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ABSTRACT 
 

This article describes the implementation of a 
strategy that selects, destroys, and replaces some 
individuals of a population of six real autonomous mobile 
robots. This strategy was called Predation. We introduce 
Predation as a methodology for improving the 
performance of an embedded evolutionary system 
developed for the automatic design of robotic controllers. 
The paper describes how the evolutionary system controls 
such a small robot population in real time and the effects 
of predation in avoiding local optimum. It is able to 
achieve obstacle avoidance behaviour with the robot 
population evolving while deployed in the field, instead 
of just using the evolving group to develop an optimum 
controller for a single robot. 
 

1. INTRODUCTION 
 

In the scope of this paper, the term predation 
represents a technique applied to improving the 
performance of evolutionary algorithms by destroying 
some individuals, which are replaced by random 
configurations to bring more diversity to the population. 
This technique has been used before in simulation with 
promising results [1] [2], but in a different context where 
predator and prey co-evolve to avoid or follow each other. 
This paper attempts to apply predation for the first time to 
a population of six real autonomous mobile robots in a 
different way: in analogy to nature, the robot population 
can suffer regular attacks of a “predator” that selects the 
worst (“weakest”) robot in the specified generation and 
destroys (“kills”) it, opening space in the population for 
the migration of new individuals, hence bringing more 
genetic diversity to the group. This work achieves this by 
selecting and substituting, after a specific number of 
generations, the robot with the lowest fitness by a robot 
with a random configuration (random chromosome). 

The predation technique may vary according to 
different approaches to select, destroy, and replace the 
individuals of a population [3-4]. For example, only one 
individual may be selected to be destroyed every time the 
virtual predator attacks, or the attack may destroy a group 
of individuals. All the individuals of the selected group 
may be destroyed, or just a smaller random number of 

them. The destroyed individuals may be replaced by 
random ones, or by the offspring of the selected breading 
parents. The frequency of the attacks is another important 
factor, for enough generations must be left undisturbed to 
allow the population to recover from the attacks. 
 

2. THE EMBEDDED EVOLUTIONARY SYSTEM 
 

This paper reports the development of a predation 
strategy that is able to improve an embedded evolutionary 
system, which controls a group (population) of six 
autonomous mobile robots. Instead of applying evolution 
as a solution finder (the traditional approach), here, the 
robot control system is able to face an open-ended 
evolution in a mutable environment, since the robots are 
constantly being modified by evolution to cope with these 
variations. 

This work is based on an embedded evolutionary 
system described more precisely in [4]. It is able to 
achieve obstacle avoidance with a population of six 
autonomous mobile robots that evolve while deployed in 
the field, instead of just using the evolving group to 
develop an optimum controller for a single robot [5]. This 
evolutionary system innovates for it can produce not only 
a trained robot but also an open-ended evolution, 
continuously adapting the robot controllers to cope with a 
variable environment [6].  

Figure 1 shows how the robot control circuit 
interfaces a sensor module, from which it receives the 
sensor readings, and commands the motor drive module 
on how to drive the motors. Evolution works with the 
configuration of the control circuit together with the noise 
and uncertainly of the environment to synthesise a 
solution that is, most of the time, different than the 
expected one, but functional, nevertheless [7]. 
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Figure 1 – How the evolvable control circuit fits in the 
robot architecture. 

 
Differently from other authors that involve 

simulation in some of the evolutionary phases, the term 
Evolutionary System is applied in this article to describe 
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an environment where the individuals physically exist and 
artificially breed and die, to give place to the next 
generation. For that reason, it is not an evolutionary 
algorithm, but a real evolutionary system. 

