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ABSTRACT

This article describes the implementation of a robot with
evolutionary control scheme, and experiments in to examine
evolutionary control with a population of five physical
autonomous mobile robots. The control for the robots is totally
embedded and performs collision-free behaviour. Both
morphological features and controller circuit are evolved. The
robots constantly adapt to changes of surroundings by modifying
their features and the weights of the RAM neural controller. The
paper describes the Evolutionary System and the results of
experiments. These show that in relatively complex navigation
tasks the proposed system evolves very quickly to develop a
robust control system.

1. INTRODUCTION

The normal approach to studding evolution is to evolve
controllers in simulation and then transfer them to the robots [1].
Only a small number of studies have been carried out on real
time experiments fully on-board physical robots. The main
issues to be addressed in these experiments are: I) to
automatically synthesise more complex behaviours than could be
produced by hand; II) to exploit all of the available features,
considering that some of them may even be opaque to the
designer; III) to produce the desired behaviour specifying what
the robot should do, but not how the controller works; IV) to
show that evolutionary techniques can reduce the human effort
required to develop control systems as compared to traditional
manual methods.
The main issues addressed in this work lie under II and III.
Because of simplicity of the task, issues I and IV do not have
significant impact. (i.e. the behaviour produced by our controller
is relatively simple, and could have been designed by hand with
considerable lesser amount of effort).

The goal of the work is to describe how a continuous process of
evolution can take place so that the controller circuit and
morphology will respond to changes in the environment. We
define the term morphology as the physical, embodied
characteristics of the robot, such as its mechanics and sensor
organisation [2]. In the experiments described in this paper, the
morphological features modified by evolution are the number
and position of sensors, as well as the drive motor speed.

When developing genetic algorithms using simulation, to
achieve realistic results the simulation must take account of the
imperfection of the real world, noise, non-ideal performance of
sensors etc. The results of the algorithm optimisation are then

loaded into the robot. A better approach is to use the real robot
themselves. The problem with this approach is the prohibitively
long time taken, as demonstrated by experiments on Khepera
robots [4]. We have developed a technique that enables collision
free behaviour of the robots to be developed in 17 minutes or 40
generations of 25-second duration.

In our approach the population of robots communicates and
exchanges genetic information so as to adapt to solve the
targeted problem. The robots “breed” and then “die” so that their
bodies can be used for the next generation. The genetic material
is stored in RAM within the robots. This material specifies the
configuration of the control device and morphological features.
The control system will be implemented within the robot
microprocessor (a neural network for navigation control) and a
set of programmable modules controlling the robot features like
speed and physical positioning of photosensors on the robot
body.

2. ROBOT ARCHITECTURE

The robot architecture consists of a two-wheel differential-drive
platform (20cm of diameter), containing a Motorola 68HC11 -
2MHz, 128Kb of RAM, an exchangeable 4-hour battery,
bumpers with 8 collision sensors, and 8 peripheral active infra-
red proximity sensors (see figure 1). It exchanges information
with the other robots at 1.2Kbps by a 418MHz AM radio.
Different kinds of actuators can be also attached to the base to
allow different tasks in the experiments. The robots form an
independent embedded evolutionary system where no host
computer is required. Nevertheless, an IBM PC is used to
monitor, without interfering, all data exchanged via the radio
link, producing a complete record for every generation of the
chromosomes, parameters and variables.

3. THE NEURAL NETWORK

The process of designing a controller for a physical robot that is
able to be evolved by the system is delicate and depends on
insights gained through a long trial-end-error process [6].
Unfortunately, most of the inspiration that pointed out a RAM
neural network and its configuration cannot be discussed in this
paper. It provided a robust architecture, with good stability to
mutation and crossover [7]. A binary network is a good solution
because it is fast and small enough to cope with the on-board
microprocessor speed and memory restrictions. It allows the
utilisation of command outputs that can be interpreted as high
level routines or employed as low-level incremental commands
in every iteration [8].



