
1

Hardware Implementation of RAM Neural Networks

Eduardo do Valle Simões, Luís Felipe Uebel & Dante Augusto Couto Barone

Informatics Institute - Federal University of the Rio Grande do Sul

Caixa Postal 15064 - Porto Alegre, RS 91501-970, Brazil

E-mail: EDSIM, UEBEL, BARONE@inf.ufrgs.br

2

Abstract

This work describes an alternative technique for hardware and software implementation

of RAM based Boolean neural networks, which describes neurons using the VHDL language. An

example of application consisting of the classification problem of the British mail scanned address

is attended with a RAM architecture presenting 340 x 12-input neurons. The weights of each

neuron are represented by its truth table and described using simple logic gates (AND, OR, and

NOT), aiming to make possible the network logic minimisation and its hardware implementation

by the ALTERA MAX+PLUS II fast prototyping package (Altera, 1992). The developed

software tool allows the specification and training of the network. Then, its VHDL description is

generated to be interpreted and minimised by the ALTERA EPLD design system. If it is not

necessary to have high speed processing or if pre-processing phases are needed, the ANN can be

implemented in software. The software strategy makes use of the direct translation of the VHDL

description into a simplified C language code. Once the user has specified and taught the

network, this approach makes possible automatic prototyping of RAM neural networks in

software and hardware.

Key words: Boolean Neural Networks, Character Recognition, Fast Prototyping, Image

Classification, Neural Network Hardware Implementation.

1. Introduction

During the last decade, the development of advanced techniques for microelectronics

design have permitted efficient physical realisations of the Artificial Neural Network (ANN)

theory (Arostegui, 1994, Verleysen et al., 1994). On an application level, hardware

implementations (primary analogue and digital VLSI) have brought high performance ANN

systems (Serrano et al., 1994, Woodburn et al., 1994), while VLSI implementations of the neural

network recall-mode have being researched and fully adaptive VLSI ANNs (i.e. including

learning) are maturing (Lehmann, 1994, Morie and Amemiya, 1994). However, there are several

3

problems associated to the classical ANN models, related basically to their convergence

properties, and to the necessity to define heuristically the proper network structure for a

particular problem. Many researchers are addressing these problems, as for example Arostegui

(1994) with evolutive neural models, that offer the possibility to reconstruct automatically during

the training process the proper ANN structure able to handle a specific task.

The rise of the ANN application in complex problems like artificial vision, character

recognition, voice, and signatures has claimed a constant optimisation of the design techniques

(Lehmman, 1994). This optimisation aims to improve ANN performance and reduce the

necessary computational resources. After all, many times higher speeds are only achieved with

hardware implementations (Verleysen and Jespers, 1989, Mead, 1989, Rossetto et al., 1989, Lee

and Sheu, 1992, Domínguez-Castro et al., 1992). The problem is, however, how to build an

integrated circuit (IC) without generalising the neural network architecture, in order to justify

development costs. This article shows an EPLD based solution that attaches this problem,

considering only the recall-mode of RAM ANNs previously trained according to a specific

application.

Many ANN applications need to be implemented in hardware due to the advantages that

this solution presents: i) Parallel Processing, each ANN neuron processes a small portion of the

final result; ii) Asynchronous Operation, ANN neurons can run at the maximum speed of the

employed hardware; iii) Fault Tolerance, some connections can be broken and a few neurons

can be removed without corrupt neural processing; and iv) Regularity, neurons are built from

few simple components that can be repeated and connected in a regular structure (Lehmann,

1994). Some applications, therefore, do not require high performances and pre-processing phases

(i.e., image acquisition, filtering) are necessary. For these cases, the software solution is more

appropriated, because it is not necessary to build the interface between ANN and the image

processing package. Due to these circumstances, it is also presented in this article a new solution

based on a C language implementation of ANNs.