Richard Watson et al. [8] and the publication of the 
preliminary results of this work [9] in 1999 provided the 
first experiments with an Embedded Evolutionary System 
with real robots. In this work, evolution takes place fully 
on-board of a population of real robots, working 
completely independent of external computation or 
human intervention. Therefore, it is the physical 
implementation of a genetic system containing the robots 
as the individuals and a genetic code (bits stored in the 
RAM memory of the robots) that specifies the 
configuration of their control device, their speed, and 
sensor organisation (Morphology). In the scope of this 
work, the term morphology is defined as the physical, 
embodied characteristics of the robot, such as its 
mechanics and sensor organisation. The embedded 
evolutionary system evolves both the control circuit and 
the morphology of the robots. Figure 2 shows that the 
genetic material of the robots can define their control 
circuit (the configuration of a Neural Network), and the 
position of the sensors and the precise value of motor 
velocities. 
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! Selection of Sensors
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Genetic MaterialGenetic Material Robot RAM

 

Figure 2 – The genetic material defines the control circuit 
and the morphological features of the robot. 

 
A relatively simple task that does not involve 

explicit robot interaction was chosen: collision-free 
navigation [10]. Therefore, the robots are encouraged to 
explore the environment while avoiding collisions into the 
walls, obstacles, or other robots [11]. Collision-free 
navigation may be trivial for simulated robotic domains, 
but provides a difficult search space for such a small 
population, mainly when both robot control and 
morphology are evolved [12]. 
 
2.1 THE ROBOTIC POPULATION 
 

The workspace consists of six autonomous mobile 
robots working in a 2.50m x 2.50m domain, where they 
navigate. Figure 3 shows the six robots in their working 
domain. The robot architecture consists of a round 2-

wheeled base (20cm of diameter), containing a Motorola 
68HC11 - 2MHz, 128Kb of RAM, bumpers with collision 
sensors, and eight peripheral infra-red sensors. A RAM 
neural network, consisting of an n-tuple classifier [13] 
with 28 x 2-input neurons, implements the evolvable 
robot control due to its good redundancy [14]. The 
internal architecture is specified by this genetic code at 
the control circuit level. This control circuit is 
implemented within the on-board microprocessor, capable 
to be reconfigured to produce new generations of more 
adapted robots. The evolutionary system is not based in 
an external computer, but is distributed among the robots 
and coexists with their evolvable controller inside the 
microprocessor. The distributed evolutionary system of 
each robot communicates to the others at 1.2Kbps through 
an embedded 418MHz AM radio. 
 

 
 

Figure 3 – General view of the six robots and their 
working domain. 

 
The neuron contents are directly encoded onto a 

linear bit-string genotype containing 112 bits (28 neurons 
times 4 bits per neuron). The physical characteristics are 
encoded in another 26 bits (10 bits define the speed levels 
slow and fast and 2 bits are used to enable or disable each 
one of the 8 sensors). These bits are read from the 
chromosome in the specified order, the first 112 configure 
the neuronal controller (the evolving controller), the 
following 10 the motor control module, and the remaining 
16 configure the sensor control module (the robot 
morphology). The robots work in a cyclic procedure, 
where they have a working phase, where they try to 
perform the selected task, and a mating phase, where they 
reproduce [15]. Figure 4 shows the continuous 
evolutionary process where the robots are constantly 
adapting to changes at the environment.  

According to the selection criteria, the robots that 
are more adapted to perform the specified task have more 
chance of generating descendants. Therefore, the most 
well-adapted robots survive and spread their 
characteristics. After many generations, the evolutionary 
system is able to produce a majority of well-adapted 
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robots, qualified to work in the environment, and a few 
unfit robots. 

 

Working Season Mating SeasonWorking Season

• Task Performing

• Fitness Evaluation
Test the Ability to
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• Mate Selection
• Chromosome Exchange

• Robots Reconfiguration

Continuous Evolutionary Process

 
 

Figure 4 – The continuous evolutionary process.  
 

 

3. EXPERIMENTS IN SIMULATION 
 

This session presents the experiments that made use 
of a simulator to produce data much faster than using real 
robots. A simulator was applicable for it provides an ideal 
environment, without noise and where the interactions 
among the robots can be carefully specified. This 
simulated evolution took much of the complexity of the 
system away and provided important insights on the 
specification of the predation strategy to be used with the 
real robots. 

