
Predation: an Approach to Improving the Evolution of Real Robots with a
Distributed Evolutionary Controller

E. D. V. Simões* & D. A. C. Barone**

Laboratório de Robótica Inteligente – Instituto de Informática
Federal University of Rio Grande do Sul

Porto Alegre, 91509-900, Brazil
*simoes@ inf.ufrgs.br, **barone@inf.ufrgs.br

ABSTRACT

This article describes the implementation of a
strategy that selects, destroys, and replaces some
individuals of a population of six real autonomous mobile
robots. This strategy was called Predation. We introduce
Predation as a methodology for improving the
performance of an embedded evolutionary system
developed for the automatic design of robotic controllers.
The paper describes how the evolutionary system controls
such a small robot population in real time and the effects
of predation in avoiding local optimum. It is able to
achieve obstacle avoidance behaviour with the robot
population evolving while deployed in the field, instead
of just using the evolving group to develop an optimum
controller for a single robot.

1. INTRODUCTION

In the scope of this paper, the term predation
represents a technique applied to improving the
performance of evolutionary algorithms by destroying
some individuals, which are replaced by random
configurations to bring more diversity to the population.
This technique has been used before in simulation with
promising results [1] [2], but in a different context where
predator and prey co-evolve to avoid or follow each other.
This paper attempts to apply predation for the first time to
a population of six real autonomous mobile robots in a
different way: in analogy to nature, the robot population
can suffer regular attacks of a “predator” that selects the
worst (“weakest”) robot in the specified generation and
destroys (“kills”) it, opening space in the population for
the migration of new individuals, hence bringing more
genetic diversity to the group. This work achieves this by
selecting and substituting, after a specific number of
generations, the robot with the lowest fitness by a robot
with a random configuration (random chromosome).

The predation technique may vary according to
different approaches to select, destroy, and replace the
individuals of a population [3-4]. For example, only one
individual may be selected to be destroyed every time the
virtual predator attacks, or the attack may destroy a group
of individuals. All the individuals of the selected group
may be destroyed, or just a smaller random number of

them. The destroyed individuals may be replaced by
random ones, or by the offspring of the selected breading
parents. The frequency of the attacks is another important
factor, for enough generations must be left undisturbed to
allow the population to recover from the attacks.

2. THE EMBEDDED EVOLUTIONARY SYSTEM

This paper reports the development of a predation
strategy that is able to improve an embedded evolutionary
system, which controls a group (population) of six
autonomous mobile robots. Instead of applying evolution
as a solution finder (the traditional approach), here, the
robot control system is able to face an open-ended
evolution in a mutable environment, since the robots are
constantly being modified by evolution to cope with these
variations.

This work is based on an embedded evolutionary
system described more precisely in [4]. It is able to
achieve obstacle avoidance with a population of six
autonomous mobile robots that evolve while deployed in
the field, instead of just using the evolving group to
develop an optimum controller for a single robot [5]. This
evolutionary system innovates for it can produce not only
a trained robot but also an open-ended evolution,
continuously adapting the robot controllers to cope with a
variable environment [6].

Figure 1 shows how the robot control circuit
interfaces a sensor module, from which it receives the
sensor readings, and commands the motor drive module
on how to drive the motors. Evolution works with the
configuration of the control circuit together with the noise
and uncertainly of the environment to synthesise a
solution that is, most of the time, different than the
expected one, but functional, nevertheless [7].

Sensors Sensor Control
Circuit

Motor
Control

MotorsSensors Sensor
Control

Control Motor Motors

Figure 1 – How the evolvable control circuit fits in the
robot architecture.

Differently from other authors that involve

simulation in some of the evolutionary phases, the term
Evolutionary System is applied in this article to describe

664

an environment where the individuals physically exist and
artificially breed and die, to give place to the next
generation. For that reason, it is not an evolutionary
algorithm, but a real evolutionary system.