4

Software implementation of RAM based ANN is limited by the amount of available

memory since RAM neurons are assembled as binary vectors, addressed by the inputs and stored

into system memory (Meyers, 1992). If the number of inputs is high, what is very common in

complex problems, each neuron will need a great amount of memory. This fact can make

intractable the application of the RAM model in some cases with less available memory like

microcontrollers.

Considering the above related problems we offer a solution that uses VHDL language,

allowing each neuron to be described in software according to its truth table, instead of being

stored in memory as a vector. This approach does not have the necessity of a large memory area

and improves system flexibility for it can be executed in many computer platforms with pre-

processing phases in order to decrease noise effects. The use of VHDL also permits a good

interface with commercial IC design systems. If it is necessary to improve performance, the

neural network can be interpreted by a CAD (Computer Aided Design) tool, and a specific IC

can be generated. The employment of FPGAs (Field Programmable Gate Arrays) or EPLDs

(Erasable Programmable Logic Devices) to implement a neural network is very attractive, since it

allows fast IC prototyping and low cost modifications. This approach grants a reduction of

network generalisation, decreasing costs and improving performance.

This research is based on the authors’ previous works (Uebel and Barone, 1993, Simões

et al., 1994, Uebel et al., 1995).

2. Implementation of RAN based Neural Networks

Despite the chosen technique, before implementing a neural network it is necessary to

perform some tests to determine the network architecture (number of neurons, connectivity) that

can solve the intended problem with the best relation between cost and recognition level. A

software tool was developed to help with this task and the employed methodology used to

5

choose a specific RAM topology that can be successfully applied to the British mail classification

problem will be presented.

2.1. Analyses of Different Topologies of the RAM Model

Many RAM topologies were analysed in order to specify which architecture presents the

best recognition level for the British mail data bank classification (Filho et al., 1992), chosen to

perform the training of the implemented neural networks in order to facilitate comparisons to

other methodologies. The training phase allows to identify the RAM configuration (number of

neurons and neuron input number) that shows the best results for the classification problem of the

British mail address. Sixty tests with many possible configurations were performed in order to

evaluate the average recognition level. A set of 100 patterns with noise inclusion was used to

teach each class (0, 1, 2, 3, 4, 5, 6, 7, 8, and 9). It was noticed that the neural network can

saturate if the number of presented patterns is high, instead of improving its recognition level.

Table 1 presents the main obtained results.

Table 1 shows: i) IN é number of neuron inputs; ii) NEU é total number of neurons;

iii) PAT é number of training patterns; iv) REC é average recognition level; v) WREC é

worst recognition level; vi) Error é average recognition error; vii) WError é worst recognition

error; viii) REJ é average rejection index, showing the pattern similarity rejection (the lower

REJ, the greater the recognition level); ix) WREJ é worst rejection index.

The tests have begun with 100 x 4-input neurons to cover the 384 (24 X 16) pixels of

the British character data bank. As tests went on with 5, 6, and 7 inputs, the worst case result

was always below 90.0%. An 8-input neuron brought about better results, but only in a few

cases. The same situation has happened to 9 and 10 inputs. For larger neurons, a greater number

of patterns was used in the training phase. Table 1 also shows that 12-input neurons have

6

improved the obtained results (REC = 97.9% and WREC = 96.0%). Thus, the number of

neurons was reduced to 34.

Another important factor for choosing a RAM configuration is the pattern rejection

index (REJ) (Myers, 1992). This factor shows the pattern similarity rejection of the network,

which is responsible for improving the recognition level. It has to be considered that the greater

the number of neuron inputs, the higher REJ. Larger neurons have a low saturation level which

improves the pattern discrimination and the rejection of the cross-link recognition (Myers, 1992).

Fourteen-input neurons have had nearly the same effects as 12-input ones, but rejection has risen

considerably. Fifteen or sixteen-input neurons have also shown good results, however their

hardware implementation becomes difficult to put in practice.

