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Abstract
Non-rigid 3D shape retrieval has become a research hotpot in communities of computer graphics, computer vi-
sion, pattern recognition, etc. In this paper, we present the results of the SHREC’15 Track: Non-rigid 3D Shape
Retrieval. The aim of this track is to provide a fair and effective platform to evaluate and compare the perfor-
mance of current non-rigid 3D shape retrieval methods developed by different research groups around the world.
The database utilized in this track consists of 1200 3D watertight triangle meshes which are equally classified into
50 categories. All models in the same category are generated from an original 3D mesh by implementing vari-
ous pose transformations. The retrieval performance of a method is evaluated using 6 commonly-used measures
(i.e., PR-plot, NN, FT, ST, E-measure and DCG.). Totally, there are 37 submissions and 11 groups taking part in
this track. Evaluation results and comparison analyses described in this paper not only show the bright future in
researches of non-rigid 3D shape retrieval but also point out several promising research directions in this topic.

Categories and Subject Descriptors (according to ACM CCS): H.3.3 [Computer Graphics]: Information Systems—
Information Search and Retrieval

1. Introduction

With the rapid development of computer hardware and soft-
ware, 3D models have become widely-used in our daily
lives. Since the number of 3D models is increasing rapid-
ly, the focus of researchers’ interests has been shifted from
“how to design and create 3D models” to “how to quick-
ly and accurately find 3D models we want”. Until now, large
numbers of papers on content-based 3D object retrieval have
been published. In the last few years, the topic of non-rigid
3D shape retrieval has attracted more and more researchers
around the world. Possible reasons are twofold. First, non-
rigid 3D objects are commonly-seen in our surroundings.
For example, the same type of models shown in Figure 1

† http://www.icst.pku.edu.cn/zlian/shrec15-non-rigid/
‡ Track organizers. E-mail: lianzhouhui@pku.edu.cn

Figure 1: Examples of non-rigid 3D models. Note that the
rightmost two models have different topological structures
against other objects in the same class.
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appear in quite different poses and thus it is hard to clas-
sify them into the same categories using many tradition-
al approaches. Second, generating isometry-invariant and
discriminative shape descriptors usually requires the explo-
ration of many mathematical theories and the utilization of
new techniques in relevant research areas.

Up to now, a large number of algorithms for non-rigid
3D shape retrieval have been proposed. Since each method
has its own advantages and disadvantages, it is therefore
important to fairly compare the performance of those d-
ifferent methods in a convincing manner. However, most
retrieval approaches specifically-designed for non-rigid 3D
objects can only process watertight single-component mesh-
es. Mainly due to the fact that designers typically only care
about the visual appearances of 3D objects they design,
large percentages of existing 3D models are not watertight
and often contain inner structures and/or geometric nois-
es. Thereby, building a large-scale database containing such
kinds of high-quality 3D watertight meshes is not a trivial
task. The McGill Articulation 3D Shape Benchmark (M-
cGill) [SZM∗08] is the first publicly available benchmark
which is now widely-used for the evaluation of non-rigid 3D
shape retrieval methods. However, only 10 categories and to-
tally 255 models are contained in the McGill database, and
furthermore the numbers of objects in each pair of categories
are unequal. That might cause evaluation bias and make the
performance comparison based on the McGill database not
convincing enough.

In order to solve this problem and promote the inves-
tigations of non-rigid 3D shape retrieval, we organized
two SHREC tracks on non-rigid 3D shape retrieval in
2010 and 2011, respectively. The SHREC’10 non-rigid
track [LGF∗10] is the first attempt in the history of SHREC
to specifically focus on the comparison of non-rigid 3D
shape retrieval methods. The track only utilized 200 models
for evaluation and there were merely 3 participation group-
s. In the next year, both the size of database (600 models)
and the number of participants (9 groups) tripled [LGB∗11],
indicating that more and more researchers have become in-
terested in this research topic. From then on, more efforts
have been devoted to the researches of non-rigid 3D shape
retrieval, making this topic a hotpot in content-based 3D ob-
ject retrieval. This year, we built a new non-rigid 3D shape
database consisting of 1200 watertight 3D triangle meshes
that could be equally divided into 50 classes. Each group
was asked to submit up to five distance matrices obtained by
implementing their methods, and finally 11 groups around
the world took part in the SHREC’15 track: Non-rigid 3D
Shape Retrieval. The rest of this paper is organized as fol-
lows: Section 2 presents an overview of our database. Sec-
tion 3 describes the evaluation rules of the track. Section 4
briefly introduces the 11 participation groups and their meth-
ods, whose more details are discussed in Section 5. Exper-
imental results and corresponding analyzes are provided in

Section 6. Finally, Section 7 concludes the paper and points
out some future research directions.

2. Database

The new database built for this track consists of 1200
watertight triangle meshes (see Figure 2) derived from
50 original models that are selected from the following
publicly available repositories (e.g., PSB database [SMK-
F04], McGill database [SZM∗08], TOSCA shapes [BBK08],
SHREC’11 non-rigid database [LGB∗11], Google 3D Ware-
house [Goo15], etc.). Given a 3D mesh, we use Autodesk 3d
Max to build its skeleton and then generate 23 deformed ver-
sions of the mesh by articulating around its joints in differ-
ent ways. To remove the inner structures of those articulat-
ed models (see Figure 3), we implement our own codes to
first capture 18 depth-buffer views for the normalized object
on the vertices of a unit geodesic sphere, and then convert
those images into a point cloud. Finally, we wrap the point
cloud into a polygon surface and fix it to form a watertight
3D manifold by using Geomagic, which can be automatical-
ly implemented with recorded macros. Figure 2 shows some
examples of those 1200 non-rigid models which have been
equally classified into 50 categories.

Note that: 1) The 600 models used in the SHREC’11
non-rigid track [LGB∗11] are directly included in the new
database; 2) In each category, 20 models have the same topo-
logical structures as the original source model while there
exist 4 objects whose topological structures are modified by
letting some parts be connected. The purpose is to construc-
t a more challenging database so that the robustness of a
method against topological errors can also be evaluated.

3. Evaluation

The evaluation rules are exactly the same as previous two
SHREC non-rigid tracks. Specifically, participants are asked
to implement their algorithms on the database to calculate
the dissimilarity between each pair of models, and then gen-
erate a distance matrix for each method. The matrix consists
of 1200×1200 floating point numbers, where the number at
position (i, j) represents the dissimilarity between models i
and j.