Richard Watson et al. [8] and the publication of the
preliminary results of this work [9] in 1999 provided the
first experiments with an Embedded Evolutionary System
with real robots. In this work, evolution takes place fully
on-board of a population of real robots, working
completely independent of external computation or
human intervention. Therefore, it is the physical
implementation of a genetic system containing the robots
as the individuals and a genetic code (bits stored in the
RAM memory of the robots) that specifies the
configuration of their control device, their speed, and
sensor organisation (Morphology). In the scope of this
work, the term morphology is defined as the physical,
embodied characteristics of the robot, such as its
mechanics and sensor organisation. The embedded
evolutionary system evolves both the control circuit and
the morphology of the robots. Figure 2 shows that the
genetic material of the robots can define their control
circuit (the configuration of a Neural Network), and the
position of the sensors and the precise value of motor
velocities.

Control Circuit

! Neural Network
Configuration

Morphological Features

! Precise value of Velocities
– Slow, Medium, Fast

! Selection of Sensors
– Number, Position

Genetic MaterialGenetic Material Robot RAM

Figure 2 – The genetic material defines the control circuit
and the morphological features of the robot.

A relatively simple task that does not involve

explicit robot interaction was chosen: collision-free
navigation [10]. Therefore, the robots are encouraged to
explore the environment while avoiding collisions into the
walls, obstacles, or other robots [11]. Collision-free
navigation may be trivial for simulated robotic domains,
but provides a difficult search space for such a small
population, mainly when both robot control and
morphology are evolved [12].

2.1 THE ROBOTIC POPULATION

The workspace consists of six autonomous mobile
robots working in a 2.50m x 2.50m domain, where they
navigate. Figure 3 shows the six robots in their working
domain. The robot architecture consists of a round 2-

wheeled base (20cm of diameter), containing a Motorola
68HC11 - 2MHz, 128Kb of RAM, bumpers with collision
sensors, and eight peripheral infra-red sensors. A RAM
neural network, consisting of an n-tuple classifier [13]
with 28 x 2-input neurons, implements the evolvable
robot control due to its good redundancy [14]. The
internal architecture is specified by this genetic code at
the control circuit level. This control circuit is
implemented within the on-board microprocessor, capable
to be reconfigured to produce new generations of more
adapted robots. The evolutionary system is not based in
an external computer, but is distributed among the robots
and coexists with their evolvable controller inside the
microprocessor. The distributed evolutionary system of
each robot communicates to the others at 1.2Kbps through
an embedded 418MHz AM radio.

Figure 3 – General view of the six robots and their
working domain.

The neuron contents are directly encoded onto a

linear bit-string genotype containing 112 bits (28 neurons
times 4 bits per neuron). The physical characteristics are
encoded in another 26 bits (10 bits define the speed levels
slow and fast and 2 bits are used to enable or disable each
one of the 8 sensors). These bits are read from the
chromosome in the specified order, the first 112 configure
the neuronal controller (the evolving controller), the
following 10 the motor control module, and the remaining
16 configure the sensor control module (the robot
morphology). The robots work in a cyclic procedure,
where they have a working phase, where they try to
perform the selected task, and a mating phase, where they
reproduce [15]. Figure 4 shows the continuous
evolutionary process where the robots are constantly
adapting to changes at the environment.

According to the selection criteria, the robots that
are more adapted to perform the specified task have more
chance of generating descendants. Therefore, the most
well-adapted robots survive and spread their
characteristics. After many generations, the evolutionary
system is able to produce a majority of well-adapted

665

robots, qualified to work in the environment, and a few
unfit robots.

Working Season Mating SeasonWorking Season

• Task Performing

• Fitness Evaluation
Test the Ability to
Carry out the Task

• Mate Selection
• Chromosome Exchange

• Robots Reconfiguration

Continuous Evolutionary Process

Figure 4 – The continuous evolutionary process.

3. EXPERIMENTS IN SIMULATION

This session presents the experiments that made use
of a simulator to produce data much faster than using real
robots. A simulator was applicable for it provides an ideal
environment, without noise and where the interactions
among the robots can be carefully specified. This
simulated evolution took much of the complexity of the
system away and provided important insights on the
specification of the predation strategy to be used with the
real robots.