2.2. Choosing the better Topology for Hardware Implementation

The obtained results allow the identification of the best neural network configuration to

be implemented in hardware. A reasonable solution for this problem is the 12-input neuron

because larger ones make difficult hardware implementation. This configuration has shown the

best relationship between cost and recognition level, considering that only 34 neurons have to be

implemented for each class.

Tab. 1: Neural Network Recognition Level for Different Configurations.

PARAMETER
IN NEU PAT REC WREC Error WError REJ WRej
4 100 64 87.6% 52.0% 1.1% 2.0% 11.3% 45.0%
5 100 50 95.0% 79.0% 1.5% 2.2% 5.6% 24.0%
6 100 50 96.0% 89.0% 1.4% 2.1% 5.0% 22.0%
7 100 50 96.3% 88.0% 1.2% 1.9% 4.9% 15.0%
8 50 100 96.7% 86.0% 1.4% 4.0% 1.9% 10.0%

10 40 100 96.9% 92.0% 1.3% 4.0% 1.8% 4.0%
12 34 100 97.9% 96.0% 1.0% 4.0% 1.1% 3.0%
14 29 100 96.8% 90.0% 2.3% 7.0% 0.9% 3.0%
15 27 100 96.8% 92.0% 2.3% 7.0% 0.9% 2.0%

7

Table 2 presents the performed tests with 12-input neurons. Different training data sets

were used in the tests. The results have been different since the neurons are randomly connected

to the input pattern in each test. Table 2 shows that it is possible to improve the recognition level

by increasing the number of training patterns. The average recognition level has risen from 52%

(with 64 training patterns) to 100% (with 195 training patterns).

2.3. Rising Problems from Hardware Implementation of RAM based Neurons

Hardware implementation of neural networks tends to be a complex task due to their

characteristic of massive parallel processing. This characteristic leads to several VLSI problems

since all neural network neurons should be implemented (Lehmann and Lansnet, 1993).

Tab. 2: Recognition Level for Different Numbers of Training Pattern.

PARAMETER
TEST NEU PAT REC WREC Error WError REJ WREJ

1 34 50 95.2% 84.0% 1.4% 7.0% 3.4% 12.0%
2 34 50 96.0% 85.0% 1.3% 5.0% 2.7% 10.0%
3 34 50 96.3% 91.0% 1.3% 4.0% 2.4% 6.0%
4 34 100 96.9%% 93.0% 0.7% 3.0% 2.4% 4.0%
5 34 100 95.9% 84.0% 1.4% 6.0% 2.7% 10.0%
6 34 100 97.2% 90.0% 1.2% 4.0% 1.6% 7.0%
7 34 150 98.3% 94.0% 0.9% 2.0% 0.8% 4.0%
8 34 150 98.1% 91.0% 1.0% 5.0% 0.9% 4.0%
9 34 150 98.6% 95.0% 0.6% 3.0% 0.8% 2.0%

10 34 175 99.1% 95.0% 0.3% 1.0% 0.6% 4.0%
11 34 175 99.1% 95.0% 0.3% 1.0% 0.6% 4.0%
12 34 175 99.3% 98.0% 0.2% 1.0% 0.5% 2.0%
13 34 185 99.8% 98.0% 0.1% 1.0% 0.1% 1.0%
14 34 185 99.7% 97.0% 0.0% 0.0% 0.3% 3.0%
15 34 185 99.9% 99.0% 0.0% 0.0% 0.1% 1.0%
16 34 190 99.9% 99.0% 0.1% 1.0% 0.0% 0.0%
17 34 190 99.7% 97.0% 0.0% 0.0% 0.3% 0.3%
18 34 190 99.9% 99.0% 0.0% 0.0% 0.1% 1.0%
19 34 195 100.0% 100.0% 0.0% 0.0% 0.0% 0.0%
20 34 195 100.0% 100.0% 0.0% 0.0% 0.0% 0.0%
21 34 195 100.0% 100.0% 0.0% 0.0% 0.2% 2.0%

8

Boolean neural networks have binary element processing which makes easier their

hardware implementation. In this case, neuron operations can be directly mapped into logic gates,

without the necessity of complex state machines (Simões et al., 1994, Uebel et al., 1995).

