A Pattern Language for                       Business Resource Management 
	Rosana T. Vaccare Braga

ICMC-Universidade de São Paulo 

C. P. 668, 13560-970 

 São Carlos – SP - Brazil

rtvb@icmc.sc.usp.br
	Fernão S. R. Germano

ICMC-Universidade de São Paulo

 fernao@icmc.sc.usp.br


	Paulo Cesar Masiero

ICMC-Universidade de São Paulo

masiero@icmc.sc.usp.br


	ABSTRACT
	We present a pattern language to deal with Business Resource Management that covers a great number of applications in business systems, including patterns for resource rental, trading and maintenance. The language was designed based on practical experience in information systems development. We have applied existing recurring patterns to form the fifteen patterns of our language, which were instantiated to the business resource management domain. The idea is to make the language as complete as possible, so that it is useful for the analysis of a wide variety of applications in this domain. UML is used to show the structure of each pattern. We apply the pattern language to a practical case and show the resulting analysis class model.

Keywords: analysis patterns, pattern languages, business systems,  business resources


1 
Introduction

Several generic patterns, useful for information systems development, have been proposed recently, as, for example, Type-Object [9], Association-Object [1], Specific-Item-Transaction, Transaction-Transaction Line Item, and Item-Specific Item [3]. These recurring patterns can be used in a wide range of information systems’ applications across different domains. 

Boyd presents a set of  business patterns that have large flexibility to deal with that domain [1]. Fowler  presents patterns for accountability and for trading [7]. Their treatment of the proposed patterns is solidly based on their professional experience. Johnson proposes the Type-Object pattern using a model treatment that makes the ideas around it very clear [9]. This treatment can be used as a guide for those that write patterns. Coad presents a number of patterns useful to deal with analysis of object-oriented business situations [2]. He continues his work with less formal patterns to be applied according to a set of strategies [3].

Integration of design patterns to form pattern languages is considered by Schmidt, Fayad, and Johnson a challenging and time-consuming activity [12], but provides the greatest payoff for pattern based software development. Pattern languages in different domains have been presented. For example, Cunningham [5] presents a pattern language to help checking input data, so that the possible lower number of invalid data is logged. Roberts [11] presents a pattern language that guides the development of object-oriented frameworks.

We present a pattern language to deal with business resource management applications, which is a particular domain in information systems. This pattern language results from an evolution of more than ten years of systems development practice for medium and small business in this domain. The similarities among these systems made it worth thinking about a pattern language that systems’ analysts could use during development. The pattern language here presented, called Business Resource Management Pattern Language, is an evolution of a preliminary version, workshopped at the Pattern Languages of Programs Conference [8]. It is composed of several patterns, some of which are specific applications of the recurring patterns mentioned above. In fact, our pattern language stays on a higher abstraction level than those patterns ( it is applicable to a more specific domain, and it contains the semantics value inherent to a family of applications in the domain. It provides inexperienced developers with substantial material to develop new systems, because it guides them during system analysis, providing alternative solutions as necessary.

This paper is organized as follows. In  Section 2 the pattern language is described in detail. In Section 3 it is applied to a car repair shop system. In Section 4 the patterns that form the pattern language are each related to patterns described in the literature. In Section 5 concluding remarks are presented.

2  The Business Resource Management  Pattern Language

The Business Resource Management Pattern Language – GRN
 – was designed to help software engineers to develop applications that deal with business resource management; more specifically, applications in which business transactions such as resource rental, trade or maintenance need to be logged. By transaction we mean the same as Coad [3]: “a significant event to be remembered, i.e., an event that the system must remember through time”. Resource rental focuses primarily on the satisfaction of a certain temporary need of a product or service like a videotape or a physician time. Resource trade focuses on the transference of property of a product, as for example a product sale or auction. Resource maintenance focuses on the maintenance of a certain product, using labor and parts to perform it, as in an electric appliance repair shop.

GRN is formed by fifteen patterns. Their use is elective in many cases, according to the characteristics of the application. Figure 1 shows the dependencies among the patterns and the order in which they are generally applied. These dependencies are also presented, and eventually complemented, within each specific pattern. The main patterns in the language are Rent the Resource, Trade the Resource, and Maintain the Resource, indicated by a thicker line. Their use is not mutually exclusive and, in fact, there are applications in which they can fit together. Maintain the Resource may use Rent the Resource and Trade the Resource, as in a car repair shop system, in which parts are traded and labor is rented.

