection of data portions to feed
DM processes.

To avoid misunderstanding, it is important to distinguish the conceptual framework
proposed here as the wagging process from the DW concept [27]. Both assume either
a hierarchical, star or a snowflake schema linking every table. Data warehousing
process enforces the interpretation of this schema in the star or a snowflake schema
way. The focus of the attention is the central table, which in DW jargon is known as
the fact table, and contain as its attributes the values of the facts (numeric measures)
and keys to each related dimension table [28] [29]. The fact table stores every detail
of the data gathered by the enterprise that purports the DW, and each table related to
the fact table represents one of the parameters - or one of the dimensions - that
compose the facts. The relationships between the fact table and the dimension tables
have cardinality of many fact tuples to each dimension tuple. In this architecture, the
fact table is seen as a multidimensional cube, one dimension for each directly related

dimension table. The analysis process are mainly conducted performing projections of
this cube along its many dimensions.

The wagging process also focuses on the central table. This central table is called
the basis table, because this is the table that summarizes the data about the objects the
data mining process is concerned with. Each table related to the basis table describes
the occurrences of one attribute (or attribute set) of the basis table, so these other
tables are called the subordinate tables. Each tuple in the basis table references any
number of tuples in the corresponding subordinate tables, so the attributes of the basis
table are only part of the keys of the related subordinate tables. The relationships
between the basis table and the subordinate tables have cardinality of one basis tuple
to many subordinate tuples. Then, in an opposite way regarding DW, the wagging
approach uses a schema that also resembles a star or a snowflake, but the cardinality
of the relationships is inverted. In the DW approach, the center (fact) table is a very
large collection of items, each one irrelevant for the analysis process, whereas in the
wagging approach the center (basis) table has many attributes and a relatively small
number of tuples, each one semantically meaningful for the analysis process.

Figure 1 shows an example comparing the DW and the wagging process to analyze
a simple Hospital Medical Record database, to mine information about the patients.
Figure 1(a) shows an Entity-Relationship diagram of the original database, which is
composed by five tables: Patient, Physician, Exam Description, Consultation and
Exam. Figure1(b) shows how this database is structured to be analyzed by a DW
process, whereas figure 1(c) shows how this database is structured to be mined over
patient information using the wagging process. As it can be seen, the N:M cardinality
involved in the database are explored in different ways by both approaches. In the
same way, the target of each approach is different. The DW purpose is to analyze the
database from the perspective of the set of exams, treating each occurrence as a
transaction, regardless the details of each exam, physician or patient - the DW
approach compels the analyst to try different details manually, changing the
projections of the respective dimension. The wagging approach is more flexible,
because it allows different targets to be chosen. In figure 1(c) it was chosen to put the
target over the patient table. After the wagging process, any data mining and
visualization process can proceed automatically, with the mining process analyzing
many different combinations of details to mine the required information.

PATIENT

PHYSICIAN

EXAM

Consultation

Required by
M

N

M

N

P

Id
Name

Id
Name

...

Id
Type

...

...
Date+

...

...
Date

Fact Table
PHYSICIAN

Dimension Table

PATIENT
Dimension

Tables

DESCRIPTION

EXAM

Dimension Table

CONSULTATION

Basis Table

PHYSICIAN
Subordinate Table

PATIENT

Subordinate Table

DESCRIPTION

EXAM Subordinate
Tables

CONSULTATION

(a) (b) (c)1 N 1 N

Fig. 1. An example comparing DW and the "wagging" process. (a) an Entity-Relation diagram
of a Hospital Medical Record Database; (b) a snow-flake schema of the same database in the
context of DW; (c) a hierarchical schema of the same database in the context of the "wagging"
process

4. The Proposed Framework

Every visualization and data mining process must receive one table (or data file) as
input. Therefore, before data from multiple database relations could be processed, an
operational table has to be created. This section describes the proposed wagging
process aiming to use visualization to interactively prepare data from multiple
relational tables to be submitted to other mining process. Without loss of generality,
we assume that the data to be processed is a set of objects with a homogeneous
representation, and that part of its data are stored in a relational database table, called
the basis relation B. Conceivably, the basis table stores details from objects of only
one kind, so other objects referred by this table have their details stored in a set of
other tables in the same database, called the subordinate relations Si. If the analysis
process uses data from the basis and subordinate relations, they must be joined to
create the operational relation R, which is submitted to the visualization and data
mining processes. That is, the visualization and data mining processes receive an
operational relation R that is created using the information stored in the set of
relations {B, {Si}}.