With the matrices submitted by participants, we evaluate
their retrieval performance based on Precision-recall curves
(PR-plot) and the following five quantitative measures: N-
earest Neighbor (NN), First Tier (FT), Second Tier (ST), E-
measure (E), and Discounted Cumulative Gain (DCG). De-
tailed definitions of these six evaluation measures can be
found in [SMKF04].

4. Participants

This year, we had 11 groups taking part in the SHREC’15
Track: Non-rigid 3D Shape Retrieval and received 37 dis-
similarity matrices as follows:
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Figure 2: Examples of the new types of models that are not included in the SHREC’11 non-rigid database.

Figure 3: Creating the watertight manifold for a 3D mesh that may contain inner structures and other noises/errors. We first
normalize the original model (a) so that it is located inside a unit geodesic sphere, and then a set of depth-buffer views (b) of
the 3D mesh are captured on the 18 vertices of the bounding sphere. Afterwards, we convert those depth-buffer images into a
point cloud (c). Finally, by wrapping the point cloud and fixing holes and other errors on the surface, we obtain a watertight
manifold (d) without inner structures.

1. SNU-1 and SNU-2 submitted by Sungbin Choi from
Seoul National University, Korea.

2. CompactBoFHKS-4D, CompactBoFHKS-5D,
CompactBoFHKS-10D and CompactBoFHKS-19D
submitted by Hanan ElNaghy from Ain Shams Universi-
ty, Egypt.

3. SV-LSF and SV-LSF-kpca50 submitted by Takahiko Fu-

ruya and Ryutarou Ohbuchi from University of Ya-
manashi, Japan.

4. HAPT-run1, HAPT-run2 and HAPT-run3 submitted by
Andrea Giachetti and Luca Isaia from University of
Verona, Italy.

5. SPH-SparseCoding-256, SPH-SparseCoding-1024,
SPH-SPEM-VLAD-32 and SPH-SPEM-VLAD-64 sub-
mitted by Riza Alp Guler, Gozde Unal from Sabanci
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University, Turkey and Sibel Tari from Middle Eastern
Technical University, Turkey.

6. HKS, SA, WKS and Multi-Feature submitted by Long Lai,
Li Sun and Haisheng Li from Beijing Technology and
Business University, China.

7. SG-L1, SG-L2, SG-L3, SG-L4 and SG-L5 submitted by
Chunyuan Li from Duke University, USA.

8. FVF-HKS, FVF-SIHKS and FVF-WKS submitted by
Frederico A. Limberger and Richard C. Wilson from U-
niversity of York, USA.

9. TSASR256, TSASR512 and TSASR1024 submitted by
Rafael Umino Nakanishi, Afonso Paiva Neto and Luis
Gustavo Nonato from Universidade de São Paulo, Brazil.

10. SID-1, SID-2, SID-3, SID-4 and SID-5 submitted by Kir-
ill Pevzner, Andrei Sharf and Jihad El-Sana from Ben Gu-
rion University, Israel.

11. EDBCF-AV and EDBCF-NW submitted by David Pick-
up, Xianfang Sun, Paul Rosin and Ralph Martin from
Cardiff University, UK.

5. Methods

5.1. SNU: Geodesic Distance Distribution, by S. Choi

In this method, only geodesic distance distributions of mesh
models are utilized. For each mesh model in the data set,
1,600 points are sampled on the surface. Then, all geodesic
distances between sampled points are calculated, generating
a 1600×1600 geodesic distance matrix (GDM). Afterward-
s, GDM is converted to a histogram having 200 bins. Dis-
similarity between different mesh models is calculated by
applying different similarity measure functions (RunID S-
NU_1: Euclidean distance; RunID SNU_2: Correlation mea-
sure) [SFH∗09].

5.2. CompactBoFHKS: Bag of Compact HKS-based
Feature Descriptors, by H. ElNaghy

The key idea of this method is the synergy between Heat K-
ernel Signatures (HKS) and Bag of Features (BoF) paradigm
[BBGO09]. The method proceeds through five main phases:
HKS Computation, Feature Point Detection, Feature Point
Description, Bag of Features and finally the Matching phase.

Initially, the HKS computation phase encodes each point
in a given 3D model by an m-dimensional HKS feature vec-
tor Kt(x,x). It describes the modeląŕs local and global ge-
ometric properties at m different time values over the time
interval [tmin,tmax], using equation (1):

Kt(x,x) =
k

∑
i=0

e−λit
φi(x)

2 (1)

where λi and φi are the ith eigenvalue and eigenfunction of
the Laplace-Beltrami operator respectively [SOL09].

The second phase of feature point detection constitutes

an initial set of feature points by capturing the HKS criti-
cal points for all models over m times scales. Then, an in-
novative filtering technique is applied on this initial set to
carefully pick the most stable and significant feature points.
It inspects all the initially detected critical points and dis-
cards repeated or insignificant ones. The proposed filtering
technique dramatically reduces both time and space required
later to construct the visual dictionary during the Bag of Fea-
tures phase.

After that, the feature description phase normalizes the
HKS feature vector Kt(x,x) associated with each feature
point in the feature space. This normalization process pro-
duces an m-dimensional feature vector h(x), such that:

h(x) = (h1(x), ...,hm(x));hi(x) = c(x)Kti(x,x) (2)

where the constant c(x) is selected in such a way that
||h(x)||2 = 1 and ti ∈ [tmin, tmax] [BBGO09].Then, a d-
dimensional HKS-based feature vector p(x) is selected care-
fully as a subset of h(x). The feature descriptor p(x) should
encode each feature point belonging to the final feature space
in a compact, robust and informative way.

Then, the Bag of Features phase is subdivided into t-
wo main sub phases: vocabulary construction and object
representation. Throughout the vocabulary construction sub
phase, a visual dictionary P= {p1, ..., pv} of size is built by
clustering the feature space. Then, 3D object representation
sub phase performs vector quantization in the feature space
in order to represent each 3D model by its bag of features
vector F(x).