The first pattern to be applied is Identify the Resource. Patterns Itemize the Resource Transaction, Pay for the Resource Transaction, and Identify the Transaction Executor are shown within a box denoting that they are applicable to all situations where there is an arrow ending at its border. The arrow without source ending at pattern 11 means that it is the first pattern to be verified, followed by patterns 12 and 13. 

The patterns are grouped according to their purpose, as illustrated in Figure 1: section 2.1 patterns are basically concerned with the identification of the business resources; section 2.2 patterns deal with the business transactions performed by the system; and section 2.3 patterns take care of details associated to most business transactions. The notation used to express the patterns is UML (Unified Modeling Language) [6]. For each pattern, an example of its instantiation is provided, in which new attributes may be added according to the specific application. Basic class methods to create an object, to set and get attribute values, to add and remove object connections, to find a specific object and to delete objects are not shown in the class models, as they would add more complexity to these diagrams with little gain in model effectiveness [3, 10]. Instead, we assume that these methods are always present in each class.

According to Larman [10], each system operation should be assigned to one of the following classes: i) to that which represents the overall system; ii) to that which represents the overall business or organization; iii) to that which represents something in the real world that is active and might be involved in the operation; or iv) to that which represents an artificial handler of all system events of a use case. We have chosen the third alternative, i.e., to assign system operations to the class that best fits the operation functionality. Coleman et. al. call this class the operation controller [4]. Other authors, such as Coad et al and Fowler [3, 7], do not include operations in their class diagrams – only methods are represented
. Actually, system operations are more than methods, as they are executed in response to system events that occur in the real world. Their functionality is implemented by calling several methods of possibly several different classes. In this paper, we distinguish between two types of operations, placing a marker before their names: we use “?” for input operations that change the internal state of the system, and “!” for output operations, which generate system outputs without changing the system’s state.

Furthermore, a “*” before a method name means that its call message is sent to a collection of objects, instead of to a single instance. We have avoided to add a container class to deal with this situation, because it would introduce design and implementation issues in the analysis phase.

2.1 Business Resource Identification

This section contains three patterns that concerns the business resources identification, quantification and (possible) storage.

2.1.1 Pattern 1: Identify the Resource
Context

Your business system deals with one or more of the following transactions: orders, sales, purchases, locations, rentals, assignments, reservations, repairs, or maintenances. These transactions refer to business resources managed by specific systems such as products in a store, videotapes in a rental shop, books in a library, physician time in a medical clinic, or cars in a mechanical repair shop.

[image: image1.wmf]Q

UANTIFY THE 

R

ESOURCE 

(2)

RESERVE THE

R

ESOURCE  

(5)

R

ENT THE 

R

ESOURCE

 (4)

T

RADE THE 

R

ESOURCE  

(6)

C

HECK 

R

ESOURCE

D

ELIVERY 

(8)

M

AINTAIN THE 

R

ESOURCE

 (9)

P

AY FOR THE 

R

ESOURCE

T

RANSACTION  

(12

)

I

TEMIZE THE 

R

ESOURCE

T

RANSACTION  

(11)

I

DENTIFY THE 

T

RANSACTION

E

XECUTOR 

(13)

Q

UOTE THE

T

RADE 

(7)

Q

UOTE THE

M

AINTENANCE  

(10)

I

DENTIFY 

M

AINTENANCE

T

ASKS 

(14)

I

DENTIFY 

M

AINTENANCE

P

ARTS 

(15)

I

DENTIFY THE 

R

ESOURCE 

(1)

Section

2.2

Business

Transactions

Section

2.1

Business

Resource

Identification

Section

2.3

Business

Transaction

Details

S

TORE THE 

R

ESOURCE 

(3)


Figure 1: Dependencies among patterns
Problem

How do you represent the business resources involved in the transactions processed by the system?

Forces

· Business resources usually have common attributes or qualities. Keeping information about each particular resource is important for the organization that manages these resources.

· Business resources are often classified into categories. In a video rental shop, for example, videos may be grouped into categories like “Adventure”, “Suspense”, “Romance”, “Comedy”, etc. This qualification is useful for obtaining meaningful reports as, for instance, which type of video is preferred by customers and deserves more investment in acquisition. This categorization may be done by adding an attribute to the resource class so that the resource type is considered an attribute of the resource. This approach works well when the category is simply a group description without relevant behavior of its own.