The simulator works by artificially generating all
possible sensorial input that a robot can face in its
working season and the response of each evolving
controller is tested for all these situations and fitness is
increased each time the response is correct. Therefore, a
perfect condition is created where the best controller
always produces the highest fitness score. As all evolving
robots are tested for the same conditions, all the noise and
uncertainty of the real environment are abstracted away.
The simulator permits a clear analysis of the influence of
different parameters of the predation strategy. It was built
in Borland C++ and run in a Pentium II 200MHz
computer.

The experiments in simulation preserved the same
small population of six robots. The score of each robot is
initialised with 4100 points and the fitness function
increases it by one each time the controller output is
correct. A total of 256 different situations are evaluated;
therefore, the maximum fitness value possible is 4356
points. The experiment tested different mutation rates that
are indicated in the charts.

It is important to give enough time to the population
so that the attacked robot can recover from the “attack”
and its new genetic material can be incorporated in the
population. If the attacks occur in less than 5 generations,
the attacked robot will not have time to recover and will
always be selected as the worst one in the next attack. The
necessary time for the attacked robot recover depends on

the complexity of the system. In this experiment, the
frequency of the attacks is 20 generations. After each
working season, the robots are selected to breed according
to the selection rule reproduced below:

The robot with the highest fitness survives to the next
generation and breeds with all other robots.

This strategy means that the robot with the highest
fitness will send its chromosome to all other five robots
via the radio. Then each one of the remaining five robots
begin a crossover phase, where they combine their own
chromosome with the one received from the best robot to
produce a resultant offspring. Next, the bits of this
resultant chromosome are randomly selected to be
mutated (logically inverted) according to the selected
mutation rate. Then, the remaining five robots reconfigure
themselves with the mutated chromosome and begin the
next generation. This tries to make sure that in the next
generation the best fitness will be similar to (or higher
than) the present one. At least, the surviving best robot
has the same chances of repeating its good performance.
In the crossover phase, each bit is randomly chosen from
the corresponding location in the chromosome of the
parents. Then, in the mutation phase, a random number is
generated between 0.0 and 100.0 for each bit in the
chromosome, and the bit will be flipped each time the
generated number is smaller than the mutation rate.

3.1. DISCUSSION OF THE RESULTS

The curves presented in Figure 5 show the effects of
the attacks in a robot population that evolved with 0.0%
mutation. After the initial improvement resultant form
combining the population diversity, the system would
stop evolving as shown by the reference curve, where no
predation occurred. However, the new genetic material
produced by the attacks kept the population evolving up
to 4300 points in 300 generations. It can be seen in the
figure that the attacks in generations 40, 60, and 120
created a random robot that, combined with the best
robot, produced a superior configuration that improved
the population performance.

It can be seen in Figure 5 that this strategy improves
the system performance if compared to the evolution of a
population that did not suffer predation. Figure 6 shows
the simulated evolution of four different mutation rates.
With the mutation rate of 1%, it reached 90% of the
maximum performance in 150 generations. The chart
shows that 05% mutation performed worse than 1%, since
05% is not enough to modify at least one of the genes
every generation. The mutation rate of 1% has a higher
chance of modifying only one or two of the genes, and
was better in adjusting a chromosome when most of its
genes are already correct.

666

Mutation Rate = 0.0%

4180

4200

4220

4240

4260

4280

4300

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301
Simulated Generations

Fitness

Predation
NoPredation

Figure 5 – Simulated evolution of the predation strategy
compared to the same experiment without predation.

The predation strategy presented in Figure 6 was
able to improve the performance of the evolutionary
system in simulation. The whole of predation in this
experiment was not to eliminate unfit (weak) robots, since
the fitness of the random configurations that substituted
the destroyed robot was often worse than the original one.
But, even though the resulting random configuration was
worse than the destroyed robot, the new genetic material
that it contained, combined with the chromosome of the
best robot, produced in many occasions a better
performance. Therefore, the whole of predation in this
experiment was to bring more diversity to such a small
population [16].

Different Mutation Rates

4180

4200

4220

4240

4260

4280

4300

4320

4340

1 21 41 61 81 10
1

12
1

14
1

16
1

18
1

20
1

22
1

24
1

26
1

28
1

30
1

32
1

34
1

36
1

38
1

40
1

42
1

44
1

46
1

48
1

50
1

52
1

54
1

56
1

58
1

60
1

Simulated Generations

Fitness

Av05% Best05%
Av1% Best1%
Av15% Best15%

Figure 6 – Simulated evolution of four different mutation
rates. Av is the average fitness of all the robots

and Best is the fitness of the best robot.