Figure 1 – Robot architecture representing the
morphological feature control modules for the sensors
and motors. A round bumper with collision sensors
surrounds the robot.

Figure 2 shows the RAM neural network chosen to implement
the robot programmable control circuit [9]. It consists of a n-
tuple classifier that provides commands for the motor control
module, containing 64 x 4-input neurons (8 x 8 groups)
connected to the 8 sensor control modules (2 bits per sensor). It
is a robust controller, suitable to be evolved with the approach
selected in the experiment, since the mutation of a fit individual
should, on the average, produce an individual of approximately
the same fitness; similarly, crossover between two parents of
similar fitness should, on the average, produce offspring with
similar fitness.

Figure 3 shows how each sensor reading is converted into a 2-bit
signal by the sensor control module and connected to the neuron
inputs. The network output consists of 8 commands to each
motor driver: S - “stop”; FS - “front slow”; FM - “front
medium”; FF - “front fast”; TRS - “turn right sharp”; TRL -
“turn right long”; TLS - “turn left sharp”; and TLL - “turn left
long”. The turn sharp command means that the robot will turn
with one wheel going forward and the other backwards. The turn
long command makes the robot turn by stopping one wheel. A
“winner takes all” algorithm selects the proper command
according to the sensor inputs for each iteration. The resultant
speed value will be determined by the motor control module,
that gradually increments or decrements the motor speed in each
iteration, until reaching the selected level (i.e. stop; slow;
medium; or fast).

For the robot feature selection, controlled by the sensor control
modules and the motor control module, a more complex
“dominance approach” was chosen [10]. Each sensor control
module is configured by two genes (2 bits) in the chromosome:
I) two genes will determine the presence of a feature (sensor); II)
one gene comes from each parent; III) all Features are recessive.
The two genes are coded using bits in such a way that the
combinations “X,1” and “1,X” disable the sensor, and “0,0”
enables it (see figure 3). The motor control module has 10 bits
associated to it in the chromosome. Figure 4 shows that the sum
of the 10 bits plus 1 defines the fast speed; the sum of 6 bits plus
1 defines the medium speed; and the sum of 3 bits plus 1 defines
the slow speed. This approach permits co-adaptation where the

chromosome integrates specifications for both controller and
morphological features [11], [12]. Evolution can select not only
the number of sensors to use, but, if the number of sensors is
fixed, select which ones to pick (i.e. the sensor position on the
robot).

4. THE PROPOSED EVOLUTIONARY SYSTEM

A cyclic process was defined, where the robots perform specific
tasks in a “working season” for a short period of time (normally
1 to 5 minutes), until an internal timer starts a “breeding
season”. Then, the individuals are selected to mate according to
their fitness and generate new configurations to reprogram all
robots, allowing them to be evaluated again, in a new “working
season”.

Each robot is evaluated during the “working season”, where its
fitness function is calculated in order to penalise collisions and
lack of movement [13]. For each collision, 8 points are deducted
from its fitness value, and for every second it is moving forward,
1 point is added. From gained experience through trial-and-error
experimenting, a simple fitness function usually produces the
best results, because it does not eliminate the autonomy of
evolution. As more complex behaviours are evolved, the
designer has a tendency of gradually adding all subgoals to the
fitness function, strongly biasing the possible solutions [2].

In the “breeding season”, each robot transmits its “mating call”
to the others, where it identifies itself and “shouts” its fitness
value. The fittest robot is granted the right to survive to the next
generation, while the remaining 4 will mate and reconfigure
themselves with their offspring chromosome. To select their
partner, the fittest robot (the surviving one) has 80% of chance
to be chosen, and a random selection of any other robot will fil
in the other 20%. In the crossover phase, a random exchange of
the 1050 genes from both parents occurs (64 neurons, 16 bits
each, plus 16 bits to select the sensor control modules and 10 to
select the motor control module). A small mutation factor is also
present, randomly inverting up to 3% of the exchanged bits.