Given a visual dictionary P= {p1, ..., pv} and a 3D mod-
el X with n vertices, each vertex x is represented with a v-
dimensional feature distribution ϑ(x) such that its associat-
ed -dimensional feature descriptor p(x) is replaced by the
closest geometric word pi from the visual dictionary P . Af-
ter vector quantization, the final v-dimensional BoF vector
F(x) [BBLO11] is computed such that:

F(x) =
n

∑
i=1

ϑ(xi) (3)

Finally, the matching phase determines the similarity or
dissimilarity of two given 3D models by computing the dis-
tance dBoF between their corresponding bags of features.
Therefore, 3D object similarity problem is reduced to the
problem of comparing vectors of feature frequency.

Since this method is mainly based on the Bag of Fea-
tures paradigm using a concise feature space of com-
pact HKS-based feature descriptors, it is denoted as
”CompactBoFHKS”.

Parameter settings are as follows:

• For HKS computation, the number of computed eigenval-
ues (λ) and eigenvectors (φ) was set to 300 (k = 300) and
HKS (Kt(x,x)) is computed for each vertex by uniformly
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sampling 100 points (m = 100) in the logarithmically s-
cale over time interval [tmin, tmax] , with tmin = 4ln10/λ300
and tmax = 4ln10/λ2.
• For vocabulary construction, K-means algorithm is cho-

sen for clustering the feature space and the size of the vi-
sual dictionary was set to 64 (v=64).
• For 3D object representation, hard vector quantization

was adopted for computing the feature distribution ϑ(x).
• For final matching, Manhattan distance (L1-norm) is used

for computing the distance dBoF between two given bags
of features.
• Four runs have been proposed by changing the criteria

of choosing the d-dimensional feature descriptor as p(x)
a subset of the m-dimensional HKS-based feature vector
h(x).

5.3. SV-LSF: Super Vector of Localized Statistical
Features, by T. Furuya and R. Ohbuchi

Figure 4: Pipeline of SV-LSF algorithm.

The algorithm aims at extracting 3D shape descriptors
that are robust against articulation of 3D models, are ap-
plicable to diverse shape representations, and are compact
for efficient comparison among 3D models. The SV-LSF
is an improved version of the LSF algorithm by Ohkita et
al. [OOFO12] [LGB∗11]. Figure 4 describes a pipeline of
our algorithm. The algorithm consists of the following step-
s.

(1) Generating oriented point set: Given a surface-based
3D model, it is first converted into a 3D oriented point set by
sampling the surfaces of the 3D model. This sampling pro-
cess gains invariances to shape representations of 3D model.
We use the algorithm by Osada et al. [OFCD02] for con-
verting a polygonal model into an oriented point set. The al-
gorithm randomly and uniformly samples points on the sur-
faces of the 3D polygonal model. Each point is associated
with the normal vector of the triangle on which the point is
sampled. We sample Np = 5000 oriented points per 3D mod-
el. The oriented point set of the 3D model is scaled to fit a
sphere having diameter 1.

(2) Extracting local features: We densely extract a set of
local 3D geometric features from the oriented point set. For
each oriented point, a Sphere-Of-Interest (SOI), in which a
local feature is computed, is defined. For robustness against
scale change of local 3D shapes, we use multi-scale SOIs.
Radius of each SOI is randomly selected from a range [0.01,
0.15]. The set of oriented points enclosed in the SOI is de-
scribed by LSF [OOFO12], which is a 625-dimensional fea-
ture vector having invariance against 3D rotation. The di-
mensionality of LSF is then reduced from 625 down to 64
by using PCA to make LSF more discriminative and to ac-
celerate subsequent process (i.e., feature aggregation). A 3D
model is represented by a set of Np = 5000 LSF features.

(3) Aggregating local features: The set of LSF features
is aggregated into a feature vector per 3D model for effi-
cient comparison among 3D models. We use Super Vector
(SV) coding [ZYZH10] for more accurate aggregation than
commonly-used Bag-of-Features [CDF∗04]. In this SHREC
track, we use soft-assignment variant to SV coding [FO14].
A codebook for SV is learned by using Gaussian Mixture
Model (GMM) clustering algorithm using a set of 250,000
LSF features randomly selected from all the LSF features
extracted of 3D models in the test database. We learn 1,000
clusters, or codewords, for the codebook. The SV-LSF fea-
ture is power-normalized by applying the following equation
to each element z of the SV-LSF feature vector.

f (z) = sign(z)|z|p (4)

we use p = 0.3 for the track. The power-normalized feature
is then normalized by its L2 norm.

(4) Reducing dimensionality of aggregated features: The
SV-LSF is a high-dimensional feature vector. As the dimen-
sionality of LSF is 64 and the number of clusters is 1000,
SV-LSF is (64+ 1)1,000 = 65,000-dimensional vector. To
reduce the cost for feature comparison among 3D models,
dimensionality of the SV-LSF is reduced down to 50 by us-
ing Kernel PCA (KPCA) with dot kernel as with [FO14].
To learn a projection of KPCA, we use 1200 SV-LSF fea-
tures extracted from 1200 3D models in the test dataset. A
distance between a pair of 3D models is computed by using
Cosine distance between a pair of SV-LSF features of the 3D
models. Cosine distance is computed as −(c+1)/2 , where
c is Cosine similarity between two SV-LSF features.
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All the parameters for the SV-LSF were tuned through
preliminary experiments using the SHREC 2011 Non-rigid
3D Watertight Meshes dataset [LGB∗11]. We determined
the combination of parameters so that retrieval accuracy be-
came the highest among the combinations of parameters we
tried. We submit the following two runs for this track;

• SV-LSF: 65,000-dimensional SV-LSF features are com-
pared to generate ranking results.
• SV-LSF-kpca50: 50-dimensional SV-LSF features pro-

duced by KPCA are compared.

5.4. HAPT: Histograms of Area Projection Transform,
by A. Giachetti and L. Isaia

The method proposed is based on Histograms of Area Pro-
jection Transform (HAPT) [GL12]. It is based on the estima-
tion of a discretized spatial map (Multiscale Area Projection
Transform) that encodes the likelihood of the points inside
the shape of being centers of spherical symmetry. This map
is obtained by computing for each radius of interest the val-
ue:

APT (~x,S,R,σ) = Area(T−1
R (kσ(~x)⊂ TR(S,~n))) (5)

where S is the surface of interest, TR(S,~n) is the parallel sur-
face of S shifted along the normal vector (only in the inner
direction) and kσ(~x is a sphere of radius σ centered in the
generic point ~x where the map is computed. Values at dif-
ferent radii are normalized in order to have a scale-invariant
behavior, creating the Multiscale APT (MAPT):

MAPT (x,y,z,R,S) = α(R) APT (x,y,z,S,R,σ(R)) (6)

where α(R) = 1/4πR2 and σ(R) = c ·R (0 < c < 1).