· When there are common attributes and methods inherent to a group delimited by this attribute, separation into two classes is justified. The space necessary to keep these attributes for each resource and the redundancy obtained is undesirable. However, separation may increase processing time, as one class will have a reference to the other and this reference must be treated by the system. This must be taken into account when optimizing system performance.

· If the resource has just a few attributes, these may be placed in the classes representing the transactions made by the organization. This eases the implementation, although it limits software evolution.

Structure

Figure 2 shows the class diagram for the Identify the Resource pattern. 

Participants

Resource: represents the business resource that is managed by your application, defining all its important characteristics. An attribute IdCode is often provided to uniquely identify each resource, and an attribute description to textually describe it. Other attributes can be added according to the particular resource instance. Besides the basic class methods (not shown here as explained earlier) special operations are provided to list resources by idCode and by description, which are reports often required by the application.

Resource Type: represents categories or types of resource. This class is optional, as in some systems resources are not categorized at all.

[image: image14.wmf] 

*

 

Resource

 

idCode

 

description

 

!

*

list by idCode

 

!

*

list by description

 

has

 

0..1

 

Resource Type

 

idCode

 

description

 

!list resources by type

 


Figure 2: Identify the Resource pattern

[image: image15.wmf] 

*

 

Video 

 

barCode

 

title

 

year

 

!

*

list by barCode

 

!

*

list by title

 

 

has

 

1

 

Video Category

 

code

 

name

 

rental rate

 

!list videos by category

 

 

Resource

 

Resource Type

 


Figure 3: Instantiation of the Identify the Resource pattern

Example

Figure 3 shows an instantiation of the Identify the Resource pattern for a Video Rental system.

Variations

To improve the categorization, the resource could be classified into more than one group or into many grouping levels. Johnson calls these two cases “multiple type objects” and “nested type-objects”, respectively [9]. In the first case, for each desired category a class is created, linked to the Resource class. For example, in a video rental system, besides the movies qualification mentioned above, another qualification could be added to group the videotapes according to their rental rate (“A” to frequently rented, “B” to moderately rented and “C” to rarely rented, for example). This could allow, for example, establishing rental prices according to these levels. In the second case, new classes could be added according to the degree of qualification desired, as in an accounting system. For example, a car may be categorized by its model, which, in turn, may be categorized by its manufacturer. 

Following Patterns

After you Identify the Resource, try to Quantify the Resource (2). 

2.1.2 Pattern 2: Quantify the Resource
Context

You have identified a resource that your application deals with and its relevant qualities.  An important issue to be considered now is the form of resource quantification. There are certain applications in which it is important to trace specific instances of a resource, because they are transacted individually. For example, a book in a library can have several copies, each lent to a different reader. Some applications deal with a certain quantity of the resource or with resource lots. In these applications, it is not necessary to know what particular instance of the resource was actually transacted. For example, a certain weight of steel is sold. In other applications, the resource is dealt with as a whole, as for example a car that goes to maintenance or a doctor that examines a patient.

Problem

How does the application quantify the business resource?

Forces

· Knowing exactly what is the form of quantification adopted by the application is important during analysis. A wrong decision at this point may compromise future evolution.

· If tracing specific instances of a resource is needed, then redundant information could be stored for the several instances of the same resource, but this redundancy would be undesirable.

· To avoid redundancy, a new class could be created in which information common to all instances of the same resource could be stored only once. But a price has to be paid for dealing with two classes instead of only one: for example, more processing time would probably be required.

Structure

There are four slightly different solutions for this problem, depending on the form of quantification. Figures 4 through 7 show the four Quantify the Resource sub-patterns.

When it is important to distinguish among resource instances, use Instantiable Resource sub-pattern (Figure 5). When the resource is managed in a certain quantity, use the Measurable Resource sub-pattern (Figure 6). When the resource is unique, use the Single Resource sub-pattern (Figure 4). When the resource is dealt with in lots, use the Lotable Resource sub-pattern (Figure 7).

Participants

Resource: as already described in pattern 1, unless for new attributes and methods included according to the sub-pattern in which it appears. For example, when the Single Resource sub-pattern is used, an attribute status controls the resource’s life cycle. In a car repair shop the vehicle status might be: “Working”, “Broken” or “In repair”. Another example is adding Quantity in stock and re-supply level to deal with inventory control if the Measurable Resource sub-pattern is used. In this case, an attribute status is not applicable, because the system deals with bigger quantities of the resource at a time, and so it cannot control the resource life cycle individually. 