The simulator works by artificially generating all 
possible sensorial input that a robot can face in its 
working season and the response of each evolving 
controller is tested for all these situations and fitness is 
increased each time the response is correct. Therefore, a 
perfect condition is created where the best controller 
always produces the highest fitness score. As all evolving 
robots are tested for the same conditions, all the noise and 
uncertainty of the real environment are abstracted away. 
The simulator permits a clear analysis of the influence of 
different parameters of the predation strategy. It was built 
in Borland C++ and run in a Pentium II 200MHz 
computer. 

The experiments in simulation preserved the same 
small population of six robots. The score of each robot is 
initialised with 4100 points and the fitness function 
increases it by one each time the controller output is 
correct. A total of 256 different situations are evaluated; 
therefore, the maximum fitness value possible is 4356 
points. The experiment tested different mutation rates that 
are indicated in the charts. 

It is important to give enough time to the population 
so that the attacked robot can recover from the “attack” 
and its new genetic material can be incorporated in the 
population. If the attacks occur in less than 5 generations, 
the attacked robot will not have time to recover and will 
always be selected as the worst one in the next attack. The 
necessary time for the attacked robot recover depends on 

the complexity of the system. In this experiment, the 
frequency of the attacks is 20 generations. After each 
working season, the robots are selected to breed according 
to the selection rule reproduced below: 
 

The robot with the highest fitness survives to the next 
generation and breeds with all other robots. 
 

This strategy means that the robot with the highest 
fitness will send its chromosome to all other five robots 
via the radio. Then each one of the remaining five robots 
begin a crossover phase, where they combine their own 
chromosome with the one received from the best robot to 
produce a resultant offspring. Next, the bits of this 
resultant chromosome are randomly selected to be 
mutated (logically inverted) according to the selected 
mutation rate. Then, the remaining five robots reconfigure 
themselves with the mutated chromosome and begin the 
next generation. This tries to make sure that in the next 
generation the best fitness will be similar to (or higher 
than) the present one. At least, the surviving best robot 
has the same chances of repeating its good performance. 
In the crossover phase, each bit is randomly chosen from 
the corresponding location in the chromosome of the 
parents. Then, in the mutation phase, a random number is 
generated between 0.0 and 100.0 for each bit in the 
chromosome, and the bit will be flipped each time the 
generated number is smaller than the mutation rate. 
 
3.1. DISCUSSION OF THE RESULTS 
 

The curves presented in Figure 5 show the effects of 
the attacks in a robot population that evolved with 0.0% 
mutation. After the initial improvement resultant form 
combining the population diversity, the system would 
stop evolving as shown by the reference curve, where no 
predation occurred. However, the new genetic material 
produced by the attacks kept the population evolving up 
to 4300 points in 300 generations. It can be seen in the 
figure that the attacks in generations 40, 60, and 120 
created a random robot that, combined with the best 
robot, produced a superior configuration that improved 
the population performance. 

It can be seen in Figure 5 that this strategy improves 
the system performance if compared to the evolution of a 
population that did not suffer predation. Figure 6 shows 
the simulated evolution of four different mutation rates. 
With the mutation rate of 1%, it reached 90% of the 
maximum performance in 150 generations. The chart 
shows that 05% mutation performed worse than 1%, since 
05% is not enough to modify at least one of the genes 
every generation. The mutation rate of 1% has a higher 
chance of modifying only one or two of the genes, and 
was better in adjusting a chromosome when most of its 
genes are already correct. 
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Figure 5 – Simulated evolution of the predation strategy 
compared to the same experiment without predation.  
 