The instant of the attacks can be identified in the
charts by the drop of the fitness of the attacked robot,
occurring every 20 generations. This happened because
the resulting fitness of the attacked robot, which is
reconfigured by a random chromosome, is usually worse

than the one that the original robot was producing.
Therefore, the average performance of the population
usually drops after the attacks. Nevertheless, after a few
generations, the new genetic material is filtered by the
selection-crossover operators and incorporated in the
population, often increasing the average performance.

4. EXPERIMENTS WITH REAL ROBOTS

The aim of this experiment is to test the effects of
the predator attack strategy on the real robotic population.
This paper shows for the first time the effects of predation
in an embedded evolutionary system evolving a neural
network controller together with the morphology of the
robot. Both the sensor configuration and the speed of the
motors are under evolutionary control. This experiment
makes use of the most efficient mutation rate and the
selection and reproduction strategies that were developed
in simulation. It incorporates the developed strategy of
predation in an attempt to improve system performance.

In this experiment, the robots were evolved in the
same environment presented in Figure 3. The
evolutionary system is able to manipulate the bits that
control the sensor configuration in the chromosome, plus
the bits that control the robot speed levels, and the bits
that define the contents of the neurons of the neural
network. The number of possible genotypes for the
controller is 2138. However, due to the generalization
ability of the neural network, many of these genotypes
produce the same phenotype. Therefore, the search space
is actually smaller. The neural network is connected to
eight infra-red sensors. Its architecture has four groups of
neurons (discriminators) [13] with seven 2-input neurons,
each neuron containing four bits. Therefore, the neural
network controller provides four commands to drive the
motors: Front Fast (FF); Turn Left (TL); Turn Right (TR);
and Front Slow (FS).

This experiment uses a very simple fitness function
in order to prevent biasing evolution towards a pre-
conceived solution. Rule 3 punishes the robots that keep
turning for more than 15 seconds, encouraging them to
move forward. Rule 4 does not punish the robots that are
turning, for they may be attempting to avoid an obstacle
when the collision occurred. The selected fitness function
for this experiment is:

1- Start with 4096 points;
2- Reward: increase fitness by 10 points every 1 second of

movement;
3- Punishment: decrease fitness by 30 points for every time

command is not FF or FS for more than 15 seconds;
4- Punishment: decrease fitness by 10 points for every collision

if command = FF or FS.

The maximum that a robot can score if it does not
crash during the 60 seconds of the generation is 4696
points. In this experiment, the robot population suffered

667

regular attacks (every 10 generations) of a “predator” that
selected the robot with the lowest fitness in the specified
generation and substituted it by a random one, bringing
more genetic diversity to the group. Mutation was set at
1%.

4.1. DISCUSSION OF THE RESULTS

Figure 7 shows the fitness values of the six evolving
robots. Since this experiment used a non-biasing fitness
function, many different solutions were produced and
evaluated by evolution. An interesting point is that
maximum fitness was obtained from the first generation.
These happened because some robots produced in the first
generations developed a form of wall-following
behaviour, where they tried to stay close to the walls or
obstacles, but keeping a safe distance, so they did not
collide with them. This could produce maximum fitness
in some generations, but as it can be observed in the chart,
one robot could have very distinct performances with the
same controller from one generation to the other. They
could avoid colliding into the walls, but suffered collision
from other robots, so that in some generations their
performance dropped substantially. This configuration
nevertheless spread quickly through the population and a
particular event started to happen when two robots with
this configuration started to walk around each other, each
considering its fellow robot a wall to be followed. They
kept spinning around, crashing upon everything in their
way. This was responsible for the drop in performance
near generation 13. The population ended up converging
to this unstable solution, a local optimum, and could reach
a better configuration only because of a predator attack
that brought in new genetic material.