Considering that a database relation can be defined as a subset of the Cartesian
Product of the domains of their attributes, the operational table R can be defined as
the join of:
• the basis relation B = {Bi | Bi 0 B} and
• one or more subordinate relations Si = {Sij | Sij 0 Si}.

Once the basis relation B is chosen, it’s necessary to specify the join conditions Jk
between it and a subordinate relation Si not selected yet, or between a subordinate
relation already selected and a subordinate relation not selected yet. Each join
condition Jk can involve more than one attribute of each joined relations, that is, a join
condition is the non-empty set

Jk(E, F,ck)={ck=<E 2 F> | E 0 E, F 0 F}+, E, F 0 {B, {Si}},

where 2 is a comparison operation defined in the domain of the attributes E and F. It
is important to note that, starting with the basis relation B, the subordinate relations
are being joined one at a time, so that there is only one path from B to each Si.

The operational relation R is created using selected attributes from B and aggregate
functions over selected attributes of each Si, that is,

R=Jl(Jk({Ba, Bb, ...| Ba, Bb0B}, { Agr(Sid), Agr(Sie) , ...| Sid, Sie,0Si}, (Bc 2 Sif
|Bb0B, Sif0Si), { Agr(Sjg), Agr(Sjh) , ...| Sjg, Sjh,0Sj}, (Bp 2 Sjq |Bp0(B c Si),

Sjq0Sj)),...

where Ba, Bb,... are attributes of the basis relation, and Sid, Sie,... Sjg, Sjh,... are attributes
from the subordinate relations Si, Sj,... which are joined to the basis relation (or to the
previously joined relations) through the join conditions Jk, Jl,... The subset of
attributes Sid from the subordinate relations generates aggregate Agr(Sid) attributes that
are included in the operational relation R. The aggregation functions are the usual
ones provided by the database management system, such as summation SUM, average
AVG, minimum MIN, maximum MAX and count COUNT. More than one function can

be applied to each attribute of the subordinate relations. For example, parameter
measured by a medical exam in the example database can be reported at the relation R
by its minimum, maximum and average values for each patient.

After the selection of the aggregate attributes from the subordinate relations, the
operational relation R is materialized through the join conditions, and is therefore
ready to be submitted to the visualization and data mining processes. The relation R
can include attributes from many relations, but every attribute are directly related to
the objects described by the basis relation B used to start the process. Not every
attribute would be used in the further analysis steps, so the required ones should be
selected now. The selection of attributes and the further analysis processes are
executed iteratively, but as the operational relation R is materialized, no more time is
spent to redo the expensive joins, which otherwise would be necessary. After the
further analysis steps, when the important attributes were already determined, the full
joins (not using the aggregation functions) can be redone to complete the data mining
process. Using the proposed technique, the join operations are executed just twice:
once to create the relation R, and once to create the final full table. Otherwise, the
joins must be repeated at each iteration step of the analysis process.

This approach results in an operational relation with many attributes, originated
from the aggregate attributes of the subordinate relations. This can overload the
further analysis processes, so it is interesting to reduce the quantity of attributes
submitted to them. Therefore, after the operational relation has been materialized, the
user is required to select some attributes, in a selection pre-analysis process. This
selection is submitted to a visualization process, and the user is required to interpret
the data visualized, confirming that it has enough information for the intended data
analysis. If the information is not enough, a new selection is required.

The wagging approach has the following advantages over the conventional
processes:
• reduced processing time to generate the operational relation R. As many attributes

are aggregated in a single join operation, the need of other join operation when the
previously selected attributes shows to be not useful is eliminated. Without the
operational relation R, a freshly operational relation must be created after each
analysis step iteration;

• support to the user in the preparation process. As the selection of attributes to be
submitted to further analysis processes is supported by visual tools, the user now
have a fast method to verify the usefulness of the attributes chosen, and do not
need to rely exclusively on the semantic of the data he/she already knows.