Memory allocation in RAM based neural networks is a limiting factor of their

employment (Myers, 1992). Table 3 presents the requirements for memory allocation of some

implemented architectures. As it can be seen in Table 3, the greater the neuron input number, the

greater the network memory necessity.

3. Hardware Implementation of the RAM Model

The proposed design strategy consists of two phases: specification and training of the

neural network; and logic mapping of the neurons into a hardware description language. All

RAM neurons, as well as the sum of the neuron groups and the comparison process were

implemented into ALTERA EPLDs (Altera, 1992).

The developed software system is used to generate the VHDL description of the

neurons (Simões et al., 1994). The VHDL code can be interpreted by the MAX+PLUS II system

of the ALTERA package, which performs the network logic minimisation and generates the

EPLD configuration (steps � and � bellow). The design environment is divided into eight

different steps:

Tab. 3: Memory Used for Different Topologies.

IN NEU Memory (bits) Memory (bytes)
4 100 16.000 2.000
5 100 32.000 4.000
6 100 64.000 8.000
7 100 128.000 16.000
8 50 128.000 16.000
10 40 409.600 51.200
12 34 1.392.640 174.080
14 29 4.751.360 593.920
15 27 8.847.360 1.105.920

9

� Sizing of the desired RAM based neural network according to the user's specific

application;

� Neural network automatic training with the I/O patterns presented by the user;

� Simulation of the neural net behaviour. The goal of this step is to determine if the net

recognition level is sufficiently high to fulfil the application necessities;

� Logic mapping of each neuron of the trained net, which is treated as a black-box;

� Generation of the VHDL description of all trained neurons of the RAM neural network

circuit;

� Logic minimisation of the VHDL description;

� Partitioning and implementation of the network circuit into the ALTERA EPLD;

� Translation of the VHDL description into a C language code (if software implementation is

chosen);

Neural network weights are mapped into the neuron VHDL description by the software.

Therefore, the ALTERA package provides a minimisation of the logic gates where only the

significant connections are taken into account. Each neural network neuron is mapped as a black-

box using this technique. The system stimulates a neuron with all possible input combinations and

identifies the output that corresponds to each stimulus. With this procedure it is possible to

construct a truth table that leads to a logic description of the neuron. This description is used to

perform a schematic diagram of each neuron. Weights are implicit to neuron logic mapping,

reducing the number of interconnections and, consequently, increasing circuit performance.

The VHDL description permits a direct interaction of the neural network design

software with commercial FPGA prototyping systems. The network simulation phase provides a

feedback to the user, making modifications in the network dimensions easier.

10

According to Table 1 and 2, a RAM architecture with 12-input neurons was chosen to

solve the address classification problem. Figure 1 presents the neural network topology

containing 340 neurons and the way the circuit is partitioned into 5 EPLDs. Once the neurons are

trained and described by the software tool, the ALTERA system can process them as logic gates.

This fact leads to a great logic minimisation, due to the redundant characteristics of neural

networks. A set of logic equations (see Table 4), which can be directly implemented into an

EPLD, is the result of this operation.

Table 4 describes the equations that represent the truth table of a RAM neuron of the

class that represents number “Four”. As it can be seen in Table 4, only memory positions

containing the logic value "1" are taken into account, instead of storing great vectors in memory.

This technique allows a great economy of resources that, in some cases, can permit RAM based

neural network employment in very complex applications.

A full-parallel implementation of a RAM neural network, trained according to the

British mail data bank, becomes possible with the technique proposed in this work, because it is

necessary only few simple logic gates to describe each neuron (as it can be seen in Table 4).