Real Evolution

3000
3100
3200
3300
3400
3500
3600
3700
3800
3900
4000
4100
4200
4300
4400
4500
4600
4700

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

10
6

11
1

11
6

12
1

12
6

13
1

13
6

14
1

14
6

15
1

15
6

16
1

16
6

17
1

17
6

18
1

18
6

19
1

19
6

20
1

Generation Time: 60 seconds

Fitness

Robot1
Robot2
Robot3
Robot4
Robot5
Robot6

Figure 7 – The population was initialised with a random
controller and morphology.

The third attack of the predator, in generation 30,

resulted in a robot that could for the first time use one

sensor in the front and produced a more steady
performance. This can be observed in the chart, where the
fitness of each robot started to improve. This happened
because, although this configuration did not produce such
high scores as the previous wall-following behaviour, its
average result was more consistent, and the average
fitness of the population increased considerable between
generations 30 and 40.

This experiment illustrated the power of the
developed predation strategy in providing more diversity
when the population was trapped in a local optimum. The
new genetic material it supplied in the first thirty
generations was essential to allow the population to
explore more widely the fitness landscape. The
disadvantage of this strategy is that it never allowed the
average of the population fitness to reach the maximum
score, since a random robot was introduced every 10
generations, causing the performance of the population to
drop.

As the number and position of the sensors and the
speed levels of the motors are under evolutionary control,
not only the control circuit is produced, but also the
physical characteristics of the robots can change into
different configurations according to the complexity of
the environment. In addition, the designer can fix the
number of sensors, for example, and let evolution decide
where they should be placed. The most successful
configurations according to the sensor positions that were
observed in the experiments are:

a) Configuration 1 – One sensor in the front;
b) Configuration 2 – Two sensors, one in the front

and a lateral one;
c) Configuration 3 – Three sensors, one in the front

and one in each side of the robot.

It was observed that, in a simple environment
containing few obstacles, all three configurations coexist
“peacefully”, because it does not present enough selection
pressure and the fitness of all three configurations are
roughly the same after a short working season (short
evaluation time). The longer the lifetime though, the
greater the number of opportunities to distinguish
between a more efficient configuration and an ordinary
one and the robots with more sensors positioned in the
right places are more likely to succeed. When more
obstacles are added and the environment becomes more
complex, the competition is tougher and the
configurations with more resources gradually lead the
less-adapted ones to “extinction” from the population.

5. CONCLUSION

Predation is a powerful strategy to prevent the
population from getting stuck into local optimum, since it
introduces new genetic material that may help the

668

population to crawl down the slope and explore new
possibilities in the fitness landscape [18]. Getting stuck in
local optimum is an intrinsic problem of most real
evolutionary systems, once it is very difficult, and some
times impossible, to know from the point of view of the
evolving individuals if the population can be improved
even more, or if the optimal solution was actually
achieved. With the developed predation strategy, the
population can count with a steady supply of new genetic
material to bring in more diversity, even after it
completely converged to a local optimum.

The results obtained with the help of the simulator
were essential in providing vital insights on developing
new strategies, such as predation, that improved
considerably the performance of the system. The
simulator also made possible rapid evaluation of different
parameters such as different mutation rates, reproduction
and selection strategies.

The developed evolutionary system, helped by
predation, succeeded in evolving the real robots,
initialised with random controllers and morphologies. The
experiments demonstrated that this embedded
evolutionary system was able to successfully evolve a
neural network controller together with the morphology
of the robots in real time in the real world. It produced a
satisfactory collision-free behaviour in average after 200
generations of 60 seconds.

6. REFERENCES

[1] Nolfi, S. and Floreano, D., “Co-evolving predator and

prey robots: Do 'arm races' arise in artificial evolution?”
Artificial Life, v. 4, n. 4, pp. 311-335, 1998.

[2] Chainbi, W., Hanachi, C., and Sibertin-Blanc, C.,
“The multiagent prey-predator problem: A petri net
solution. In Proceedings of the IMACS-IEEESMC
Conference on Computational Engineering in Systems
ApplicationLille, France, July 1996, pp. 692-697, 1996.

[3] Hartono, P.. and Hashimoto, S., "Migrational GA that
Preserves Solutions in Non-Static Optimization
Problems", In IEEE International Conference on
Systems, Man and Cybernetics, Tucson-AZ, USA,
October, 2001, pp. 255-260, ISBN 0-7803-7089-9.