5 The FastMapDB tool

The FastMapDB tool was developed using the concepts presented in the previous
section and the mapping algorithm FastMap [23]. This tool was designed intending to
help the user on the process of visual data analysis from data stored in relational
databases as a three-dimensional model. It was developed aiming to enable the user to
“see” the distribution of the data, regardless any intrinsic spatial property in the data.
It allows, for example, to verify the existence of outliers, to assist on the steps of data

cleaning and pre-processing, and to help the user to choose reduced sets of attributes
as input to mine.

The next steps are followed to obtain an operational relation to be visualized in the
FastMapDB tool, that are further submitted to data mining processes.
1. Select the database;
2. Select the basis relation B;
3. Select one or more subordinate relations Si and the respective aggregation

functions that should be submitted to the visualization or data mining process;
4. Materialize the operational relation R;
5. Select attributes from R to create the distance function d() for the FastMap

algorithm;
6. Define parameters to generate the visualization;
7. Generate and interact with the visualization.

These steps are executed sequentially by the miner analyst. It’s possible to return to
any previous step, however, when steps 1 and 2 are re-executed, the data of
subsequent steps are discarded.

The tool presents a graphical interface. The initial steps are guided by the tool.
First, the available databases are displayed. After the database has been chosen, its
relations are shown, and the basis relation B is selected. FastMapDB then presents the
attributes from the selected relation, and allows the user to select what Bi attributes to
include in the operational relation. After that, it presents an interface that allows the
user to execute the steps 3 to 6 (Figure 2) iteratively and interactively.

Fig. 2. The main screen of the FastMapDB tool

Subordinate relations are chosen in step 3. For each subordinate relation Si, the
user must indicate the attribute(s) of the join condition Jk (Figure 3 (b)), the attributes
to be included from Si in relation R, and the aggregation function (Figure 3 (a)) to be
applied over each attribute (sum, average, minimum, maximum and/or count). After
every required subordinate relation have been included, the operational relation R is
materialized as a persistent relation in step 4. Therefore, the cost of joins is reduced
reusing the already processed table in several visualizations running the join just once.

Fig. 3. The join screens. (a) selecting the join attributes; (b) selecting the subordinate attributes
and the aggregate functions

In step 5 some attributes of the relation R are chosen to build a distance function.
The system uses a Lp_norm distance function2 to generate a 3-dimensional spatial
representation of the tuples in the relation, so the user can visualize them. The
attributes used by the distance function can be of any type, including numbers, texts
(where the LEdit function is used to calculate the attribute differences in the Lp_norm)
or dates (where the number of days between two dates is used), and can be weighted,
normalized, and/or used in linear or logarithmic scales. In step 6 the attributes of the
operational relation are used to define parameters for the visualization, like using
continuous attributes to define the size of the dots, to classify the tuples using color
and dot shapes, and to select tuples to visualize.

Fig. 4. Visualization of the Hospital Medical Record database

2 A Lp distance function of two arrays X(x1, x2, ...xN) and Y(y1, y2, ...yN) is expressed as

, where wi is the weight of each attribute.

And finally, in step 7 the visualization generated can be explored and interactively
manipulated through operations as rotation, zoom and translation. Figure 4 illustrates
FastMapDB being used to visualize the data set that is described in the following
section.

The FastMapDB tool was developed in Borland C++ Builder in the MS Windows
operating system, using BDE and ODBC protocols to establish connection with Data
Base Management Systems - DBMS. At present, the tool supports connection to
Oracle, DB2, Sybase, MS-SQLServer and Interbase.

5.1 Experimental Evaluation

This section shows the results of applying the FastMapDB tool on real world data
sets. The data used for the experiments came from a real Hospital Medical Record
database that stores the events in a schema similar to the one presented in Figure 1(a)
(the detailed schema is not presented due to confidentially requirements of the
hospital). The experiments highlight the gain of performance obtained by the wagging
approach. They were performed on a Pentium III 800MHz computer under the MS
Windows 2000 operating system, and using an Oracle 8i database server.