Table 4 presents a trained neuron represented by a minimised and a non-minimised

VHDL description. This neuron is one of those that are responsible for the recognition of the

class that represents number “Four” (see Figure 2). The developed software just processes

memory positions containing the logic value “1”, instead of using great portions of memory to

store large binary vectors. It can be observed that the necessary hardware resources can be

represented by a combinational circuit of just few simple logic gates. It is shown in the table only

one neuron of one class, but all the 340 neurons (34 neurons for each class) were implemented.

11

Figure 3 shows the implemented circuit of the neural network into 5 EPLDs. The neural

network had to be partitioned into five ICs due to the great amount of inputs (see Figure 1). The

input pattern has 384 pixels and the greater available EPLD has only 160 I/O pins. The neural

network was partitioned into 5 ICs: 4 ICs are responsible for the implementation of the neurons

(IC1, IC2, IC3, and IC4); and IC5 calculates the sum of the neuron groups and the comparison

process that specifies which class is dominant. IC1, IC2 and IC3 have 96 inputs to load ¼ of the

Tab. 4: VHDL Description of a Neuron of the Class that Represents Number “Four”.

Description Neuron of the Class “Four”

Non-
Minimised

! = NOT
& = AND
= OR

Neuron =
!e1 & !e2 & e3 & e4 & e5 & e6 & e7 & e8 & e9 & e10 & !e11 & !e12 #
!e1 & e2 & e3 & e4 & e5 & !e6 & !e7 & !e8 & e9 & e10 & e11 & !e12 #
e1 & e2 & e3 & !e4 & !e5 & !e6 & !e7 & e8 & !e9 & !e10 & !e11 & !e12 #
!e1 & e2 & e3 & e4 & e5 & !e6 & !e7 & e8 & e9 & e10 & !e11 & !e12 #
!e1 & e2 & e3 & !e4 & !e5 & !e6 & !e7 & e8 & e9 & e10 & e11 & !e12 #
!e1 & !e2 & e3 & e4 & e5 & !e6 & !e7 & e8 & e9 & e10 & !e11 & !e12 #
!e1 & !e2 & e3 & e4 & e5 & e6 & !e7 & e8 & e9 & e10 & !e11 & !e12 #
e1 & e2 & e3 & !e4 & !e5 & !e6 & !e7 & e8 & e9 & e10 & !e11 & !e12 #
!e1 & !e2 & e3 & e4 & e5 & !e6 & !e7 & !e8 & e9 & e10 & e11 & !e12 #
e1 & e2 & e3 & !e4 & !e5 & !e6 & !e7 & e8 & e9 & e10 & !e11 & !e12 #
!e1 & e2 & e3 & e4 & e5 & !e6 & !e7 & e8 & e9 & e10 & e11 & !e12 #
!e1 & e2 & e3 & e4 & !e5 & !e6 & !e7 & e8 & e9 & !e10 & !e11 & !e12 #
e1 & e2 & e3 & e4 & !e5 & !e6 & !e7 & e8 & e9 & e10 & !e11 & !e12 #
!e1 & e2 & e3 & e4 & e5 & !e6 & !e7 & e8 & e9 & e10 & !e11 & !e12 #
e1 & e2 & e3 & !e4 & !e5 & !e6 & !e7 & e8 & e9 & e10 & !e11 & !e12 #
!e1 & !e2 & e3 & e4 & !e5 & !e6 & !e7 & e8 & e9 & e10 & !e11 & !e12 #
!e1 & e2 & e3 & e4 & e5 & !e6 & !e7 & e8 & e9 & e10 & e11 & !e12 #
e1 & e2 & e3 & !e4 & !e5 & !e6 & !e7 & e8 & e9 & !e10 & !e11 & !e12 #
!e1 & e2 & e3 & e4 & e5 & !e6 & !e7 & e8 & e9 & e10 & !e11 & !e12 #
!e1 & !e2 & e3 & e4 & e5 & !e6 & !e7 & e8 & e9 & e10 & !e11 & !e12;

Minimised

! = NOT
& = AND

Neuron = !Aux1;