A discretized MAPT is easily computed, for selected val-
ues of R, on a voxelized grid including the surface mesh,
with the procedure described in [GL12]. The map is comput-
ed in a grid of voxels with side s on a set of corresponding
sampled radius value R1, ...,Rn.

In this track, discrete MAPT maps were quantized in
12 bins and histograms computed at different scales (radi-
i) considered were concatenated creating an unique descrip-
tor. Voxel side and sampled radii were chosen differently for
each model and proportional to the cubic root of the object
volume, in order to have the same descriptor for scaled ver-
sions of the same geometry. In our test we computed the
map at 12 different radii, using the same parameters for ra-
dius step discretization and voxelization applied in [GL12],
e.g. voxel sixe s = cbrt(volume)/25, first radius equal to 2s,
step between radii equal to s, c = 0.5.

We however submitted 3 different distance matrices ob-
tained from the same MAPT computation, obtained as fol-
lows: the first one by concatenating all the histograms, then
measuring the resulting histogram distances with the Jef-
freys’ divergence [Jef46]. The second one by concatenating
all the histograms but the first (computed at the finer scale,

assumed to be possibly noisy), then measuring histogram
distances with the Jeffreys divergence. The third one was
obtained by concatenating the histograms computed at the
first eight scales, in order to have exactly the same param-
eters used in the original paper [GL12] in the experiments
done on SHREC’11 Nonrigid dataset [LGB∗11].

The MAPT/histograms extraction was performed us-
ing the a C++ implementation of the method available at
http://www.andreagiachetti.it. The computation time of a
map depends on the model features, on the discretization and
on the radius range, and was 3 min on average for the test-
ed dataset on a Dell XPS L-701 X laptop (Intel Corei7 CPU
Q740) running Ubuntu Linux. A single query takes around
1.2 msec. using a Matlab implementation of the Jeffrey di-
vergence distance.

5.5. SPH-SPEM-VLAD: Screened Poisson Hyperfield
features with Sparse Coding and VLAD, by R.A.
Guler, S. Tari and G. Unal

Figure 5: Left: Various poses of the bunny and a line inside
it. Right: The rows of Y for the nodes that are on the line
visualized as isocontours and line plots.

The screened Poisson hyperfield [GTU14] provides a vol-
umetric representation technique where the shape informa-
tion is encoded inside the shape by exploiting internal dis-
tance relationships via the screened Poisson PDE:

∆vρi(x)− vρi(x)
ρi2

= 0

vρi(x)|x∈∂Ω = 1.
(7)

The screened Poisson hyperfield(SPH), solution to (7),
can be considered as continuum of shape fields that sweeps
the ρ

2 dimension for each node x∈Ω on the lattice on which
the shape is described. The hyperfield vρi

i=1···N is obtained by
varying the screening parameter ρ

2 .

Considering ρ as an additional dimension gives rise to
a two-dimensional scale-space where smoothing increases
with a decrease in v and an increase in ρ

2. By concatenat-
ing the spatial dimensions, the hyperfield can be represented
as a 2D matrix Y|Ω|×N , where each row is a 1D curve(see
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Figure 5) describing the behavior of v(x) in ρ-dimension:

Y|Ω|×N =


vρ1(x1) vρ2(x1) . . . vρN (x1)
vρ1(x2) vρ2(x2) . . . vρN (x2)

...
...

...
vρ1(x|Ω|) vρ2(x|Ω|) . . . vρN (x|Ω|)

 . (8)

5.5.1. Screened Poisson Encoding Maps + VLAD

The covariance matrix of Y is decomposed to yield an or-
thogonal set of bases: the eigen maps Φ j, j = 1, ...6 of the
field: Y TY = ΦΛΦ. After the new bases are calculated, the
field can be projected to form 6 mappings, where each map-
ping P j, is related to a measure of the variance explained
by the jth basis: P j = Y Φ j. Two significant properties of
SPEM-Screened Poisson Encoding Maps, P , are robustness
to deformation and adaptation to scale. The eigenvectors Φ

for each shape adapts in ρ domain such that the representa-
tion is unaltered in case of global scale change. For details
regarding SPEM, the reader is referred to [GTU14].

Vector of Locally Aggregated Descriptors (VLAD) [JD-
SP10] characterizes the distribution of vectors with respec-
t to the pre-computed centers. The difference vectors from
each feature to assigned center are aggregated.

First, a codebook, C = {c1, , . . . ,ck}, of k representative
points ci ∈ R6 is calculated using k-means clustering algo-
rithm. Each node in the shape domain is assigned to the n-
earest cluster center, as a hard vector quantization to obtain
NN ∈ R6.

The differences P(x)− ci of the vectors assigned to each
center, ci, are accumulated to obtain residual sum vectors
Ri ∈ R6:

Ri = ∑
x∈Ω : NN (x)=ci

P(x)− ci. (9)

To form the final descriptor, the aggregated residual vec-
tors Ri for all centers are concatenated and normalized so
that they have unit L2 norm.

5.5.2. Sparse Coding

Unlike SPEM+VLAD, the sparse coding approach utilizes
the values of the hyperfield, vρ, directly. The rich shape
information characterized by measurements for each vox-
el, rows of Y , are analyzed in their original dimensionality
N, albeit the loss of global scale adaptation. First, a dictio-
nary D ∈ RN×d is trained using measurements of uniformly
sampled shape voxels in an unsupervised manner, minimiz-
ing elastic-net [ZH05] cost function (10). The hyperfield for
each shape is represented using S, again solved using (10),
whose columns are the contribution of each atom in D to re-
construct the measurements. Columns of S are sum pooled
to obtain a histogram which is used as the descriptor.

min
DN×d ,Sd×|Ω|

1
2
‖Y T −DS‖

2
2 +λ‖S‖1 +λ2‖S‖2

F (10)

5.5.3. Implementation

For the retrieval problem each shape is represented on
a lattice with a fixed volume of 250.000 voxels. The
screened Poisson operator is represented as a sparse ma-
trix: P|Ω|×|Ω| = (∆− 1

ρ2 I)χ(B.C.), where ∆ is the seven-point
discretization of the Laplace operator and χ(B.C.)|Ω|×|Ω|→
{0,1} is an indicator function for the edges that are allowed
by the desired boundary condition. The gradient descent so-
lution to the screened Poisson field is then obtained by iter-
ating the following multiplication: vn+1 = vn(I+τP), where
τ is the artificial time step. The sparse matrix vector multi-
plication is done using CUSP library [BG12]. The unsuper-
vised dictionary learning and pursuit problem is solved using
SPAMS toolbox [MBPS10].

Both VLAD and sum pooled sparse codes are power nor-
malized (see [GTU14].) by taking their square-root. The L1
distance between the descriptors of two shapes is used as the
dissimilarity measure. The results for SPEM+VLAD are p-
resented for k=32,64 resulting in descriptors of length 192
and 384. The results for the sparse coding approach are ob-
tained using dictionaries that contain 256 and 1024 atoms.

5.6. Multi-Feature: Multi-feature Descriptor, by L. Lai
and L. Sun

Large numbers of feature descriptors of non-rigid 3D mod-
els have been proposed, such as Heat Kernel Signature (HK-
S) [SOL09], Wave Kernel Signature (WKS) [ASC11a] and
Surface Area (SA) [PSea14] of the Model. However, the s-
ingle feature descriptor has limitations when corresponding
between non-rigid shapes. The entropy is introduced to cal-
culate the weight according to the characteristics of HKS,
WKS and SA for constructing multi-feature. Multi-feature
will be used to improve the accuracy when correspondence.

We have submitted 4 runs. The HKS, WKS and SA are
traditional methods for non-rigid 3D model. Here, we fuse
f1, f2 and f3 (representing the HKS, WKS and SA respec-
tively) to construct the multi-feature descriptor.

(1) Select m models from SHREC’11 non-rigid dataset,
marked as dataset A. The models which are not included in
A are marked as dataset T. Pick a model q from T. Calcu-
late the similarity between q and the models in A based on
different features and sort the results. We just take the first k
similar models. We call it Ri

qk (i=1,2,3).

(2) Classify the models in Ri
qk and calculate the

probability distribution of different categories in Ri
qk.{

p1
i, p2

i, ..., pN
i
}

is the probability distribution of fi with
N categories.

(3) According to the definition of information entropy, the
formula (11) can be used to get the entropy of each feature,

E( fi) =−
n

∑
j=1

p j
ilog2 p j

i (11)
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Then, we get the weight of each feature by,

Wi =
1−E( fi)

3−∑E( fi)
, i = 1,2,3 (12)

where W1, W2 and W3 are the weights of f1 , f2 and f3 re-
spectively.

(4) Extract the feature vectors of each model in SHREC’15
dataset. Calculate similarity distance matrix W 1

D , W 2
D and

W 3
D for f1 , f2 and f3. The weights W 1

D , W 2
D and W 3

D
are also normalized.

(5) Calculate the final similarity distance matrix of multi-
feature MD

multi according to formula (13).

MD
multi =

3

∑
i=1

Mi
DWi (13)

5.7. SG: Spectral Geometry, by C. Li

We use the framework in [Li13] for nonrigid shape repre-
sentation and retrieval. It consists of two main stages: (1)
spectral graph wavelet signature [LH13b] for descriptor ex-
traction, and (2) intrinsic spatial pyramid matching [LH13a]
for shape comparison. The cotangent weight scheme was
used to discretize Laplace Beltrami Operator (LBO), with
the eigenvalues λi and associated eigenfunctions ϕi, and
m = 200.

Spectral graph wavelet signature: The first stage is the
computation of spectral descriptor h(x) at each vertex of the
triangle meshed shape X . In general, any one of spectral
descriptors with the eigenfunction-squared form reviewed
in [LH13c] can be used for isometric invariant representa-
tion. We used the recently proposed spectral graph wavelet
signature (SGWS) as the local descriptor; it provided a gen-
eral and flexible interpretation for the analysis and design
of spectral descriptors Sx(t,x) = ∑

m
i=1 g(t,λi)ϕ

2
i (x). In par-

ticular, a multi-resolution shape descriptor was obtained by
setting g(t,λi) as a cubic spline wavelet generating kernel
and considering the scaling function. The resolution level is
set as 2.

Intrinsic spatial pyramid matching: Given a vocabulary
P = {pk}K

k=1,K = 100, learned by k-means, the dense de-
scriptor S = {st}T

t=1 at each vertex of the shape is replaced
by the hard assignment Q = {qk}K

k=1.

Any function f on X can be written as the linear combi-
nation of the eigenfunctions. Using the variational charac-
terizations of the eigenvalues in terms of the Rayleigh-Ritz
quotient, the second eigenvalue is given by

λ2 = inf
f⊥ϕ1

f ′C f
f ′A f

(14)

We use the isocontours of the second eigenfunctionto cut
the shape into R = 2l−1 patches, thus the shape description

is the concatenation of R sub-histograms of Q along eigen-
function value in the real line. To consider the two-sign pos-
sibilities in the concatenation, we invert the histogram order,
and consider the scheme with the minimum cost as a better
matching. The second eigenfunction is the smoothest map-
ping from the manifold to th real line, resulting in this intrin-
sic partition quite stable. It provably extends the property of
popular SPM in image domain to capture spatial informa-
tion for meshed surfaces, so is referred as intrinsic spatial
pyramid matching (ISPM) in [LH13a]. The partition num-
ber is set as l = 2, · · · ,6 in this track. These ISPM induced
histograms are used for shape comparison.

5.8. FVF: Fisher Vector Encoding Framework, by F.
Limberger and R. Wilson

The method uses a statistical and discriminative framework
(Fisher Vector) which combines local spectral signatures that
describe local characteristics of the shape into a global de-
scriptor for shape retrieval. Summarizing, this method com-
putes local descriptors for each model in the database, and
then it computes a dictionary by selecting a subset of mod-
els and estimating a Gaussian Mixture Model (GMM) for
each layer of the concatenated descriptors from the subset.
After that, each shape signature is encoded to a global rep-
resentation of the shape using Fisher Vector (FV) [JH98].
This step results in a high dimensional vector that describes
each shape according to its deviation from the dictionary.
This vector is used as a global signature of the shape being
effective for retrieval and classification tasks.