5.1.2 Evaluating the Performance

The first experiment evaluates the time spent by the FastMapDB tool, varying the
number of tables joined. In this experiment we have used a basis relation plus none,
one, two, and three subordinate tables using inner joins, which resulted on operational
relations of 19287, 18545, 17816 and 16854 tuples respectively. We considered that
an operational relation is used by the subsequent processes many times. Thus the
experiment measured total time to prepare the operational relation, both using the
wagging process, and not using it. The experiment was performed measuring the
average of 11 sets of selection, mapping and visualization operations of 10 attributes
out of an operational relation with 11attributes. The results of this experiment are
shown at Figure 5 (a). This figure also shows the time required to perform each
additional set of selection, mapping and visualization operations. The smaller times
obtained using increasing numbers of subordinate relations at each set of operations
are due to the use of inner joins, which can reduce the number of tuples in the
resulting table, and thus the processing times for the mapping and visualization
operations. Figure 5 (b) shows the time spent by each join, mapping and visualization
operations that result in the total time to prepare the operational relation without using
the wagging process shown in Figure 5 (a).

Figure 5 (c) shows the results of another experiment, where the FastMapDB tool
was applied just at the operational table resultant of the join of 2 relations - the basis
and one subordinate relation, resulting in 18545 tuples. In this experiment, the
performance of the tool was measured varying the number of attributes mapped from
4 to 10 out of an operational relation consisting of 11 attributes. As before, the values
shown are the average of 11 executions.

Fig. 5. Evaluating the performance of FatMapDB. (a) total time to join a basis relation with 0 to
3 subordinate relations and visualize 10 attributes from the resulting attributes of the
operational relation; (b) time spent by join, mapping and visualization operations without using
the wagging process; (c) time spent by FastMapDB varying the number of mapped attributes

6 Conclusions

In this paper we presented the wagging approach, aiming to prepare operational
relations for visualization and data mining processes from a set of relations. These
processes require the data to be structured in only one relation (or data file), so the
preparation of the data to be submitted to them is a process usually considered as part
of the pre-processing steps of the KDD. The preparation of the data from more than
one original relation requires time-consuming join operations, and as the whole KDD
iterates through every step, much time is spent with these operations. The wagging
process creates one operational relation that includes attributes from one basis relation
- the target of the KDD process - and attributes calculated as aggregate functions of
attributes from one or more subordinate relations. This operational relation enables
the data mining and visualization steps of the KDD process to perform several
iteration cycles without need to return to the pre-processing step, effectively reducing
the overall processing time.

Another benefit of the wagging process is that even the pre-processing can be
aided by a visual tool, using the operational relation itself as it is being constructed, to
guide the miner analyst during the inclusion of new relations in the operation
relations. For the best of the authors' knowledge, this is the first interactive support
provided for the data integration step of KDD processes so far.

These concepts enabled the creation of the FastMapDB tool, which includes
resources to interactively visualize selections from an operational relation, and uses
these resources to aid in the wagging process of create operation relations.

This paper also includes experiments to measure the time required to visualize
relations submitted to data mining processes, both using and not using the wagging
process. The results show impressive gains in performance, achieving reduction to
less than 25% of the time needed when not using the wagging process in typical

relations (in this case, joining four relations of ~20,000 tuples into a relation
consisting of 10-20 attributes).

References

1. Fayyad, U.M., Mining Databases: Towards Algorithms for Knowledge Discovery. Bullettin
of Tech. Committee on Data Engineering, 1998. 21(1): p. 29-48.

2. Han, J. and M. Kamber, Data Mining - Concepts and Techniques. 1st Edition ed. 2000, New
York: Morgan Kaufmann Publishers. 550.

3. Keim, D.A. and H.-P. Kriegel, Visualization Techniques for Mining Large Databases: A
Comparison, in IEEE Trans. on Knowledge and Data Engineering. 1996, IEEE Computer
Society. p. 923- 938.

4. Famili, A. The Role of Data Pre-processing in Intelligent Data Analysis. in Intelligent Data
Analysis Symposium (IDA). 1995. Baden-Baden, Germany.

5. Wright, P. Knowledge Discovery Preprocessing: Determining Record Usability. in 36th
ACM Southeast Regional Conference. 1998. Marietta, Georgia, USA: ACM Press.

6. Becher, J.D., P. Berkhin, and E. Freeman. Automating Exploratory Data Analysis for
Efficient Data Mining. in 6th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data
Mining. 2000. Boston, MA, USA: ACM Press.