The strategy of allowing the fittest robot to survive ensures that
the fitness of the next generation will probably not fall, and
permits a high mutation rate. The average of the fitness of all
robots, though, is largely affected by a high mutation rate and
will make impracticable a system where the robots work in
group and a couple of bad adapted robots will cause
considerable trouble [14]. A high mutation rate is only efficient
to quickly evolve a solution to a problem where the robots will
work independently.

5. THE EXPERIMENT

An experiment was performed to illustrate the potential of the
presented evolutionary system in automatically generating
controllers for the five physical mobile robots and keeping their
fitness high during many modifications in the environment
complexity [15]. The experiment applies evolution directly in a
non-trained randomly initialised population to see if it can be
evolved to a coherent state by crossover and mutation.
The experiments where performed within a 4m x 4m working
domain, containing walls and obstacles of varied sizes, where the
robots can perform obstacle avoidance (exploring the
environment without colliding with obstacles). Many movable
obstacles and internal walls of different sizes were available to
constantly change the scope of the workspace where the robots
navigate (see figure 5).
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Figure 2 – RAM Neural Network architecture controlling a 2-wheeled Robot: S1 to S8 are infra-red sensors; “S”, “FS”,
“FM”, “FF”, “TRS”, “TRL”, “TLS”, and “TLL” represent the groups of neurons of the classes “Stop”, “Front Slow”, “Front
Medium”, “Front Fast”, “Turn Right Short”, “Turn Right Long”, “Turn Left Short”, and “Turn Left Long”. Each sensor is
connected to an A/D decoder and to the Sensor Control Module. The Sensor Control Modules decide which sensor is connected
to the Neural Network. The 4-input Neurons are arranged in groups of 8 for each Command and are connected to two sensors
each (under the control of each Module). The winner command is chosen and sent to the Motor Control Module which
recognises it and sends the Pulse Modulated Signal to control each Motor.