Resource Instance: represents each instance of a business resource. The attribute status controls the life cycle of each instance individually; for example, during the life cycle of a book copy there might be four different possible status: “available”, “only reserved”, “only borrowed”, and “reserved and borrowed”.

Resource Lot: represents each lot of business resources. In some cases it is important to add an attribute due date to control resources to be sold first or to be discarded because their validity is over.

Measure Unity: represents all possible measure units by which business resources can be measured as, for example, pounds, kilograms, packages, etc.

[image: image2.wmf]Resource

. . .

status


Figure 4: Single Resource sub-pattern

[image: image3.wmf]has

1

*

Resource Instance

number

location

status

isAvailable

Resource

. . .

calculate 

qtty 

of 

available 

instances


Figure 5: Instantiable Resource sub-pattern

[image: image16.wmf] 

*

 

*

 

 made in

 

*

 

1

 

Resource M

aintenance

 

maintenance number

 

entry date

 

exit date

 

faults presented

 

status

 

total price

 

?open maintenance

 

?close maintenance

 

!print entry confirmation

 

!print exit confirmation

 

!*

get pending mainten

.

 

!

*

list mainten. 

by p

eriod

 

!

*

calculate earnings

 

 

Resource/Resource Instance

 

. . .

 

 

!get maintenances by resource

 

1

 

0..*

 

1

 

Source

-

Party

 

code

 

name

 

!*list source

-

parties

 

!get maintenances by source

-

 

    

party

 

makes

 

asks for

 

Destination

-

Party

 

code

 

name

 

!*

list destination

-

parties

 

!get maintenances

 

by destination

-

 

     party

 


Figure 6: Measurable Resource sub-pattern

[image: image17.wmf] 

*

 

*

 

is related to

 

*

 

1

 

Repair log

 

repair number

 

entry  date

 

exit date

 

faults presented

 

status

 

total price

 

?open repair

 

?close repair

 

!print arrival confirmation

 

!print exit confirmatio

n

 

!*list repairs by period

 

!

*

get pending repairs

 

!

*

calculate earnings

 

 

Vehicle

 

license number

 

color

 

year

 

status

 

 

!get repairs by vehic

le

 

1

 

1

 

Repair shop branch

 

code

 

location

 

!*list branches

 

!get repairs by branch

 

makes

 

asks for

 

Customer

 

code

 

name

 

!*list customers

 

!get repairs by customer

 

 

Resource

 

Maintenance

 

Resource

 

Source

-

Party

 

Destination

-

Party

 


Figure 7: Lotable Resource sub-pattern

Example

Figure 8, Figure 9, and Figure 10 show instantiations of the first three sub-patterns of the Quantify the Resource pattern. An example of the Lotable Resource sub-pattern is similar to Figure 10 with the addition of class Resource Lot from Figure 7.

Following patterns

After you Quantify the Resource, examine your application to verify whether it is important to know about the resources storage. If so, try to apply Store the Resource (3). If not, proceed examining your application to verify which kind of resource transactions are done. If the application concerns resource location or rental, you should apply Rent the Resource (4). If the application concerns resource trading, i.e., resource purchase or sale, you should apply Trade the Resource (6). If the application deals with resource repair, you should apply Maintain the Resource (9). 

Notice, however, that there are applications where several of these patterns can be applied. For example, in a car rental system, besides reservation and rental of the car, we may have to control acquisition, maintenance and discharge of vehicles. Other transaction types, not covered by GRN, can be done with business resources, as for example auctions. An extension of GRN is being done to include online auctions [15].

[image: image4.wmf]Vehicle

license 

number

color

year

status

. . .

Resource


Figure 8: Instantiation of the Single Resource sub-pattern

[image: image5.wmf]has

1

*

Videotape

number

shelf 

position

status

isRented

Video

idCode

title

director

year

calculate 

qtty 

of 

available tapes

Resource

Resource

instance


Figure 9: Instantiation of the Instantiable resource sub-pattern

[image: image18.wmf] 

has

 

1

 

*

 

Resource

 

. . .

 

quantity in stock

 

re

-

supply level

 

!

*

list resources to be re

-

supplied

 

 

Measure Unity

 

idCode

 

description

 

 

 


Figure 10: Instantiation of the Measurable resource sub-pattern
2.1.3 Pattern 3: Store the Resource
Context

You have identified and quantified a resource that your application deals with. For many systems it is essential to control the way resources are stored, in order to ease their retrieval when necessary. This implies a lot of considerations such as the volume occupied by a resource, the environment necessary to keep it in good conditions and the frequency by which it is picked. 