7. Traina, C., Jr., et al. Fast feature selection using fractal dimension. in XV Brazilian
Database Symposium. 2000. João Pessoa - PA - Brazil.

8. Smyth, P. and D. Wolpert. Anytime Exploratory Data Analysis for Massive Data Sets. in 3rd
Int'l Conf. on Knowledge Discovery and Data Mining (KDD-97). 1997. California, USA:
AAAI Press.

9. Derthick, M., J. Kolojejchick, and S.F. Roth. An Interactive Visualization Environment for
Data Exploration. in 3rd Int'l Conf. on Knowledge Discovery and Data Mining (KDD-97).
1997. California, USA: AAAI Press.

10. Wong, P.C., Visual Data Mining, in IEEE Computer Graphics and Applications. 1999. p.
20-21.

11. Hinneburg, A., D.A. Keim, and M. Wawryniuk, HD-Eye: Visual Mining of High-
Dimensional Data. IEEE Computer Graphics and Applications, 1999. 19(5): p. 22-31.

12. Inselberg, A. and B. Dimsdale. Parallel Coordinates: A Tool for Visualizing
Multidimensional Geometry. in IEEE Visualization. 1990: IEEE Computer Press.

13. Pickett, R.M. and G.G. Grinstein. Iconographic Displays for Visualizing Multidimensional
Data. in IEEE Conf. on Systems, Man and Cybernetics. 1988. Piscataway, NJ: IEEE Press.

14. LeBlanc, J., M.O. Ward, and N. Wittels. Exploring N-dimensional Databases. in
Visualization Conf. 1990: IEEE Computer Society.

15. Keim, D.A. and H.-P. Kriegel, VisDB: Database Exploration Using Multidimensional
Visualization. IEEE Computer Graphics and Applications, 1994. 14(5): p. 16-19.

16. Kanth, K.V.R., D. Agrawal, and A.K. Singh. Dimensionality Reduction for Similarity
Searching in Dynamic Databases. in ACM Int'l Conference on Data Management
(SIGMOD). 1998. Seattle, Washington, USA: ACM Press.

17. Anderson, T.W., An Introduction to Multivariate Statistical Analysis. 1984, New York.
18. Johnson, R.A. and D.W. Wichern, Applied Multivariate Statistical Analysis. 1982, London:

Prentice-Hall.
19. Harman, H.H., Modern Factor Analysis. 1967: University of Chicago Press.
20. Torgenson, W.S., Multidimensional Scaling: I. Theory and Methods. 1952, Psychometrika.

p. 401-419.
21. Kruskal, J.B. and M. Wish, Multidimensional Scaling. 1978, SAGE Publications: Beverly

Hills.

22. Young, F., Multidimensional Scaling: History, Theory, and Applications. 1987, Lawrence
Erlbaum Associates: Hillsdale, NJ.

23. Faloutsos, C. and K.-I.D. Lin. FastMap: A Fast Algorithm for Indexing, Data-Mining and
Visualization of Traditional and Multimedia Datasets. in ACM Int'l Conference on Data
Management (SIGMOD). 1995. Zurich, Switzerland: Morgan Kaufmann.

24. Wang, J.T.-L., et al. Evaluating a class of distance-mapping algorithms for data mining and
clustering. in ACM Int'l Conf. on Knowledge Discovery and Data Mining (KDD). 1999. San
Diego, CA: ACM Press.

25. Berman, A. and L.G. Shapiro. Selecting Good Keys for Triangle-Inequality-Based Pruning
Algorithms. in Intl. Workshop on Content-Based Access of Image and Video Databases
(CAIVD '98). 1998. Bombay, India: IEEE Press.

26. Hristescu, G. and M. Farach-Colton, Cluster-preserving embedding of proteins. 1999,
DIMACS. p. 18.

27. Inmon, W.H., Building the Data Warehouse. 1992, New York: John Wiley & Sons.
28. Elmasri, R. and S.B. Navathe, Data Warehousing and Data Mining, in Fundamentals of

Database Systems. 2000, Addison-Wesley: USA. p. 841- 855.
29. Han, J. and M. Kamber, Data Warehouse and OLAP Technology for Data Mining, in Data

Mining - Concepts and Techniques. 2000, Morgan Kaufmann: New York. p. 39- 104.