[4] Simões, E. D. V. and Dimond, K. R., "Embedding a
Distributed Evolutionary System into a Population of
Autonomous Mobile Robots", In IEEE International
Conference on Systems, Man and Cybernetics, Tucson-
AZ, USA, October, 2001, pp. 1069-1074, ISBN 0-7803-
7089-9., 2001.

[5] Floreano, D. and Mondada, F., "Hardware Solutions
for Evolutionary Robotics", In: P.Husbands and J-
A.Meyer, editors, Proceedings of the first European
Workshop on Evolutionary Robotics. Springer Verlag,
Berlin, pp. 137-151, 1998.

[6] Jakobi, N. and Quinn, M., "Some problems (and a few
solutions) for open-ended evolutionary robotics", In:

Proceedings of the First European Workshop on
Evolutionary Robotics: EvoRobot’98, P Husbands and
J-A Meyer (eds) Springer Verlag, 15p., 1998.

[7] Thompson, A. and Layzell, P., "Analysis of
unconventional evolved electronics", Communications
of the Association of Computing Machinery, v. 42, n. 4,
Yao, X. (Ed.), pp. 71-79, 1999.

[8] Watson, R. A., Ficici, S. G., and Pollack, J. B.,
"Embodied evolution: Embodying an evolutionary
algorithm in a population of robots", In Angeline, P.,
Michalewicz, Z., Schoenauer, M., Yao, X., and Zalzala,
A., editors, Congress on Evolutionary Computation, pp.
335 - 342. IEEE Press, 1999.

[9] Simões, E. D. V. and Dimond, K. R., "An
Evolutionary Controller for Autonomous Multi-Robot
Systems", In IEEE International Conference on
Systems, Man and Cybernetics, Tokyo, Japan, October,
1999, v.6, pp. VI596-VI601, 1999, Invited Paper.

[10] Chavas, J., Corne, C., Horvai, P., Kodjabachian, J.,
and Meyer, J. A., "Incremental Evolution of Neural
Controllers for Robust Obstacle-Avoidance in
Khepera", Proceedings of the First European Workshop
on Evolutionary Robotics - EvoRobot'98, Apr. 1998,
Paris, France, Husbands, P. and Meyer, J. A. (Eds.),
Publisher: Springer Verlag, pp. 227-247, 1998.

[11] Seth A. K., "Interaction, uncertainty, and the
evolution of complexity", Proceedings of the Fourth
European Conference on Artificial Life, Husbands, P.
and Harvey, I. (Eds.), MIT Press, pp. 521-530, 1997.

[12] Pollack, J. B., Lipson, H., Ficici, S. G., Funes, P.,
Hornby, G. S., and Watson, R. A., "Evolutionary
Techniques in Physical Robotics", Proceedings of the
Third International Conference on Evolvable Systems -
ICES 2000: From Biology to Hardware, Publisher:
Springer , pp. 175-186, 2000.

[13] Rohwer, R. and Morciniec, M., “A theoretical and
experimental account of n-tuple classifier
performance”, Neural Computation, v. 8, pp. 629-642,
1996.

[14] Ludermir, T., Carvalho, A., Brage, A., and Souto,
M., "Weightless neural models: a review of current and
past works", In Neural Computing Surveys, v. 2, pp. 41-
61, 1999.

[15] Bäck, T., “On the behavior of evolutionary
algorithms in dynamic environments”, In D. B. Fogel,
H. P. Schwefel, Th. Bäck, and X. Yao, editors, Proc.
Second IEEE World Congress on Computational
Intelligence (WCCI'98), Anchorage AK, May 4-9, IEEE
Press, v. 1, pp. 446-451, 1998.

[16] Ficici, S. G. and Pollack, J. B., "Effects of Finite
Populations on Evolutionary Stable Strategies",
Proceedings of the 2000 Genetic and Evolutionary
Computation Conference, Las Vegas, Nevada, USA,
Whitley, L. D., Goldberg, D., Cantu-Paz, E. et. al.
(Eds.), Publisher: Morgan-Kaufmann, ISBN: 1-55860-
708-0, pp. 927-934, 2000

669

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	footer:
	header:

