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Abstract 
 

This paper describes a fully embedded 
distributed evolutionary system that is able to achieve 
collision-free navigation in a few hundreds of trials. 
It reports the first experimental proof of the 
embedded evolution concept applied to the evolution 
of morphology and an unstructured control circuit of 
a population of six real robots in real time. Evolution 
selects the appropriate sensor configuration and 
speed levels that the robots should incorporate to 
perform specific tasks. The results show the influence 
of different mutation rates in the performance of the 
system. This work produced a genetic system where 
the population exists in a real environment. 
  

Keywords  
Evolutionary system, embedded evolution, adaptive 
robotics. 

1 Introduction 

This work is concerned with automated synthesis 
of robotic embedded controllers using Evolutionary 
Computation [1]. Evolutionary methods have been 
employed for developing robot controllers 
automatically in simulation [2], on physical systems 
[3], and combinations. Specifically, this work 
concentrates in embedding an evolutionary algorithm 
within a population of physical robots. 

The term Evolutionary System in this work refers 
to an environment where the individuals physically 
exist and artificially breed and die, to give place to 
the next generation. It is important to distinguish it 
from the work of other authors that involve 
simulation in some of the evolutionary phases [4, 5]. 

To date, only two publications report the 
implementation of an evolutionary system fully on-
board of a population of real robots, working 
completely independent of external computation and 
human intervention to evaluate, reproduce, and 
reposition the robots for new trials [6, 7]. These 
articles are: Watson et al. [8] (evolving only the 
controller) and the publication of the first results of 
our work [9] (evolving the controller and 
morphology). They provide, together with this work, 
the first experiments with a new concept: Embedded 
Evolutionary Systems.  

What is proposed is the physical implementation 
of a genetic system containing the robots as the 
individuals and a genetic code (bits stored in the 
RAM memory of the robots) that specifies the 
configuration of their control device, the evolvable 
controller, and their speed and sensor organisation, 
defined here as morphology [10].  

Evolving unstructured architectures for robot 
control has been attempted before by Thompson in 
[5], where he evolved a dynamic state machine to 
drive a small mobile robot and in [11], where he tried 
to evolve an FPGA connected directly to the motors 
to produce a pulse modulated signal. Both attempts 
employed simulation, and one real robot was used to 
evaluate the solutions. To date, no work has been 
reported where the evolution of an unstructured 
controller has been attempted with a real robot 
population in real time [6]. Therefore, these 
experiments provide the first results obtained from 
the evolution of an unstructured control architecture 
by an embedded evolutionary system.  

1.1 Problem Delimitation 

A simple task-behaviour was chosen: collision-
free navigation [3] to allow the development of the 
system in relatively low-cost robots. Therefore, more 
robots could be built and evolution could benefit 
from more diversity in the population. The main issue 
considering functional specification in an 
evolutionary system is to tell evolution what the 
robots have to do, without telling it how they are 
going to achieve that [12]. In our case, the robots are 
encouraged to explore the environment, going as fast 
as possible without colliding into the obstacles or 
each other. Because the workspace contains various 
robots, the environment also includes some robot-to-
robot interference [13] (e.g., collisions between 
robots and reflection of the infrared signals by 
approaching robots).  

1.2 The Workspace 

The workspace consists of six autonomous 
mobile robots working in a 2.50m × 2.50m domain, 
where they can navigate, avoid obstacles, and 
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perform specific tasks. The robots have eight infrared 
proximity sensors and 10 speed levels for each motor.  

Fig. 1 shows the six robots navigating in their 
working domain. The robot architecture consists of a 
two-wheel differential-drive platform (20cm 
diameter), containing a Motorola 68HC11 - 2MHz 
with 64Kb of RAM. It exchanges information with 
the other robots at 1.2Kbps by a 418MHz AM radio. 
Both robots and workspace were specially built for 
the experiments. All robots have a binary bit string, 
the “chromosome”, containing the genetic code that 
specifies their control device and physical features, 
such as speed and position of the sensors. All eight 
proximity sensors are connected to the sensor module 
(see Fig. 2), which is configured by the chromosome. 
The module can individually enable or disable the 
sensors, changing the number of active sensors and, 
consequently, their position in each generation. 
Therefore, the physical, embodied characteristics of 
the robot can be modified. The robot has four round 
bumpers attached to eight contact sensors (Cs1 to 
Cs8). These sensors permit the supervisor algorithm 
to pinpoint the location of a collision. 