Problem

How does the application control the business resource storage?

Forces

· Knowing exactly where to find the resource when you need it is essential for a good management. 

· Evaluating the space necessary to store the resource is desirable for systems that deal with large quantities of resources. This is also essential if you have limitations on the type of storage, as for example freezers. 

· The storage mechanism should be able to place more frequently picked resources in more accessible locations. It should also control expiration dates and place the new resources behind the old ones.

Structure

Figure 11 shows the class diagram for the Store the Resource pattern.

[image: image19.wmf] 

has

 

0..

*

 

1

 

Resource

 

. . .

 

re

-

supply level

 

 

calculate qtty of available

 

!

*

list resources to be re

-

 

    

s

upplied

 

 

Resource

 

Lot

 

lotId

 

date

 

quantity in stock

 

 

has

 

1

 

*

 

Measure Unity

 

idCode

 

description

 

 

 


Figure 11: Store the Resource pattern

Participants

Source Party: represents the organization branch or department that has resources to store.

Resource/Resource Instance/Resource Lot: as already described in patterns 1 and 2, unless for the new volume attribute and methods to determine location to store the resource and to determine location to retrieve the resource. 

Warehouse: represents all existing warehouses used to store resources.

Storage location: represents divisions of each warehouse as, for example, shelves, aisles or rooms.

Location Zone: represents individual places of each storage location as, for example, boxes, freezers or safes. This is where resources are definitely stored.

Storage condition: represents all possible special storage conditions necessary to keep the resource in a satisfactory state, so that it is not damaged by the environment. Examples are refrigeration degree and shelf height.

Example

Figure 12 shows an instantiation of the Store the Resource pattern for a Sales system, where each store branch has several warehouses, but a warehouse may store products of several store branches. Warehouses are divided into shelves that have several compartments. To know if a product can be stored in a shelf compartment, there are several storage conditions such as height, width and depth, which are associated both to each product and each shelf compartment.

[image: image6.wmf]0..*

has

Product

barCode

description

determine 

location to 

store

determine 

location to

 

retrieve

Warehouse

number

address

calculate 

free 

space

Shelf

number

calculate 

free 

space

*

0..*

Storage condition

number

storage 

condition

value

needs

*

1

0..*

stored 

at

Storage

condition

1..*

Store branch

code

address

!

get 

warehouses  

by

       

branch

has

*

1

owns

*

Source-Party

Warehouse

Storage

Location

Location

Zone

Resource

Shelf compartment

number

capacity

calculate 

free 

space

assign to 

product

release


Figure 12: Instantiation of the Store the Resource pattern

Following patterns

After you Store the Resource, the application being developed must be examined to verify which kind of resource transactions are done. If the application concerns resource location or rental, you should apply Rent the Resource (4). If the application concerns resource trading, i.e., resource purchase or sale, you should apply Trade the Resource (6). If the application deals with resource repair, you should apply Maintain the Resource (9). 

2.2 Business Transactions

This section presents the patterns that are related to the management of the business resources identified in section 2.1.

2.2.1 Pattern 4: Rent the Resource 

Context

Your application deals with rental of resources, which may be assets lent to a customer for a certain period or services done by an expert during some time. You have already identified and quantified such resources. 

Problem

How do you manage resource rentals made by your application? 

Forces

· Several details are involved in renting a resource. Keeping information about these details is important for a good management of available and rented resources.

· [image: image20.wmf] 

*

 

Product

 

barCode

 

description

 

cost

 

quantity in stock

 

re

-

supply level

 

!*

list products to be

 

         

re

-

supplied

 

Resource

 

has

 

1

 

Measure Unity

 

idCode

 

description

 

 

 

Measure 

Unity

 

Knowing about previous rentals may help managers to predict which resources deserve more investment in future acquisitions. 

· The trade-off between better system functionality, additional storage space and information processing time might be carefully analyzed. 

Structure

Figure 13 shows the Rent the Resource pattern.

[image: image21.wmf] 

has 

 

 

Resource

 

/

  

Resource Instance

 

/

 

Resource Lot

 

idCode

 

description

 

 

determine location to store

 

determine location to

 

retrieve

 

Warehouse

 

number

 

address

 

calculate free space

 

 

Storage Location

 

number

 

calculate free space

 

 

Location Zone

 

number

 

capacity

 

calculate free

 space

 

assign to resource

 

release

 

*

 

0..*

 

Storage condition

 

i

dCode

 

description

 

value

 

needs 

 

 

*

 

0..*

 

1

 

0..*

 

stored at

 

 

1..