5.8.1. Local Descriptor

Our approach was tested with three different local descrip-
tors: the Heat Kernel Signature (HKS), the scale-invariant
Heat Kernel Signature (SI-HKS) and the Wave Kernel Sig-
nature (WKS). The HKS [SOL09] estimates the behaviour
of the heat diffusion over the surface of a model while the SI-
HKS [BK10] is its scale-invariant version. The WKS [AS-
C11b] represents the average probability of measuring a
quantum mechanical particle at shape vertices and it is scale
invariant in the same way as the SI-HKS. In our framework
we interpret each frequency of the local descriptors as a layer
that describes the entire shape.

For the computation of the local signatures we use the
cotangent scheme to compute the first 300 eigenvalues of
the Laplace-Beltrami operator (LBO). We evaluate the HKS
and SI-HKS at the time interval [4ln(10)/λ300,4ln(10)/λ2]
logarithmic scaled and the WKS at the energy interval
[log(λ2), log(λ300)], where λi corresponds to the ith eigen-
value of the LBO. The increments were chosen accordingly
to sample 100 points in the interval. In the SI-HKS, the first 6
discrete lowest frequencies were used to represent the shape
after scale normalization.
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5.8.2. Fisher Vector

Fisher Vector encodes a set of local descriptors into a high
dimensional array which corresponds to the direction that
the local descriptors should be modified to fit the parameters
of a model. To compute the FV we estimate the parameters
of a GMM by using the Expectation Maximization algorith-
m to optimize a Maximum Likelihood criterion. Then, we
write the local descriptors X = {xt ,xt ∈ RD, t = 1...T} wrt.
the GMM uλ, which means expressing X by its gradient in
respect to uλ with parameters λ = {wk,µk,Σk,k = 1...K}.

This is done by computing the association strength (soft
assignment) of each vector xt to a mode k in the GMM,
which is given by the posterior probability [PSM10]

qtk =
exp[− 1

2 (xt −µk)
T

Σ
−1
k (xt −µk)]

ΣK
i=1exp[− 1

2 (xt −µi)T Σ
−1
k (xt −µi)]

. (15)

For each mode k and each descriptor dimension j = 1..D,
we compute the deviation vectors (gradient) with respect to
the mean and covariance, respectively

u jk =
1

T
√

wk

T

∑
i=1

qik
x ji−µ jk

σ jk
, (16)

v jk =
1

T
√

2wk

T

∑
i=1

qik

[(
x ji−µ jk

σ jk

)2

−1

]
. (17)

Finally, the FV representation of a shape S is the concate-
nation of the vectorization of the matrices u jk and v jk

Γ
X
λ (S) =

[
. . .uk . . .vk . . .

]T
. (18)

We define the distance between two shapes R and S as the
`1 norm between Fisher Vectors:

dFV = ||ΓX1
λ
(R)−Γ

X2
λ
(S)||1. (19)

All experiments were performed in Matlab in a Windows
PC (Intel Core i7 3.4GHz, 8GB RAM), taking around 6
hours to compute the three dissimilarity matrices. For the
local descriptors we have used the original codes from the
authors. We compute a dictionary using the first 29 models
of the database and estimate a GMM with 38 Gaussians for
each layer. For models with 10K vertices, the three local de-
scriptors are computed in around 18 seconds. The creation
of the dictionary using 29 models takes around 50 seconds.
Writing each local descriptor using the FV framework takes
on average 0.3 seconds per model.

5.9. TSASR: Time series analysis for shape retrieval, by
R.U. Nakanishi, A. Paiva and L.G. Nonato

The key idea of the proposed method is to represent the fea-
ture vector of a 3D model as a time series for shape retrieval.
As illustrated in Figure 6, the proposed method comprises
three main steps: vertex sorting, time series generation and

Figure 6: Pipeline of the TSASR based shape retrieval
framework.

scattering coefficients of the time series. In the first step, giv-
en an input triangle mesh, we need to sample the vertices as
a sorted vector that inflicts a spatial dependency to their fea-
tures. In general, the feature is invariant to isometry, such as
Gaussian and mean curvatures. The mean curvature is usual-
ly approximated in point-set surfaces using the surface vari-
ation [PKG03], which performs PCA and KNN algorithm in
each point. In triangle meshes, the vertex neighbors is easi-
ly computed using vertex-rings. After computing the feature
for each vertex, the vertex sorting stage is obtained using the
Fiedler vector [LZ10], i.e., the second smallest eigenvector
of discrete Laplace-Beltrami matrix. The Fiedler vector pro-
vides the algebraic connectivity of the surface mesh which
can be used to guide the vertex sorting. Figure 6 shows the
vertex sorting of the hand model from low (blue) to high
(red) indexes. At second step, the time series of the fea-
ture vector is simply created replacing the time intervals by
the sorted indexes (sorted index× feature). Finally, for each
model is extracted the coefficients [BM11] of its correspond-
ing time series. The coefficients are acquired using the scat-
tering wavelets technique [AM12], this technique relies on
multiscale co-occurrence of coefficients with wavelets filter
banks on windowed intervals of the time series. Moreover,
the scattering wavelets is invariant under translations and
stable to small signal deformations, which are well suited
properties to find similar structures in digital signals (e.g.,
audio and music data [CR13]).

In order to compute the similarity between the 3D models,
we apply the cross correlation method [Cha03] in the time
series that represent the models, in other words, this method
measures the similarity between coefficients sets. Given two
models (coefficients) S and T , we defined a distance metric
by:

dist(S,T ) = 1− cc(S,T ) ,

where cc(S,T ) is the normalized cross correlation between
S and T .

In our experiments, we use the symmetric cotangent
weights to approximate the Laplace-Beltrami matrix [LZ10]
and a vertex smoothing [BK04] to improve the results. We
adopt 3-ring of each vertex as vertex neighborhood for the
surface variation estimation. The scattering wavelets win-
dow size are set to 256, 512 and 1024.
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5.10. SID: Sphere Intersection Descriptor, by K.
Pevzner, A. Sharf and J. El-Sana

Figure 7: Overview of Sphere-Intersection Descriptor (SID)
for a single feature. Top-left: two sphere intersections with
different radii. Bottom-left: corresponding parameterized
intersection curves. Top-right: multiple intersections ag-
gregated. Bottom-right: frequency domain transformation
yielding a compact 2D image representation.