Aux1 =
(!e1 & e2 & e3 & e4 & !e5 & !e6 & !e7 & e8 & e9 & !e10 & !e11 & !e12) &
(!e1 & e2 & e3 & !e4 & !e5 & !e6 & !e7 & e8 & e9 & e10 & e11 & !e12) &
(!e1 & !e2 & e3 & e4 & e5 & e6 & e8 & e9 & e10 & !e11 & !e12) &
(!e1 & e2 & e3 & e4 & e5 & !e6 & !e7 & e8 & e9 & e10 & !e12) &
(e1 & e2 & e3 & !e5 & !e6 & !e7 & e8 & e9 & e10 & !e11 & !e12) &
(!e1 & e3 & e4 & e5 & !e6 & !e7 & !e8 & e9 & e10 & e11 & !e12) &
(!e1 & !e2 & e3 & e4 & !e6 & !e7 & e8 & e9 & e10 & !e11 & !e12) &
(e1 & e2 & e3 & !e4 & !e5 & !e6 & !e7 & e8 & !e10 & !e11 & !e12);

12

total pixels. Each one of these 3 EPLDs can implement 80 neurons (8 per class). They have a 3-

bit output per class (30 at all) to inform IC5 the number of neurons per class that could recognise

the presented pattern. IC4 has other 96 inputs, but implements 10 neurons per class (100 neurons

at all) in order to fulfil the 340 neurons of the network. It needs 4 bits per class (40 at all) to

inform IC5 the number of activated neurons per class. IC5 receives 130 bits (30 + 30 + 30 + 40)

carrying information from IC1, IC2, IC3, and IC4. Thus, this EPLD uses other 4 bits to

determine which class of patterns (0, 1, 2, ..., 9) was recognised by the network.

4. Software Implementation of the RAM Model

For some applications where a pre-processing phase is necessary, an integrated circuit

may not be the most appropriated solution. In these cases, a software approach is more flexible

because it permits a better integration with other routines of the system. Then, the description of

the RAM based neural network can be automatically translated into a C language code.

Consequently, the network circuit can be directly executed into the microprocessor ALU

(Arithmetic Logic Unit). This fact decreases the execution time of the algorithm. The advantage

of this technique is the employment of the microprocessor ALU to execute the logic operation

set of the RAM algorithm. Simple logic functions (NOT, AND, and OR) are faster to execute

than complex floating point operations, used by a greater number of neural models.

Tab. 5: C Language Description of a RAM Neuron of the Class “Four”.

Description Neuron of the Class “Four”

C Language

~ = NOT
& = AND

Neuron = ~Aux1;

Aux1 =
(~e1 & e2 & e3 & e4 & ~e5 & ~e6 & ~e7 & e8 & e9 & ~e10 & ~e11 & ~e12) &
(~e1 & e2 & e3 & ~e4 & ~e5 & ~e6 & ~e7 & e8 & e9 & e10 & e11 & ~e12) &
(~e1 & ~e2 & e3 & e4 & e5 & e6 & e8 & e9 & e10 & ~e11 & ~e12) &
(~e1 & e2 & e3 & e4 & e5 & ~e6 & ~e7 & e8 & e9 & e10 & ~e12) &
(e1 & e2 & e3 & ~e5 & ~e6 & ~e7 & e8 & e9 & e10 & ~e11 & ~e12) &
(~e1 & e3 & e4 & e5 & ~e6 & ~e7 & ~e8 & e9 & e10 & e11 & ~e12) &
(~e1 & ~e2 & e3 & e4 & ~e6 & ~e7 & e8 & e9 & e10 & ~e11 & ~e12) &
(e1 & e2 & e3 & ~e4 & ~e5 & ~e6 & ~e7 & e8 & ~e10 & ~e11 & ~e12);

13

Table 5 presents the implementation in C language command lines of the minimised

description of the neuron shown in Table 4. It can be noticed the similarities between these two

representations, that make the conversion easier. VHDL is used because it can suffer a logic

minimisation that reduces processing time and improves software performance.