The predation strategy presented in Figure 6 was 
able to improve the performance of the evolutionary 
system in simulation. The whole of predation in this 
experiment was not to eliminate unfit (weak) robots, since 
the fitness of the random configurations that substituted 
the destroyed robot was often worse than the original one. 
But, even though the resulting random configuration was 
worse than the destroyed robot, the new genetic material 
that it contained, combined with the chromosome of the 
best robot, produced in many occasions a better 
performance. Therefore, the whole of predation in this 
experiment was to bring more diversity to such a small 
population [16]. 
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Figure 6 – Simulated evolution of four different mutation 
rates. Av is the average fitness of all the robots  

and Best is the fitness of the best robot.  
 

The instant of the attacks can be identified in the 
charts by the drop of the fitness of the attacked robot, 
occurring every 20 generations. This happened because 
the resulting fitness of the attacked robot, which is 
reconfigured by a random chromosome, is usually worse 

than the one that the original robot was producing. 
Therefore, the average performance of the population 
usually drops after the attacks. Nevertheless, after a few 
generations, the new genetic material is filtered by the 
selection-crossover operators and incorporated in the 
population, often increasing the average performance. 
 

4. EXPERIMENTS WITH REAL ROBOTS 
 

The aim of this experiment is to test the effects of 
the predator attack strategy on the real robotic population. 
This paper shows for the first time the effects of predation 
in an embedded evolutionary system evolving a neural 
network controller together with the morphology of the 
robot. Both the sensor configuration and the speed of the 
motors are under evolutionary control. This experiment 
makes use of the most efficient mutation rate and the 
selection and reproduction strategies that were developed 
in simulation. It incorporates the developed strategy of 
predation in an attempt to improve system performance. 

In this experiment, the robots were evolved in the 
same environment presented in Figure 3. The 
evolutionary system is able to manipulate the bits that 
control the sensor configuration in the chromosome, plus 
the bits that control the robot speed levels, and the bits 
that define the contents of the neurons of the neural 
network. The number of possible genotypes for the 
controller is 2138. However, due to the generalization 
ability of the neural network, many of these genotypes 
produce the same phenotype. Therefore, the search space 
is actually smaller. The neural network is connected to 
eight infra-red sensors. Its architecture has four groups of 
neurons (discriminators) [13] with seven 2-input neurons, 
each neuron containing four bits. Therefore, the neural 
network controller provides four commands to drive the 
motors: Front Fast (FF); Turn Left (TL); Turn Right (TR); 
and Front Slow (FS). 

This experiment uses a very simple fitness function 
in order to prevent biasing evolution towards a pre-
conceived solution. Rule 3 punishes the robots that keep 
turning for more than 15 seconds, encouraging them to 
move forward. Rule 4 does not punish the robots that are 
turning, for they may be attempting to avoid an obstacle 
when the collision occurred. The selected fitness function 
for this experiment is:  
 
1-  Start with 4096 points;  
2-  Reward: increase fitness by 10 points every 1 second of 

movement;  
3-  Punishment: decrease fitness by 30 points for every time 

command is not FF or FS for more than 15 seconds;  
4-  Punishment: decrease fitness by 10 points for every collision 

if command = FF or FS.  
 

The maximum that a robot can score if it does not 
crash during the 60 seconds of the generation is 4696 
points. In this experiment, the robot population suffered 
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regular attacks (every 10 generations) of a “predator” that 
selected the robot with the lowest fitness in the specified 
generation and substituted it by a random one, bringing 
more genetic diversity to the group. Mutation was set at 
1%. 
 