In essence, this method tracks spheres’ evolutions and ag-
gregate intersection curves together into one descriptor. By
transforming to frequency domain, we obtain a 2D image
representation of the local surface geometry sampling.

5.10.1. Feature Detection

Feature point detection is done in an iterative manner. We
start with all mesh vertices as candidates for being consid-
ered feature points and reduce the amount of candidates in
each iteration. At each step of the feature detection loop we
perform the following operations for each candidate:

1. Increase the spheres’ radius.
2. Sphere-with-surface intersection curve extraction.
3. Transformation of the intersection curve to spherical co-

ordinations.
4. Parametrization of the intersection curve as (φ(t),θ(t)).
5. Computation of saliency metric.

At the end of each iteration we consider the intersection of
neighboring spheres and upon sphere-to-sphere intersection
we only keep the one with the ones with the stronger saliency
metric. Thus, the algorithm converges from all mesh vertices
to keypoints.

5.10.2. Saliency Metric

Given a vertex v let θv(t), φv(t) be defined for t ∈ 1, ...,n
then the integral over the intersection curve of v is defined
by:

iv =
n−1

∑
t=1

‖θv(t +1)−θv(t)‖ · (φv(t +1)+φv(t))
2

(20)

This formulation gives high saliency values to features at
local extrema.

5.10.3. Feature Description

Given a keypoint and a support sphere radius from the pre-
vious step, the sphere intersection curve with the surface
is projected to spherical coordinates and parameterized to
φ(t),θ(t) components. Lastly, φ(t),θ(t) are transformed to
frequency domain thus producing rotational invariant local
feature descriptor. Figure 7 demonstrates the sphere inter-
section with the mesh, the resulting curve on the (φ,θ) plane
and the transformation to frequency domain.

5.10.4. Shape Similarity

For similarity computation between two meshes, we perform
a min cost maximal matching on a bipartite graph generated
from the set of descriptors of each mesh. Similarity between
two given feature descriptors is given by L1 distance of their
magnitudes. Thus, model correspondence is performed by
minimizing the cost of the matching on the feature descrip-
tors sets.

5.11. EDBCF: Euclidean Distance Based Canonical
Forms, by D. Pickup, X. Sun, P.L. Rosin and R.R.
Martin

We compute a canonical form of a mesh by stretching out
its limbs so that its extremities are distant from one anoth-
er. We achieve this effect more efficiently than the common
method of computing multidimensional scaling (MDS) on
the geodesic distances [EK03]. We instead maximise the Eu-
clidean distances between feature points on the extremities
of the mesh, whilst preserving the original edge lengths to
ensure isometric deformation.

We first scale the mesh so that the maximum distance of
any point on its surface to the centroid of all vertices is one.
We then use the method of Ben-Chen and Gotsman [BCG08]
to calculate the conformal factor of the mesh. The conformal
factor increases along the length of mesh protrusions, which
results in high values at the extremities of the mesh. To ob-
tain a set of feature points for a mesh with N vertices, we
sample the

√
N vertices which have the largest conformal

factors and also satisfy the requirement that they are local
maxima. A vertex is defined to be a local maximum if its
conformal factor is greater than that of all its neighbours in a
2-ring neighbourhood. We select

√
N feature points, as this

is the largest number of features we can have whilst being
able to compute the Euclidean distances between all pairs of
feature points in linear time (with respect to the number of
mesh vertices).

We compute the canonical form of the mesh by adapting
the least-squares MDS formulation used by [EK03]

S(X) =
N

∑
i=1

N

∑
j=i+1

wi, j(δi, j−di, j(X))2, (21)

where N is the number of vertices, wi, j are weighting coef-
ficients, and di, j is the Euclidean distance between vertices
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i and j of the resulting canonical mesh X . We set the value
of δi, j for all connected vertices i and j equal to the length
of the edge connecting them. This aims to preserve the edge
lengths of the mesh, to ensure isometric deformation. In or-
der to maximise the distance between feature points, the val-
ue of δi, j for each pair of the

√
N sampled vertices is set

to a high value α. We want this value to be large enough to
straighten all the limbs of the model, and our experiments
show 10 is large enough. As long as α is large enough and
the parameter β discussed below is optimised accordingly,
any value of α can be chosen.

If the two vertices i and j are neither a pair of feature
points nor connected by an edge, we do not enforce a target
distance between them, so δi, j and wi, j are both set to zero
for such cases. Not having to compute and optimise the dis-
tances between these points is crucial in keeping the linear
time complexity of our distance calculations. The weights
wi, j in Equation (21) for all i and j that are connected by
an edge are set to β/δ

2
i, j, where β is a user defined parame-

ter for preserving edge lengths. We divide by the square of
the edge length δ

2
i, j so that the distance in Equation (21) be-

comes a relative, rather than absolute, difference, making the
weighting independent of the length of the edge. The confor-
mal factor is normalised to lie in the interval [0,1], and the
entries in the weighting matrix wi, j for each pair of feature
points are set to the mean of their conformal factors. This
results in vertices which are nearer the ends of long ‘limbs’
of the object having a higher impact on the resulting canoni-
cal form, and avoids stretching out inappropriate parts of the
mesh. The SMACOF algorithm can then be used to minimise
Equation (21) as described in [EK03].

In many cases the number of local maxima of conformal
factor is less than

√
N. We want the number of feature points

to be exactly
√

N so that the number of edges connecting
pairs of feature points grows at the same rate as the number
of mesh vertices. This in turn ensures that we can use the
same value for the parameter β regardless of mesh resolu-
tion. We offer two different solutions to handling this issue.
The first is to increase the number of feature points to

√
N

by adding extra randomly selected vertices as feature points.

The second is to separately normalise the weightings wi, j
used for pairs of feature points, and for adjacent vertices.
We normalise the weights for adjacent vertices by dividing
by the total number of edges, and we normalise the feature
point pair weights by dividing by the sum of all feature point
pair weights. Thus, we may rewrite the final functional to be
minimised as

S(X) = ∑
i∈F

∑
j∈F, j 6=i

0.5(Φi +Φ j)

∑i∈F ∑ j∈F, j 6=i 0.5(Φi +Φ j)
(δi, j−di, j(X))2

+ ∑
(i, j)∈E

β

|E|δ2
i, j
(δi, j−di, j(X))2,

(22)

Table 1: Retrieval performance of all runs evaluated using
five quantitative measures on the whole database.

where F is the set of all feature points, E is the set of all
edges, and Φi is the conformal factor of vertex i.