The C language implementation is not so fast as the EPLD circuit (hardware

implementation is 23,460 times faster than software), but the software implementation is more

flexible and portable. Software speed is not so high due to the serial execution of the logic

operations of the neurons by the microprocessor, that takes many clock cycles in comparison to

the hardware approach, which takes just one. The software solution is, however, many times

faster than other continuos neural networks, like Backpropagation (Freeman, 1992).

Table 6 shows the total processing time of the hardware and software implementations.

During the execution of the ANN algorithm, approximately 435,000 logic operations are

necessary to recognise one character, what means that an average of 128 logic operations have to

be executed per neuron. An INTEL 486 DX 33Mhz, with 8 Mbytes main RAM, 256 Kbytes

cache memory, using Windows 3.1 and the Watcom C/C++ 10.0 compiler, was used to calculate

the total delay of the software implementation. The hardware solution, presented in Figure 3, was

implemented with five 50 MHz ALTERA EPLDs (EPM 7256E - MAX 7000). The total amount

of neurons was partitioned into IC1, IC2, IC3, and IC4, where the neurons and the output

codification process took 40 ns. The comparison process with multiplexers and comparators was

performed in 220 ns by IC5.

5. Conclusions

This article has presented an alternative technique for sizing and implementing RAM based

Boolean neural networks in hardware and software. The main circumstances of sizing and

choosing a RAM architecture for scanned character recognition were shown, as well as their

14

importance to the network recognition level. Some significant problems related to IC neural

network design were discussed and a VHDL based solution was proposed.

The advantages of the VHDL employment are the great facilities of hardware and software

implementation of neural networks. The use of EPLDs allows high speed parallel processing of

RAM neural networks. This fact increases system performance while it permits neural network

appliance on real time image recognition applications. A simplified alternative for network design

is the conversion of the network description into C language command lines. This alternative

allows large dimension RAM implementation to attain high recognition levels since the user can

build a complex network, because it does not have the necessity of storing large binary vectors in

system memory.

In order to implement the above described techniques, the GSN (Goal Seeking Neuron

(Filho et al., 1990)) based neural network fast prototyping system, proposed by the authors in a

recent publication (Simões et al., 1994), was modified to perform sizing, training, and mapping

of RAM based neural networks into logic gates. Thus, the VHDL description of these logic gates

can be developed on an IC design tool, as for example the ALTERA commercial prototyping

system. The high performance of the presented technique in both hardware and software

implementations allows the employment of large RAM architectures in real time applications.

The presented approach makes available to the users of complex the neural networks the great

capacity and training facilities of the RAM model.

6. References

Altera Corporation (1992). MAX+PLUS II - Getting Started, 137.

Tab. 6: Execution Time of Hardware and C Language Implementations.

Type of the Implementation Execution Time
Hardware 260 ns

C Language 6.1 ms

15

Arostegui, J. M. M. (1994). VLSI Architectures for Evolutive Neural Models PhD Thesis,

Universitat Politecnica de Catalunya, Departament d'Enginyeria Electronica, Barcelona, Spain,

134.

Domínguez-Castro, R., A. Rodríguez-Vázques, J. L. Huertas and Sánchez-Sinencio (1992).

Analog Neural Programmable Optimizers in CMOS VLSI Technologies, IEEE Journal of Solid-

State Circuits, 27(7), 1110-1115.

Filho, E. C. D. B., D. L. Bisset and M. C. Fairhurst (1990). A Goal Seeking Neural for Boolean

Neural Networks, Proc. International Neural Network Conference, Paris, France, 2, 894-897.

Filho, E. C. D. B., M. C. Fairhurst, and D. L. Bisset (1992). Analysis of Saturation Problem in

RAM-Based Neural Network, Electronics Letters, 28(4), 345-346.

Freeman, J. (1992). Neural Networks: Algorithms, Application and Programming Techniques,

Computation and Neural System Series, USA, 400.

Lee, B. W. and B. J. Sheu (1992). General-Purpose Neural Chips with Electrically Programmable

Synapses and Gain-Adjustable Neurons, IEEE Journal of Solid-State Circuits, 27(9), 1299-1302.

Lehmann, T. and J. A. Lansner (1993). An Analog CMOS Chip Set for Neural Networks with

Arbitrary Topologies, IEEE Transaction on Neural Networks, 4(3), 441-444.

Lehmann, T. (1994). Hardware Learning in Analogue VLSI Neural Networks, Ph.D. These,

Technical University of Denmark, Lyngby, Denmark, 209.

Mead, C. (1989). Analog VLSI and Neural Systems, Addison-Wesley Publishing Company, 371.

Morie, T. and Y. Amemiya (1994). An All-Analog Expandable Neural Network LSI with On-

Chip Backpropagation Learning, IEEE Journal of Solid-State Circuits, 29(9), 1086-1093.

Myers, C. E. (1992). Delay Learning in Artificial neural Networks, Chapman & Hall, Londres,

157.

16

Rossetto, O., C. Jutten, J. Herault and I. Kreuzer (1989). Analog VLSI Synaptic Matrices as

Building Blocks for Neural Network, IEEE Micro, 9(12), 56-63.

Serrano, T., B. Linares-Barranco and J. L. Huertas (1994). A CMOS VLSI Analog Current-

Mode High-Speed ART1 Chip, Proceedings IEEE International Conference on Neural

Networks, Orlando, 3, 1912-1916.

Simões, E. V., L. F. Uebel and D. C. Barone (1994). Fast Prototyping of Artificial Neural

Network: GSN Digital Implementation, Proceedings IV International Conference on

Microelectronics for Neural Networks and Fuzzy System, Torino, Italy, 192-201.

Uebel, L. F. and D. A. C. Barone (1993). GSN Neural Network in Hardware, ANNES’ 93 - The

First New Zeland International Two-Stream Conference on Artificial Neural Networks and

Expert Systems, Dunedin, New Zeland, 126-129.

Uebel, L. F. Uebel, E. V. Simões and D. A. C. Barone (1995). A Comparision between Three

Different GSN Model Hardware Implementations with the Appliance of an ANN Fast

prototyping System, World Congress on Neural Networks, Washington, USA, in CD-ROM.

Verleysen, M. and P. G. A. Jespers (1989). An Analog Implementation of the Hopfield's Neural

Networks, IEEE Micro, 9(12), 46-55.

Verleysen, M., P.Thissen, J. L. Voz, J. Madrenas (1994). An Analog Processor Architecture for

a Neural Network Classifier, IEEE Micro, 14(3), 16-28.

Woodburn, R., H. M. Reekie and A. F. Murray (1994). Pulse-stream Circuits for On-chip

Learning in Analogue VLSI Neural Networks, Proceedings on IEEE International Symposium on

Circuits and Systems, London, 4, 103-106.

17

List of Figures

Figure 1: Implemented Neural Network Architecture.

Figure 2: Patterns to be Learned by the Implemented Neural Network.

Figure 3: Hardware Implementation of the RAM Neural Network.

18

Figure 1

19

Figure 2

20

24 x 16
pixels

Mail

96 Inputs

96 Inputs

 96 Inputs

96 Inputs

EPM 7256E
MAX 7000

I/O = 128
Macrocells = 256

96 Inputs
30 Outputs

EPM 7256E
MAX 7000

I/O = 160
Macrocells = 256

96 Inputs
40 Outputs

EPM 7256E
MAX 7000

I/O = 128
Macrocells = 256

96 Inputs
30 Outputs

EPM 7256E
MAX 7000

I/O = 128
Macrocells = 256

96 Inputs
30 Outputs

EPM 7256E
MAX 7000

I/O = 160
Macrocells = 256

130 Inputs
10 Outputs

130 Outputs 10 Outputs

IC1 IC2

IC4IC3

IC5

British

Figure 3

