
Proceedings of the 2001 IEEE Systems, Man, and Cybernetics Conference
Copyright 2001

EMBEDDING A DISTRIBUTED EVOLUTIONARY SYSTEM INTO
A POPULATION OF AUTONOMOUS MOBILE ROBOTS

EDUARDO D. V. SIMÕES and KEITH R. DIMOND

Electronic Engineering Laboratory - University of Kent at Canterbury
Canterbury, United Kingdom, CT2 7NT

Abstract

This paper describes a fully embedded
distributed evolutionary system that is able to achieve
collision-free navigation in a few hundreds of trials.
It reports the first experimental proof of the
embedded evolution concept applied to the evolution
of morphology and an unstructured control circuit of
a population of six real robots in real time. Evolution
selects the appropriate sensor configuration and
speed levels that the robots should incorporate to
perform specific tasks. The results show the influence
of different mutation rates in the performance of the
system. This work produced a genetic system where
the population exists in a real environment.

Keywords
Evolutionary system, embedded evolution, adaptive
robotics.

1 Introduction

This work is concerned with automated synthesis
of robotic embedded controllers using Evolutionary
Computation [1]. Evolutionary methods have been
employed for developing robot controllers
automatically in simulation [2], on physical systems
[3], and combinations. Specifically, this work
concentrates in embedding an evolutionary algorithm
within a population of physical robots.

The term Evolutionary System in this work refers
to an environment where the individuals physically
exist and artificially breed and die, to give place to
the next generation. It is important to distinguish it
from the work of other authors that involve
simulation in some of the evolutionary phases [4, 5].

To date, only two publications report the
implementation of an evolutionary system fully on-
board of a population of real robots, working
completely independent of external computation and
human intervention to evaluate, reproduce, and
reposition the robots for new trials [6, 7]. These
articles are: Watson et al. [8] (evolving only the
controller) and the publication of the first results of
our work [9] (evolving the controller and
morphology). They provide, together with this work,
the first experiments with a new concept: Embedded
Evolutionary Systems.

What is proposed is the physical implementation
of a genetic system containing the robots as the
individuals and a genetic code (bits stored in the
RAM memory of the robots) that specifies the
configuration of their control device, the evolvable
controller, and their speed and sensor organisation,
defined here as morphology [10].

Evolving unstructured architectures for robot
control has been attempted before by Thompson in
[5], where he evolved a dynamic state machine to
drive a small mobile robot and in [11], where he tried
to evolve an FPGA connected directly to the motors
to produce a pulse modulated signal. Both attempts
employed simulation, and one real robot was used to
evaluate the solutions. To date, no work has been
reported where the evolution of an unstructured
controller has been attempted with a real robot
population in real time [6]. Therefore, these
experiments provide the first results obtained from
the evolution of an unstructured control architecture
by an embedded evolutionary system.

1.1 Problem Delimitation

A simple task-behaviour was chosen: collision-
free navigation [3] to allow the development of the
system in relatively low-cost robots. Therefore, more
robots could be built and evolution could benefit
from more diversity in the population. The main issue
considering functional specification in an
evolutionary system is to tell evolution what the
robots have to do, without telling it how they are
going to achieve that [12]. In our case, the robots are
encouraged to explore the environment, going as fast
as possible without colliding into the obstacles or
each other. Because the workspace contains various
robots, the environment also includes some robot-to-
robot interference [13] (e.g., collisions between
robots and reflection of the infrared signals by
approaching robots).

1.2 The Workspace

The workspace consists of six autonomous
mobile robots working in a 2.50m × 2.50m domain,
where they can navigate, avoid obstacles, and

Proceedings of the 2001 IEEE Systems, Man, and Cybernetics Conference
Copyright 2001

perform specific tasks. The robots have eight infrared
proximity sensors and 10 speed levels for each motor.

Fig. 1 shows the six robots navigating in their
working domain. The robot architecture consists of a
two-wheel differential-drive platform (20cm
diameter), containing a Motorola 68HC11 - 2MHz
with 64Kb of RAM. It exchanges information with
the other robots at 1.2Kbps by a 418MHz AM radio.
Both robots and workspace were specially built for
the experiments. All robots have a binary bit string,
the “chromosome”, containing the genetic code that
specifies their control device and physical features,
such as speed and position of the sensors. All eight
proximity sensors are connected to the sensor module
(see Fig. 2), which is configured by the chromosome.
The module can individually enable or disable the
sensors, changing the number of active sensors and,
consequently, their position in each generation.
Therefore, the physical, embodied characteristics of
the robot can be modified. The robot has four round
bumpers attached to eight contact sensors (Cs1 to
Cs8). These sensors permit the supervisor algorithm
to pinpoint the location of a collision.

Fig. 1: The six robots and their working domain

S1S2

S3

S4

S5

S6

 S7

S8

 Right
Wheel

 Left
Wheel Motor Motor

 Round
Bumpers

Sensor Module

Central Control
Module

Motor D.
Module

Proximity
Sensors
S1 to S8

(a)

Cs1

 Motor Motor

Collision
Sensors:

Cs1 to Cs8

Sensor Module

Central Control
Module

Motor D.
Module

Cs2

Cs3

Cs4 Cs5

Cs6

Cs7

Cs8

(b)

 Round
Bumpers

Fig. 2: Robot architecture representing the
proximity sensors (a) and round bumpers (b)

2 Individual Control Strategy

The robot architecture can conceptually be seen
as a central control module interfacing all other
functional modules (see Fig. 4). The modules were
implemented using a combination of dedicated
hardware and software. The sensor and motor drive
modules and the navigation control are configured by
subsets of the chromosome that indicate the number
of sensors used, their position in the robot periphery
and the speed levels of the robot.

Rob1

Rob2

Rob3

Rob4

Rob5

Rob6

Distributed
Evolutionary

System

Real Mutable Environment
(simple to complex)

Fig. 3: The radio link, forming a decentralised
evolutionary system

The goal of the implemented evolutionary
system is to train automatically the team of robots to
interact with an unforeseen environment in real time.
Therefore, the robots must evolve while deployed “in
the field”, using the real world to act as “its best
model” [4]. The robot individual capacity is quite
simple, but presents the necessary evolutionary
capabilities. The evolutionary system is not based in
an external computer, but is distributed between the
robots and coexists with their evolvable controller
inside the microprocessor.

The evolutionary control circuits of all robots
communicate through an embedded radio, as shown
in Fig. 3, to control the complete evolutionary
process. They combine and form a global
decentralised evolutionary system [14]. They process
the data stored in the chromosome and send the
configuration parameters to the navigation control
and the other modules. This global system controls
the evolution of the robot population from generation
to generation. It is responsible for selecting the fittest
robots (the most-adapted to interact with the
environment), mating them with the others by
exchanging and crossing over their chromosomes,
and finally reconfiguring the robots with the resultant
data (the offspring).

Proceedings of the 2001 IEEE Systems, Man, and Cybernetics Conference
Copyright 2001

Sensor Readings

D
at

a

Configuration Data Evolutionary Control Configuration Data

Navigation Control

Supervisor
Algorithm

Chromosome

C
on

fig
ur

at
io

n
D

at
a

F i
tn

es
s

Bumper Sensors

Direction/Speed

S
en

so
r M

od
ul

e

M
ot

or
 D

riv
e

M
od

ul
e

Comunication Module

Central Control Module

Direction/Speed

Fig. 4: The Central Control and main subsystems

A supervisor algorithm monitors the robot
performance, informing the evolutionary control how
well-adapted it is to the environment. The supervisor
algorithm is responsible for activating a rescue
routine, a built-in behaviour that is able to manoeuvre
automatically the robot away from a dangerous
situation once it is detected by the contact sensors
that determine the occurrence and position of a
collision. When activated, the rescue routine will take
control of the robot until it is safely recovered. The
robot is then punished by decreasing its fitness value.

The navigation control processes the information
of the sensors and decides what the robot has to do.
Then, it sends a command to the motor drive module,
which will control the speed of the motors to make
the robot manoeuvre accordingly. The navigation
control is the centre of the autonomous navigation of
the robot. Configured by the parameters stored in the
chromosome, it drives the robot independently.
Evolution is responsible for adjusting these
parameters so that the robot performs well in the
environment.

2.1 Navigating with an Unstructured Controller

In this work, the embedded evolutionary system
will attempt to evolve a completely unstructured
control circuit (i.e., a controller that has an
unconstrained logic circuit, which can produce any
binary function of its inputs). Instead of using a
structured, modular neural network (which can
produce limited functionality) to implement the
navigation control circuit as shown in our previous
paper [9], this work prefers an unstructured,
undefined architecture, which we called the black box
[15].

In this experiment, all sensors have only one bit
of precision and they were set to work at the range of

15cm. The controller used eight commands to control
the motor drive module: Front Fast (FF); Front Slow
(FS); Turn Left Short1 (TLS1); Turn Right Short1
(TRS1); Turn Right Short2 (TRS2); Turn Left Short2
(TLS2); Turns Right Long (TRL); and Turn Left Long
(TLL). FF moves the robot forward with maximum
speed. FS moves with half speed. To turn left/right
short, the robot moves with reverse direction in one
of its motors (with both motors at maximum speed),
causing a spin around its own axis. The difference
between TRS1 and TRS2 is that in the later, the robot
keeps turning for 200ms, while the duration of the
other commands is just one iteration (10ms more or
less). In TRL and TLL, the robot turns right/left by
breaking one wheel and turning around it with the
other one in maximum speed. Fig. 5 shows how the
black box is connected to the sensors and the motor
drive module. These eight commands are encoded by
three bits.

Sensor
Module

Black
Box

S1

1 bitS2

1 bitS3
1 bit

S4 1 bit

S5 1 bit

S6
1 bit

S7

1 bit

S8

1 bit

3-bit
Output

Motor
Drive

Module

Fig. 5: The Black Box controller

The same strategy that was used to implement
the circuit of the neurons in [15] as lookup tables is
applied here to implement the navigation control
circuit. The controller is represented by a black box
that can generate any binary logic function of its
eight binary inputs. Which logic circuit is actually
used inside the black box to implement this logic
function does not matter in this case, since only its
behaviour is relevant to the problem.

The natural way to implement the black box
controller is by using 256 bytes of the robot RAM
memory, where the output of the black box controller
is a byte that can store in its eight bits the contents of
eight lookup tables. The first three bits, b0, b1, and b2,
are used to form the 3-bit command that controls the
motors. This strategy resulted in a powerful and fast
controller, since only a single step or command line
is necessary to implement the whole controller:
Command = Memory[Sensors]. Considering that
Sensors is a 1-byte long variable containing the

Proceedings of the 2001 IEEE Systems, Man, and Cybernetics Conference
Copyright 2001

sensor readings (8 bits) converted to an integer that
addresses the memory array. Memory[256] is an
array of 256 bytes that stores the contents of the
lookup tables, and Command is the variable sent to
the motors.

Evolution was allowed to manipulate the
memory contents directly, until a navigation control
circuit emerged. Therefore, every byte of the memory
was ordered in the chromosome to form a 2048-bit
string. Crossover and mutation can affect each one of
these bits as a normal binary chromosome. After
these operations are completed, the 2048 bits in the
chromosome are grouped again into 256 bytes and
stored in the black box memory. Only the first three
bits in the byte (b0, b1, and b2) are relevant for this
experiment, and the other ones (b3 to b7) are ignored
by the robot. Therefore, only 768 bits, which
correspond to the first three tables are relevant to
evolution. Hence, this is the size of the genotype of
the robots, and considering that any one of them can
produce a different phenotype (i.e., there is no
neutrality in this case), the current search space is
considerably large: 2768 = 1.55×10231.

3 Evolutionary Control System

The cyclic procedure of the robots, a generation
in evolutionary computation terms [10], is
exemplified in Fig. 6. This cyclic procedure was
inspired by the natural world where some birds, for
example, have a working or foraging season and a
mating season, where they concentrate their attention
in finding a mate and reproducing. The robots do not
pursue reproductive activities concurrently with their
task behaviour. Instead, they perform a working
season, where they execute the selected task in the
environment (or working domain) and are evaluated
according to their performance.

Reconfiguration

Working
Season

Mating
Season

Internal Timer

Fitness
Evaluation

Partner
Selection

Crossover
of the Genes

Fig. 6: The cyclic procedure of the robots

A internal timer indicates the beginning of the
mating season. In this season, the robots
communicate to let the others know their fitness
value. They start emitting a “mating call” through the
radio, where they “shout” their identification, fitness
values, and chromosomes. The best robots survive to
the next generation, breeding to become the “parents”
of the new individuals. Assuming that new robots

cannot really be created spontaneously, the offspring
must be implemented by reconfiguring selected old
individuals. The robots then start another cycle. In
other words, the best-adapted robots “survive” to the
next generation, while the others “die” after mating,
to lend their bodies to their offspring.

3.1 Crossover Strategy

The genetic material specifies the configuration
of the robot control device and morphological
features, as shown in Fig. 7. A random exchange of
the genes from the parents forms the resultant
chromosome. This strategy is called uniform
crossover [1], although here only one offspring is
produced. Therefore, a gene is selected from the
father or the mother to occupy the corresponding
position in the offspring chromosome. After the
crossover is completed, a mutation phase starts. Each
gene in the chromosome has a probability of M% of
being selected and binary inverted (e.g., new gene =
NOT(gene)).

Motor Drive
 Module

Sensor Module

0 1

Se
ns

or
 1

En
ab

le
Se

ns
or

 2
En

ab
le

Se
ns

or
 3

En
ab

le
Se

ns
or

 4
En

ab
le

Se
ns

or
 5

En
ab

le
Se

ns
or

 6
En

ab
le

Se
ns

or
 7

En
ab

le
Se

ns
or

 8
En

ab
le

0 1 0 0 0 1 0 1 1 0

Speed Control

Navigation
Control

1 0 0 1 0 0 ... 1 1 0 1 0 1

Black Box
ContentsFast Medium Slow

B1,B2 B17 to B26 B27 to B2074B15,B16

1 1 0 0 0 1 1 1 0 1 1 0 0 1

Chromosome

Fig. 7: The genes in the chromosome

4 The Experiments

The experiments applied a simple fitness
function in order to prevent biasing evolution towards
a pre-conceived solution. Rule 3 punishes the robots
that keep turning for more than 15 seconds,
encouraging them to move forward. Rule 4 does not
punish the robots that are turning, for they may be
attempting to avoid an obstacle when the collision
occurred. The selected fitness function for this
experiment is:

1- Start with 4096 points;
2- Reward: increase fitness by 10 points every 1

second of movement;
3- Punishment: decrease fitness by 30 points for

every time command is not FF or FS for more
than 15 seconds;

4- Punishment: decrease fitness by 10 points for
every collision if command = FF or FS.

The duration of a generation is 60s and mutation
rate is 0.5%. The bits in the chromosome are
randomly initialised for all experiments. After each

Proceedings of the 2001 IEEE Systems, Man, and Cybernetics Conference
Copyright 2001

working season, the robots are selected to breed
according to the selection rule reproduced below:

The robot with the highest fitness survives to the
next generation and breeds with all other robots,
which reconfigure themselves with the new offspring.

Fig. 8 presents the behaviour of the six evolving
robots in 200 generations of 60 seconds. They
evolved from a random controller with random speed
levels and sensor configuration to a group of
competing efficient solutions containing four or five
sensors (S1,S3,S4,S6,S8; S3,S4,S6,S8; S2,S3,S4,S7),
and a controller that learned how to deal with them.
Robot 5 started with four sensors enabled
(S3,S4,S6,S8), and was an efficient combination that
was soon transferred to the other robots in the first 20
generations. Next, their controllers had to adapt to
work with small variants from this configuration.
This took more than 80 generations.

4100
4150
4200
4250
4300
4350
4400
4450
4500
4550
4600
4650
4700

0 20 40 60 80 100 120 140 160 180 200
Generation

Fitness

Robot1
Robot2
Robot3
Robot4
Robot5
Robot6

Fig. 8: Evolution of the black box controller and
morphology

Since mutation was very low, all robots in the
end of the experiment had the ability to produce
similar performances. The small differences that still
persisted were a consequence of the influence of
noise and the interference between the robots. As the
generations passed, there were fewer poorly-adapted
robots crashing into the good ones, so the average
performance increased.

Evolution made the robots travel slower in the
beginning of the process, when their controllers were
not well-developed to deal with all situations. An
interesting event was observed in this experiment:
after the population started to converge in the last 30
generations of the process, the sensor configurations
still varied into a small set of solutions with four or
five sensors enabled, but the controller configuration
did not change much. In fact, it was able to perform
the same manoeuvres regardless of being attached to
four or five sensors. This helped to preserve a good
performance while the sensor and speed
configurations kept changing, since the controller did
not need to adapt again after the robot morphology
changed.

The chart shows that the population gradually
converged to a small set of efficient configurations
combining morphology and control that could drive
the robots practically without colliding. The average
fitness of the population oscillated in the beginning,
but was very high in the end of the process. The
system did not converge to an optimal solution,
because it was not necessary, since many
configurations obtained after 200 generations were
able to produce the higher performance.

As a real environment is being used, the
presence of stochastic noise will always introduce
some variation. Nevertheless, the system presented a
similar behaviour when the experiment was repeated
30 times. Fig. 8 was chosen for it was the closest trial
to the average behaviour.

Fig. 9 shows a comparison of five mutation
rates: 0.1%; 0.5%; 1%; 10%; and 50%. It presents the
average results obtained by overlapping 20
experiments for each mutation rate. The figure
suggests that with such a small population, after the
first 20 generations or so the population relies only
on mutation to increase its performance. Higher
mutations help evolving in the beginning of the
process, when there are more bad than good genes in
the chromosome. It can be seen in the figure that 1%
and 0.5% mutation evolved faster than 0.1% in the
beginning of the process, but as the genes in the robot
chromosomes became better, 0.1% mutation
outperformed 1%. The best mutation was 0.5%,
which showed a good performance during the whole
process. It can be observed how the curves of the
average fitness and the fitness of the best robot got
more distant from each other when mutation was
increased, showing that higher mutations make the
population more disperse according to the fitness of
the robots.

4100

4150

4200

4250

4300

4350

4400

4450

4500

4550

4600

4650

0 10 20 30 40 50 60
Generation

Fitness Av0.1%
Best0.1%
Av0.5%
Best0.5%
Av1%
Best1%
Av10%
Best10%
Av50%
Best50%

Fig. 9: Evolution of the black box controller for
different mutation rates. Av is the average
fitness of all robots and Best is the fitness of
the best robot in the generation

Proceedings of the 2001 IEEE Systems, Man, and Cybernetics Conference
Copyright 2001

5 Conclusion

During the experiments, the most important
factor that interfered with the performance of the
system was the stochastic noise arising from the
interactions of real physical systems. The
encountered noise in the experiments was:
1- The infrared signals reflected by the walls in every

direction (e.g., two point reflection from one
emitter in two walls and back to another receiver);

2- The dust on the floor, which can make the wheels
slide differently, sometimes turning the robot
differently than expected (this generates problems
in performing programmed high-level actions);

3- The sensors are affected by environment conditions
(such as intensity of illumination, colour of the
walls, texture of the obstacles and floor, etc);

4- The inertia of motors and body, which vary with
the robot speed causing difficulties to perform the
expected turning routines.

The developed evolutionary system succeeded in
evolving the real robots, initialised with random
controllers and morphologies, reaching efficient
solutions after 100 generations of 60 seconds,
providing the first experiments of the embedded
evolution of morphology and an unstructured
controller. The system was able to detect the best
position and range for the sensors, solving conflicts
between sensors that interfere with each other and
even incorporating the interference into the robot
design. Evolution was also able to determine the ideal
speed for the navigation of the robot according to the
size and shape of the obstacles in the environment.

The most unexpected designs were produced and
some proved efficient solutions that could not be
achieved with the traditional top down design of
robotic platforms. Although implemented into a
specific group of 2-wheel differential-drive robots for
a specific task, the described evolutionary system can
be adapted to control other kinds of robots
performing different tasks.

References

1. Layzell, P., Inherent Qualities of Circuits Designed
by Artificial Evolution: A Preliminary Study of
Populational Fault Tolerance, proceedings of the First
NASA/DoD Workshop on Evolvable Hardware -
EH99, pp. 85-86, 1999.
2. Lipson, H. and Pollack, J. B., Automatic Design
and Manufacture of Robotic Lifeforms, in Nature, v.
406, pp. 974-978, 2000.
3. Keymeulen, D., Durantez, M., Konaka, K.,
Kuniyoshi, Y., and Higuchi, T., An Evolutionary
Robot Navigation System Using a Gate-Level
Evolvable Hardware, in Evolvable Systems: From
Biology to Hardware, Lecture Notes in Computer

Science 1259, Springer-Verlag, pp. 195-209, 1997.
4. Brooks, R. A., Intelligence Without Reason,
proceedings of the Twelfth International Joint
Conference on Artificial Intelligence, Morgan
Kauffman, San Mateo, CA, USA, pp. 569-95, 1991.
5. Thompson, A., Evolutionary Techniques for Fault
Tolerance, proceedings of the UKACC International
Conference on Control (IEE Conference Publication
No.427), pp. 693-698, 1996.
6. Ficici, S. G., Watson, R. A., and Pollack, J. B.,
Embodied Evolution: A Response to Challenges in
Evolutionary Robotics, proceedings of the Eighth
European Workshop on Learning Robots, Wyatt, J.
L. and Demiris, J. (Eds.), pp. 14-22, 1999.
7. Thompson, A. and Layzell, P., Evolution of
Robustness in an Electronics Design, proceedings of
the 3rd International Conference on Evolvable
Systems, Springer Verlag, pp. 218-228, 2000.
8. Watson, R. A., Ficici, S. G., and Pollack, J. B.,
Embodied Evolution: Embodying an Evolutionary
Algorithm in a Population of Robots, proceedings of
the Congress on Evolutionary Computation, IEEE
Press, pp. 335-342, 1999.
9. Simoes, E. D. V. and Dimond, K. R., An
Evolutionary Controller for Autonomous Multi-
Robot Systems, proceedings of the IEEE
International Conference on Systems, Man and
Cybernetics, v. 6, Oct., 1999, Tokyo, Japan, pp. 596-
601, 1999.
10. Mataric, M. J., Challenges In Evolving
Controllers for Physical Robots, in Evolutional
Robotics: Special Issue on Robotics and Autonomous
Systems, v. 19, n. 1, pp. 67-83, 1996.
11. Thompson, A., An Evolved Circuit, Intrinsic in
Silicon, Entwined With Physics, proceedings of the
First International Conference on Evolvable Systems:
From Biology to Hardware, Tsukuba, Japan,
Springer-Verlag LNCS, pp. 390-405, 1996.
12. Floreano, D. and Mondada, F., Evolution of
Homing Navigation in a Real Mobile Robot, in IEEE
Transactions on Systems, Man, and Cybernetics -
Part B: Cybernetics, v. 26, n. 3, pp. 396-407, 1996.
13. Seth, A. K., Interaction, Uncertainty, and the
Evolution of Complexity, proceedings of the Fourth
European Conference on Artificial Life, MIT Press,
pp. 521-530, 1997.
14. Mataric, M. J., Reducing Locality Through
Communication in Distributed Multi-Agent Learning,
in Journal of Experimental and Theoretical Artificial
Intelligence: Special Issue on Learning in Distributed
Artificial Intelligence Systems, v. 10, n. 3, Weiss, G.
(Ed.), pp. 357-369, 1998.
15. Simoes, E. D. V., Uebel, L. F., and Barone, D. A.
C., Hardware Implementation of RAM Neural
Networks, in Pattern Recognition Letters, n. 17, pp.
421-429, 1996.