4.1. DISCUSSION OF THE RESULTS 
 

Figure 7 shows the fitness values of the six evolving 
robots. Since this experiment used a non-biasing fitness 
function, many different solutions were produced and 
evaluated by evolution. An interesting point is that 
maximum fitness was obtained from the first generation. 
These happened because some robots produced in the first 
generations developed a form of wall-following 
behaviour, where they tried to stay close to the walls or 
obstacles, but keeping a safe distance, so they did not 
collide with them. This could produce maximum fitness 
in some generations, but as it can be observed in the chart, 
one robot could have very distinct performances with the 
same controller from one generation to the other. They 
could avoid colliding into the walls, but suffered collision 
from other robots, so that in some generations their 
performance dropped substantially. This configuration 
nevertheless spread quickly through the population and a 
particular event started to happen when two robots with 
this configuration started to walk around each other, each 
considering its fellow robot a wall to be followed. They 
kept spinning around, crashing upon everything in their 
way. This was responsible for the drop in performance 
near generation 13. The population ended up converging 
to this unstable solution, a local optimum, and could reach 
a better configuration only because of a predator attack 
that brought in new genetic material. 
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Figure 7 – The population was initialised with a random 
controller and morphology.  

 
The third attack of the predator, in generation 30, 

resulted in a robot that could for the first time use one 

sensor in the front and produced a more steady 
performance. This can be observed in the chart, where the 
fitness of each robot started to improve. This happened 
because, although this configuration did not produce such 
high scores as the previous wall-following behaviour, its 
average result was more consistent, and the average 
fitness of the population increased considerable between 
generations 30 and 40. 

This experiment illustrated the power of the 
developed predation strategy in providing more diversity 
when the population was trapped in a local optimum. The 
new genetic material it supplied in the first thirty 
generations was essential to allow the population to 
explore more widely the fitness landscape. The 
disadvantage of this strategy is that it never allowed the 
average of the population fitness to reach the maximum 
score, since a random robot was introduced every 10 
generations, causing the performance of the population to 
drop. 

As the number and position of the sensors and the 
speed levels of the motors are under evolutionary control, 
not only the control circuit is produced, but also the 
physical characteristics of the robots can change into 
different configurations according to the complexity of 
the environment. In addition, the designer can fix the 
number of sensors, for example, and let evolution decide 
where they should be placed. The most successful 
configurations according to the sensor positions that were 
observed in the experiments are:  
 

a) Configuration 1 – One sensor in the front; 
b) Configuration 2 – Two sensors, one in the front 

and a lateral one; 
c) Configuration 3 – Three sensors, one in the front 

and one in each side of the robot. 
 

It was observed that, in a simple environment 
containing few obstacles, all three configurations coexist 
“peacefully”, because it does not present enough selection 
pressure and the fitness of all three configurations are 
roughly the same after a short working season (short 
evaluation time). The longer the lifetime though, the 
greater the number of opportunities to distinguish 
between a more efficient configuration and an ordinary 
one and the robots with more sensors positioned in the 
right places are more likely to succeed. When more 
obstacles are added and the environment becomes more 
complex, the competition is tougher and the 
configurations with more resources gradually lead the 
less-adapted ones to “extinction” from the population. 
 

5. CONCLUSION 
 

Predation is a powerful strategy to prevent the 
population from getting stuck into local optimum, since it 
introduces new genetic material that may help the 
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population to crawl down the slope and explore new 
possibilities in the fitness landscape [18]. Getting stuck in 
local optimum is an intrinsic problem of most real 
evolutionary systems, once it is very difficult, and some 
times impossible, to know from the point of view of the 
evolving individuals if the population can be improved 
even more, or if the optimal solution was actually 
achieved. With the developed predation strategy, the 
population can count with a steady supply of new genetic 
material to bring in more diversity, even after it 
completely converged to a local optimum. 

The results obtained with the help of the simulator 
were essential in providing vital insights on developing 
new strategies, such as predation, that improved 
considerably the performance of the system. The 
simulator also made possible rapid evaluation of different 
parameters such as different mutation rates, reproduction 
and selection strategies. 

The developed evolutionary system, helped by 
predation, succeeded in evolving the real robots, 
initialised with random controllers and morphologies. The 
experiments demonstrated that this embedded 
evolutionary system was able to successfully evolve a 
neural network controller together with the morphology 
of the robots in real time in the real world. It produced a 
satisfactory collision-free behaviour in average after 200 
generations of 60 seconds. 
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