 
 

 

Fig. 1: The six robots and their working domain 
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Fig. 2: Robot architecture representing the 
proximity sensors (a) and round bumpers (b) 

2 Individual Control Strategy 

The robot architecture can conceptually be seen 
as a central control module interfacing all other 
functional modules (see Fig. 4). The modules were 
implemented using a combination of dedicated 
hardware and software. The sensor and motor drive 
modules and the navigation control are configured by 
subsets of the chromosome that indicate the number 
of sensors used, their position in the robot periphery 
and the speed levels of the robot.  
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Fig. 3: The radio link, forming a decentralised 
evolutionary system 
 

The goal of the implemented evolutionary 
system is to train automatically the team of robots to 
interact with an unforeseen environment in real time. 
Therefore, the robots must evolve while deployed “in 
the field”, using the real world to act as “its best 
model” [4]. The robot individual capacity is quite 
simple, but presents the necessary evolutionary 
capabilities. The evolutionary system is not based in 
an external computer, but is distributed between the 
robots and coexists with their evolvable controller 
inside the microprocessor. 

The evolutionary control circuits of all robots 
communicate through an embedded radio, as shown 
in Fig. 3, to control the complete evolutionary 
process. They combine and form a global 
decentralised evolutionary system [14]. They process 
the data stored in the chromosome and send the 
configuration parameters to the navigation control 
and the other modules. This global system controls 
the evolution of the robot population from generation 
to generation. It is responsible for selecting the fittest 
robots (the most-adapted to interact with the 
environment), mating them with the others by 
exchanging and crossing over their chromosomes, 
and finally reconfiguring the robots with the resultant 
data (the offspring).  
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Fig. 4: The Central Control and main subsystems 
 
 

A supervisor algorithm monitors the robot 
performance, informing the evolutionary control how 
well-adapted it is to the environment. The supervisor 
algorithm is responsible for activating a rescue 
routine, a built-in behaviour that is able to manoeuvre 
automatically the robot away from a dangerous 
situation once it is detected by the contact sensors 
that determine the occurrence and position of a 
collision. When activated, the rescue routine will take 
control of the robot until it is safely recovered. The 
robot is then punished by decreasing its fitness value.  

The navigation control processes the information 
of the sensors and decides what the robot has to do. 
Then, it sends a command to the motor drive module, 
which will control the speed of the motors to make 
the robot manoeuvre accordingly. The navigation 
control is the centre of the autonomous navigation of 
the robot. Configured by the parameters stored in the 
chromosome, it drives the robot independently. 
Evolution is responsible for adjusting these 
parameters so that the robot performs well in the 
environment.  

2.1 Navigating with an Unstructured Controller 

In this work, the embedded evolutionary system 
will attempt to evolve a completely unstructured 
control circuit (i.e., a controller that has an 
unconstrained logic circuit, which can produce any 
binary function of its inputs). Instead of using a 
structured, modular neural network (which can 
produce limited functionality) to implement the 
navigation control circuit as shown in our previous 
paper [9], this work prefers an unstructured, 
undefined architecture, which we called the black box 
[15].  

In this experiment, all sensors have only one bit 
of precision and they were set to work at the range of 

15cm. The controller used eight commands to control 
the motor drive module: Front Fast (FF); Front Slow 
(FS); Turn Left Short1 (TLS1); Turn Right Short1 
(TRS1); Turn Right Short2 (TRS2); Turn Left Short2 
(TLS2); Turns Right Long (TRL); and Turn Left Long 
(TLL). FF moves the robot forward with maximum 
speed. FS moves with half speed. To turn left/right 
short, the robot moves with reverse direction in one 
of its motors (with both motors at maximum speed), 
causing a spin around its own axis. The difference 
between TRS1 and TRS2 is that in the later, the robot 
keeps turning for 200ms, while the duration of the 
other commands is just one iteration (10ms more or 
less). In TRL and TLL, the robot turns right/left by 
breaking one wheel and turning around it with the 
other one in maximum speed. Fig. 5 shows how the 
black box is connected to the sensors and the motor 
drive module. These eight commands are encoded by 
three bits. 
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Fig. 5: The Black Box controller 

The same strategy that was used to implement 
the circuit of the neurons in [15] as lookup tables is 
applied here to implement the navigation control 
circuit. The controller is represented by a black box 
that can generate any binary logic function of its 
eight binary inputs. Which logic circuit is actually 
used inside the black box to implement this logic 
function does not matter in this case, since only its 
behaviour is relevant to the problem.  

The natural way to implement the black box 
controller is by using 256 bytes of the robot RAM 
memory, where the output of the black box controller 
is a byte that can store in its eight bits the contents of 
eight lookup tables. The first three bits, b0, b1, and b2, 
are used to form the 3-bit command that controls the 
motors. This strategy resulted in a powerful and fast 
controller, since only a single step or command line 
is necessary to implement the whole controller: 
Command = Memory[Sensors]. Considering that 
Sensors is a 1-byte long variable containing the 
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sensor readings (8 bits) converted to an integer that 
addresses the memory array. Memory[256] is an 
array of 256 bytes that stores the contents of the 
lookup tables, and Command is the variable sent to 
the motors.  

Evolution was allowed to manipulate the 
memory contents directly, until a navigation control 
circuit emerged. Therefore, every byte of the memory 
was ordered in the chromosome to form a 2048-bit 
string. Crossover and mutation can affect each one of 
these bits as a normal binary chromosome. After 
these operations are completed, the 2048 bits in the 
chromosome are grouped again into 256 bytes and 
stored in the black box memory. Only the first three 
bits in the byte (b0, b1, and b2) are relevant for this 
experiment, and the other ones (b3 to b7) are ignored 
by the robot. Therefore, only 768 bits, which 
correspond to the first three tables are relevant to 
evolution. Hence, this is the size of the genotype of 
the robots, and considering that any one of them can 
produce a different phenotype (i.e., there is no 
neutrality in this case), the current search space is 
considerably large: 2768 = 1.55×10231.  

3 Evolutionary Control System 

The cyclic procedure of the robots, a generation 
in evolutionary computation terms [10], is 
exemplified in Fig. 6. This cyclic procedure was 
inspired by the natural world where some birds, for 
example, have a working or foraging season and a 
mating season, where they concentrate their attention 
in finding a mate and reproducing. The robots do not 
pursue reproductive activities concurrently with their 
task behaviour. Instead, they perform a working 
season, where they execute the selected task in the 
environment (or working domain) and are evaluated 
according to their performance. 
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Fig. 6: The cyclic procedure of the robots 
 

A internal timer indicates the beginning of the 
mating season. In this season, the robots 
communicate to let the others know their fitness 
value. They start emitting a “mating call” through the 
radio, where they “shout” their identification, fitness 
values, and chromosomes. The best robots survive to 
the next generation, breeding to become the “parents” 
of the new individuals. Assuming that new robots 

cannot really be created spontaneously, the offspring 
must be implemented by reconfiguring selected old 
individuals. The robots then start another cycle. In 
other words, the best-adapted robots “survive” to the 
next generation, while the others “die” after mating, 
to lend their bodies to their offspring.  

3.1 Crossover Strategy 

The genetic material specifies the configuration 
of the robot control device and morphological 
features, as shown in Fig. 7. A random exchange of 
the genes from the parents forms the resultant 
chromosome. This strategy is called uniform 
crossover [1], although here only one offspring is 
produced. Therefore, a gene is selected from the 
father or the mother to occupy the corresponding 
position in the offspring chromosome. After the 
crossover is completed, a mutation phase starts. Each 
gene in the chromosome has a probability of M% of 
being selected and binary inverted (e.g., new gene = 
NOT(gene)).  
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Fig. 7: The genes in the chromosome 

4 The Experiments 

The experiments applied a simple fitness 
function in order to prevent biasing evolution towards 
a pre-conceived solution. Rule 3 punishes the robots 
that keep turning for more than 15 seconds, 
encouraging them to move forward. Rule 4 does not 
punish the robots that are turning, for they may be 
attempting to avoid an obstacle when the collision 
occurred. The selected fitness function for this 
experiment is:  

 
 

1-  Start with 4096 points;  
2-  Reward: increase fitness by 10 points every 1 

second of movement;  
3-  Punishment: decrease fitness by 30 points for 

every time command is not FF or FS for more 
than 15 seconds;  

4-  Punishment: decrease fitness by 10 points for 
every collision if command = FF or FS.  

 

The duration of a generation is 60s and mutation 
rate is 0.5%. The bits in the chromosome are 
randomly initialised for all experiments. After each 
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working season, the robots are selected to breed 
according to the selection rule reproduced below:  
 

The robot with the highest fitness survives to the 
next generation and breeds with all other robots, 
which reconfigure themselves with the new offspring.  

 

Fig. 8 presents the behaviour of the six evolving 
robots in 200 generations of 60 seconds. They 
evolved from a random controller with random speed 
levels and sensor configuration to a group of 
competing efficient solutions containing four or five 
sensors (S1,S3,S4,S6,S8; S3,S4,S6,S8; S2,S3,S4,S7), 
and a controller that learned how to deal with them. 
Robot 5 started with four sensors enabled 
(S3,S4,S6,S8), and was an efficient combination that 
was soon transferred to the other robots in the first 20 
generations. Next, their controllers had to adapt to 
work with small variants from this configuration. 
This took more than 80 generations.  
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Fig. 8: Evolution of the black box controller and 
morphology 

 

Since mutation was very low, all robots in the 
end of the experiment had the ability to produce 
similar performances. The small differences that still 
persisted were a consequence of the influence of 
noise and the interference between the robots. As the 
generations passed, there were fewer poorly-adapted 
robots crashing into the good ones, so the average 
performance increased.  

Evolution made the robots travel slower in the 
beginning of the process, when their controllers were 
not well-developed to deal with all situations. An 
interesting event was observed in this experiment: 
after the population started to converge in the last 30 
generations of the process, the sensor configurations 
still varied into a small set of solutions with four or 
five sensors enabled, but the controller configuration 
did not change much. In fact, it was able to perform 
the same manoeuvres regardless of being attached to 
four or five sensors. This helped to preserve a good 
performance while the sensor and speed 
configurations kept changing, since the controller did 
not need to adapt again after the robot morphology 
changed.  

The chart shows that the population gradually 
converged to a small set of efficient configurations 
combining morphology and control that could drive 
the robots practically without colliding. The average 
fitness of the population oscillated in the beginning, 
but was very high in the end of the process. The 
system did not converge to an optimal solution, 
because it was not necessary, since many 
configurations obtained after 200 generations were 
able to produce the higher performance.  

As a real environment is being used, the 
presence of stochastic noise will always introduce 
some variation. Nevertheless, the system presented a 
similar behaviour when the experiment was repeated 
30 times. Fig. 8 was chosen for it was the closest trial 
to the average behaviour. 

Fig. 9 shows a comparison of five mutation 
rates: 0.1%; 0.5%; 1%; 10%; and 50%. It presents the 
average results obtained by overlapping 20 
experiments for each mutation rate. The figure 
suggests that with such a small population, after the 
first 20 generations or so the population relies only 
on mutation to increase its performance. Higher 
mutations help evolving in the beginning of the 
process, when there are more bad than good genes in 
the chromosome. It can be seen in the figure that 1% 
and 0.5% mutation evolved faster than 0.1% in the 
beginning of the process, but as the genes in the robot 
chromosomes became better, 0.1% mutation 
outperformed 1%. The best mutation was 0.5%, 
which showed a good performance during the whole 
process. It can be observed how the curves of the 
average fitness and the fitness of the best robot got 
more distant from each other when mutation was 
increased, showing that higher mutations make the 
population more disperse according to the fitness of 
the robots. 
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Fig. 9: Evolution of the black box controller for 
different mutation rates. Av is the average 
fitness of all robots and Best is the fitness of 
the best robot in the generation 
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5 Conclusion 

During the experiments, the most important 
factor that interfered with the performance of the 
system was the stochastic noise arising from the 
interactions of real physical systems. The 
encountered noise in the experiments was:  
1- The infrared signals reflected by the walls in every 

direction (e.g., two point reflection from one 
emitter in two walls and back to another receiver);  

2- The dust on the floor, which can make the wheels 
slide differently, sometimes turning the robot 
differently than expected (this generates problems 
in performing programmed high-level actions);  

3- The sensors are affected by environment conditions 
(such as intensity of illumination, colour of the 
walls, texture of the obstacles and floor, etc);  

4- The inertia of motors and body, which vary with 
the robot speed causing difficulties to perform the 
expected turning routines.  

The developed evolutionary system succeeded in 
evolving the real robots, initialised with random 
controllers and morphologies, reaching efficient 
solutions after 100 generations of 60 seconds, 
providing the first experiments of the embedded 
evolution of morphology and an unstructured 
controller. The system was able to detect the best 
position and range for the sensors, solving conflicts 
between sensors that interfere with each other and 
even incorporating the interference into the robot 
design. Evolution was also able to determine the ideal 
speed for the navigation of the robot according to the 
size and shape of the obstacles in the environment.  

The most unexpected designs were produced and 
some proved efficient solutions that could not be 
achieved with the traditional top down design of 
robotic platforms. Although implemented into a 
specific group of 2-wheel differential-drive robots for 
a specific task, the described evolutionary system can 
be adapted to control other kinds of robots 
performing different tasks.  
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