S1  A/D
2 bits

S2  A/D
2 bits

S3  A/D
2 bits

S4  A/D
2 bits

S5  A/D
2 bits

S6  A/D
2 bits

S7  A/D
2 bits

S8  A/D
2 bits

Sensor1
Control
Module

Sensor2
Control
Module

Sensor3
Control
Module

Sensor4
Control
Module

Sensor5
Control
Module

Sensor6
Control
Module

Sensor7
Control
Module

Sensor8
Control
Module

S1 S2

  16 bit
 N

euron
  16 bit
 N

euron
  16 bit
 N

euron
  16 bit
 N

euron

S1 S3

S2 S3

S4 S5

S4 S6

S7 S8

S6 S8  16 bit
 N

euron
  16 bit
 N

euron
  16 bit
 N

euron
  16 bit
 N

euron

S5 S7

S1 S2

  16 bit
 N

euron
  16 bit
 N

euron
  16 bit
 N

euron
  16 bit
 N

euron

S1 S3

S2 S3

S4 S5

S4 S6

S7 S8

S6 S8  16 bit
 N

euron
  16 bit
 N

euron
  16 bit
 N

euron
  16 bit
 N

euron

S5 S7

S1 S2

  16 bit
 N

euron
  16 bit
 N

euron
  16 bit
 N

euron
  16 bit
 N

euron

S1 S3

S2 S3

S4 S5

S4 S6

S7 S8

S6 S8  16 bit
 N

euron
  16 bit
 N

euron
  16 bit
 N

euron
  16 bit
 N

euron

S5 S7

S1 S2

  16 bit
 N

euron
  16 bit
 N

euron
  16 bit
 N

euron
  16 bit
 N

euron

S1 S3

S2 S3

S4 S5

S4 S6

S7 S8

S6 S8  16 bit
 N

euron
  16 bit
 N

euron
  16 bit
 N

euron
  16 bit
 N

euron

S5 S7

S1 S2

  16 bit
 N

euron
  16 bit
 N

euron
  16 bit
 N

euron
  16 bit
 N

euron

S1 S3

S2 S3

S4 S5

S4 S6

S7 S8

S6 S8  16 bit
 N

euron
  16 bit
 N

euron
  16 bit
 N

euron
  16 bit
 N

euron

S5 S7

S1 S2

  16 bit
 N

euron
  16 bit
 N

euron
  16 bit
 N

euron
  16 bit
 N

euron

S1 S3

S2 S3

S4 S5

S4 S6

S7 S8

S6 S8  16 bit
 N

euron
  16 bit
 N

euron
  16 bit
 N

euron
  16 bit
 N

euron

S5 S7

S1 S2

  16 bit
 N

euron
  16 bit
 N

euron
  16 bit
 N

euron
  16 bit
 N

euron
S1 S3

S2 S3

S4 S5

S4 S6

S7 S8

S6 S8  16 bit
 N

euron
  16 bit
 N

euron
  16 bit
 N

euron
  16 bit
 N

euron

S5 S7

S1 S2

  16 bit
 N

euron
  16 bit
 N

euron
  16 bit
 N

euron
  16 bit
 N

euron

S1 S3

S2 S3

S4 S5

S4 S6

S7 S8

S6 S8  16 bit
 N

euron
  16 bit
 N

euron
  16 bit
 N

euron
  16 bit
 N

euron

S5 S7

 Commands:          S           FS        FM        FF       TRS    TRL      TLS      TLL

Winner Takes All Block

Motor Control
Module

Selected
Command

Pulse Modulation
Motor 1 Motor 2



Figure 3 – The Sensor Control Module. Each sensor
analogue signal is converted into 2 bits by the A/D and
directed to the Control Module. Each Module is
configured according to 2 genes from the chromosome.
If the two control bits are “0”, then the Module Output
is connected to the A/D 2-bit signal.

Figure 4 – The Motor Control Module receives a
command from the neural net and activates motors 1
and 2 according to the speed levels calculated from the
sum of the corresponding genes.

After the neural network weights and the feature selecting genes
were assigned random values, the robots are barely able to
navigate, but their genetic code starts to be modified by the
evolutionary technique in real time. Then, the robot
programmable controller and morphology can face a very noisy
environment and evolve to perform the chosen behaviour.

Figure 6A shows the result after 120 generations (2 hours run
with a working season of 1 minute) in a very simple workspace,
constituted of only the external walls and a few large obstacles
(see figure 5A). The curve shows the fitness of the fittest robot
and the average of the fitness of all five robots. The distance
between the two curves depends on the mutation rate. The higher

the mutation, the more distant are the curves. The experiment
was performed with a mutation rate of 3%. Figure 6B shows the
same experiment performed in a much more complex working
domain (see figure 5C), where all sorts of obstacles of different
sizes and many internal walls were included. It can be seen in the
two charts that the fitness curve of the simple environment grows
quickly and tends to stay high with considerable oscillation. The
complex environment curve seems to climb in three distinct
steps. We can analyse these as fallen.

When evolving physical robots it can be notoriously difficult to
judge if an expected behaviour has been accomplished. Much of
the subsequent analysis is qualitative and based on human
judgement and observation.

While the group of robots evolved, it was possible to observe
some particular distinctions among the adapting individuals.
After an initial period of fuzzy behaviours, where some agents
evolved to come to a halt, while others circled around
themselves, and still others could not stop shaking. But after
about 20 generations, a group of robots that learned to use the
front sensor to avoid obstacles and walls in its way were
distinctly successful. We call them “species 1”. Soon after about
45 generations, another successful solution showed up. It learned
to use 2 sensors, a frontal and a lateral one. When it approached
an obstacle or wall from its front or working sensor side, it
usually avoided it without colliding. The frontal sensor was so
efficient that it was very difficult to collide in the simple
workspace. It would only collide if approaching an obstacle from
its non-working sensor side at a very low angle. These robots
were called “species 2”. After about 75 generations, a third kind
of robot that began to use 3 sensor appeared. It was called
“species 3”, and used the frontal and two lateral sensors,
colliding only with very small obstacles. The three species
coexisted peacefully in the later generations of the simple
environment, as shown in figure 6A. That coexistence of the
three species explains the high oscillation of the fitness, because
even the species 2 or 3 can be unlucky enough to collide while a
not colliding species 1 can be the winner of the generation, and
generate less fitted offspring. Competition was much harder in
the complex environment, where species 1 was led to extinction
by species 2. And species 3 gradually overcame the other 3, as
shown in figure 6B, reducing the oscillation in the curve.