To produce the retrieval results we use the view based
method described in [LGSX13]. We have submitted results
produced using both variants of our canonical forms. More
details about this method can be found in [PSRM15].

6. Results

In this section, we present and compare the results of 37 runs
submitted by 11 different groups. Given the 37 dissimilarity
matrices, evaluations are carried out for these methods on
the average performance of the whole database. This track
employs six commonly-used evaluation measures including
the five quantitative statistics (i.e. NN, FT, ST, E, and DCG)
and the Precision-recall curves mentioned in Section 3.

Table 1 shows the retrieval accuracies of all 37 runs eval-
uated on the whole database. We can see that most of these
methods perform quite well in this track. For instance, N-
N values of 25 runs are greater than 0.950 and 3 runs ob-
tain NN values that are equal to 100%, which means that
some of these methods are able to perfectly retrieve correct
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Figure 8: Column charts of the best retrieval accuracies of
each group evaluated on the whole database using five stan-
dard measures, respectively.

nearest neighbors for any queries. Furthermore, 24 runs’ D-
CG values (well known as the most stable retrieval measure
for performance evaluation) are larger than 0.900 and 5 runs
have DCG values that are above 0.990. Somehow surprising-
ly, Furuya’s SV-LSF_kpca50 obtains almost perfect retrieval
accuracies (e.g., NN = 1.0000, FT = 0.9972, ST = 0.9997
and DCG = 0.9997) on the database utilized in this track.
The method not only clearly outperforms all other methods
but also obtains much better retrieval accuracies compared

Figure 9: Precision-recall curves of the best runs of each
group evaluated for the whole database.

to the best approach (i.e., Smeets’s SD-GDM-meshSIFT) in
SHREC’11 non-rigid track [LGB∗11]. What is more, con-
sidering that 16.7% models in each category have differen-
t topological structures against other objects in this year’s
database while models in the same category of the non-rigid
database used in SHREC’11 do not have topological differ-
ences, Furuya’s SV-LSF_kpca50 method indeed possesses
excellent capabilities in representing pose-invariant features
for non-rigid 3D models.

In Figure 8, column charts of the five quantitative mea-
sures are also provided to intuitively compare the best re-
sults of each group. Clearly, as mentioned before, Furuya’s
method performs best in this track. Also obviously, Gia-
chetti’s HAPT method takes the second place considering
all evaluation measures and Guler’s SPH_SparseCoding ap-
proach performs slightly worse than Giachetti’s method. It is
worthy of mentioning that, despite of its simplicity and com-
pactness, ElNaghy’s CompactBoFHKS also performs quite
well and undoubtedly takes the fourth place among all 11
groups. The same observations can be made from Figure 9
that depicts Precision-recall curves of the best runs submit-
ted by each group on the whole database.

Based on the analyses in [LGX13], existing non-rigid 3D
shape retrieval methods can be roughly classified into al-
gorithms employing local features, topological structures,
isometry-invariant global geometric properties, direct shape
matching, or canonical forms. Mainly due to the comput-
ing complexity, no participant utilizes the method involving
topological information. We find that using local features
to generate isometry-invariant shape descriptors is still the
most popular way (18 runs) to achieve effective non-rigid
3D shape retrieval. Carefully designing of local features and
coding strategies (e.g., Furuya’s SV-LSF) can lead to surpris-
ingly good retrieval accuracies on this database. The second
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most popular kind of method (9 runs including Nakanishi’s
TSASR) is to exploit the isometry-invariant global proper-
ties of 3D meshes. There are also methods that use direc-
t shape matching on the set of descriptors (i.e., Pevzner’s
SID) or utilize 3D canonical forms (i.e., Pickup’s EDBCF).
In this track, we witness a number of new ideas in non-rigid
3D shape retrieval. For example, Nakanishi’s TSASR repre-
sents the feature vector of a 3D model as a time series and
Guler’s SPH-SPEM-VLAD adopts the sparse coding tech-
nique which has been widely used in 2D domain. We also
observe that traditional approaches including geodesic dis-
tance distribution (i.e., Choi’s SNU), Lai’s HKS, SA and
WKS are not competitive against other currently-proposed
methods. However, performance of those classic approach-
es can be significantly improved by integrating with other
techniques. For example, Limberger’s methods (i.e., FVF-
HKS, FV-SIHKS and FVF-WKS) result in much better per-
formance than the original HKS, SI and WKS algorithms via
the utilization of the Fisher vector encoding framework.

For more information about this track, please refer to
the track’s official website [PKU15] in which the new
database and the corresponding evaluation code are also
freely-available for academic use.

7. Conclusion

In this paper, we first analyzed and discussed the background
of non-rigid 3D shape retrieval. Then, we described how to
build the new database and how to carry out performance
evaluations. Afterwards, we briefly introduced all methods
(37 runs) employed by 11 groups who successfully partici-
pated in this track. Finally, we presented experimental results
to compare the retrieval performance of different methods.

With growing interests in non-rigid 3D shape retrieval,
the demands of developing more challenging non-rigid 3D
shape benchmarks have also markedly increased. Compared
to previous two SHREC non-rigid tracks and other non-rigid
3D shape benchmarks, the SHREC’15 Track: Non-rigid 3D
Shape Retrieval provides a large-scale database consisting
of more 3D watertight meshes with more complicated shape
variations. Furthermore, the track has attracted a large num-
ber of participants (11 groups and 37 runs) who are currently
active in the community and thus methods described in this
paper most likely represent the state of the art in non-rigid
3D shape retrieval. We believe that the organization of this
track will further promote the investigation of this important
research topic.

Several promising research directions in non-rigid 3D
shape retrieval are listed as follows: 1) Build a new bench-
mark database containing an enormous amount of non-
rigid 3D models that have different and complex topo-
logical structures. 2) Develop preprocessing algorithms to
automatically generate watertight manifolds from ordinary
3D models that may possess geometric noises or/and inner

structures. 3) Employ state-of-the-art techniques (e.g., Deep
Learning, Sparse Coding, etc.) emerged in computer vision,
artificial intelligent and image processing to enhance the per-
formance of non-rigid 3D shape retrieval methods. 4) Design
more discriminative local/global 3D shape descriptors and
create 3D canonical forms with more details preserved.
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