The duration of the working season is also very important in
species competition. Figure 6C and 6D show its influence in a
simple and complex environment where the same individuals are
evaluated for 40 minutes without being changed by evolution.
The fitness curves of the three described species are compared to
the authors’ solution, a manually trained neural network that
uses the same 3 sensors of species 3.  As the possibility of
collision increases with a longer evaluation time, we can observe
the curves of the three species distancing. It is more significant
in the complex domain, where there are more obstacles and walls
to collide with.

The aim of figure 6E is to provide existence proofs that the
presented system is robust enough to cope with drastic
modifications of the environment and constantly adapt the group
of robots to perform well again the desired behaviour. The
experiment was performed in 4 periods of 2 hours (480
generations), where in the end of the first 3 periods, the
environment was altered to become progressively more complex,
as shown in figure 5. It is possible to see the fitness falling every
time the workspace is modified, but a constant evolutionary
process is able to provide the desired behaviour after some
generations. It could be observed the presence of individuals
using up to 5 sensors, in the most complex environment.
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Figure 5 – Four different configurations of the 4m x 4m
workspace showing how the environment was modified
in the experiment.

When the last trial was repeated with the environment being
gradually and constantly altered with the inclusion or removal of
more walls and obstacles, one at a time, evolution could
normally keep fitness high, without presenting the drastic falls of
figure 6E.

6. CONCLUSION

The fear that the robot hardware could not survive the necessary
continuous evolutionary process without constant maintenance
and repairs proved wrong. But the unavoidable need to exchange
the batteries every 4h or so created the need to stop the robots
during the experiments. Though, the careful placement of the
chromosomes and important variable and parameters in a battery
backed-up memory allowed the robots to be turned off for a long
period without loosing current information. A pair of
exchangeable batteries permitted a constant run,  once one can
be recharged while the other is being used on the robot.

The strategy of running an initial training phase with examples
of pre-defined situations and, then, refining the neuron weights
in real time manoeuvring, with gene exchange and mutation,
proved to be many times faster than allowing evolution to play
with a randomly initialised neural network. Though, it can
reduce diversity and cause, in some situations, the population to
becoming trapped into a local minimum, until mutation makes it
move through the genotype space and climb a fitness slope,
reaching a reasonable adapted behaviour. This strategy made the
system more sensible to the selection of crossover parameters
and mutation rate, but much faster to evolve.

By the end of most trials (e.g. when a threshold level is
achieved), we found a few unfit robots and a majority of
effective individuals, qualified to work in the environment. The
results attested that the selected evolutionary technique

succeeded in training the robots to perform the desired tasks,
providing the appropriate building blocks for evolution to work
with. It allowed the evolutionary process to see the whole robot
(body, sensors, motors and “nervous system”) as a dynamic
system coupled with a dynamic environment. The suggested
technique was applied to simple control tasks using low-
resolution sensors, but it is the first step towards more complex
controllers for physically embedded systems like real-time multi-
agent applications in noisy, dynamic environments. Finally, in
addition to employing evolution for developing effective
solutions and applying them to a specific problem, we hope that
so far we promoted the potential of a continuous evolutionary
process, where the robots are not just being evaluated, they are
performing real tasks.
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     Figure 6A – Fitness curves for environment from figure 5A.         Figure 6B – Fitness curves for environment from figure 5C.

     Figure 6C – Fitness curves for environment from figure 5A.         Figure 6D – Fitness curves for environment from figure 5C.

Figure 6E – Fitness curves of all environments from figure 5. The fitness falls in every modification.
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