*

 

Source

-

Party

 

code

 

name

 

!

list

 

warehouses 

 by 

 

       

source

-

p

arty

 

has

 

*

 

1

 

owns

 

*

 


Figure 13: Rent the Resource pattern

Participants

Resource Rental: represents all the details involved in renting the resource. There are methods to rent the resource, to return the resource (when the customer gives it back to the system) and to calculate earnings (for example monthly earnings). If the Measurable resource sub-pattern has been adopted, an additional attribute has to be added to this class to denote the quantity of rented resources.

Resource/Resource Instance: as described in the previous patterns. Use the Resource Instance class only if the Instantiable resource sub-pattern has been adopted. Otherwise, use the Resource class.

Source-Party: represents the organization branch or department doing the rental. This class is optional, as in small systems the source-party is the organization itself and so it is not worth creating a class to represent it.

Destination-Party: represents the rental beneficiary (for example, the customer or client that asked for the rental). 

Fine Rate: contains the business rules that guide the calculation of the fine to be charged when the resource is returned after its due date, when applied. This class is optional in this pattern, as some systems might not need to charge fines.

Example

Figure 14 shows an instantiation of the Rent the Resource pattern for a Video Rental system.

Figure 14: Instantiation of the Rent the Resource pattern

Variants

A resource rental can be associated to a resource trade, as for example a video rental in which you can also buy magazines, newspapers, CD's etc. In this case, your application has to establish a link between the rental and the sale, adapting the user interface and receipts to be printed to the customer, so that the totals in sales are added to the rental expenses.

Following patterns

Now look at patterns in Section 2.3 to specify other details about the rental transaction. After that, check whether your application allows the reservation of resources, looking at the Reserve the Resource (5) pattern. 

2.2.2 Pattern 5: Reserve the Resource 

Context

Your application deals with rental of resources and you have applied the Rent the Resource pattern. Some business systems related to resource rental allow you to previously reserve it so that it will be available for you according to a schedule. For example, in a Video Rental it is usual to reserve a video if it is rented when you try to rent it or when you want it for a specific period. Several customers could form a queue of people interested in a specific resource. However, when it is available, reservation is unnecessary.

Problem

How do you manage resource reservation performed before its actual rental?

Forces

· Registering reservation details is essential for a good management of the available resources because frequently reserved resources are candidates to have their number increased in stock.

· Keeping information about reservations increases storage need and processing time to find a particular reservation.

Structure

[image: image22.wmf] 

is applicable to

 

*

 

*

 

is related to

 

*

 

   1

 

Resource Rental

 

number

 

starting date

 

due date

 

return date

 

location rate

 

observations

 

?rent

 

?return

 

!print rental confirmation

 

!print return confirmation

 

!

*

list rental

s

 by period

 

!*

list overdue rentals

 

!*

calculate earnings

 

 

Resour

ce/Resource 

Instance

 

. . .

 

!

*

get rentals by resource

 

!*

list 

most rented

 

   

 

resources

 in 

period

 

1

 

0..1

 

Source

-

Party

 

code

 

name

 

!*

list source

-

parties

 

!

*

get rentals by source

-

party

 

makes

 

asks for

 

Destination

-

Party

 

code

 

name

 

!*list destination parties

 

!

*

get rentals by destination

-

party

 

 

Fine Rate

 

nb of delayed days

 

fine rate

 

calculate fine

 

 

 

*

 

 

Figure 15 shows the Reserve the Resource pattern. 

Figure 15: Reserve the Resource pattern
Participants

Resource Reservation: represents all the details involved in reserving a resource. The attribute reservation fee is present when the customer can pay a portion of the rental value in advance and the reservation status controls whether the reservation is pending or has already been attended. 

Resource/Resource Instance: represents the resource or resource instance being reserved, depending on how you Quantify the Resource (2). For example, in the case of a library, where the Instantiable resource sub-pattern has been adopted, the reservation is made for the resource (the book), but what is actually rented is the copy (see Figure 16 of the example section). Thus, the choice between Resource and Resource Instance has to be careful. For example, in the video rental example the customer might want to reserve the original language videotape instead of the version dubbed in another language. In this case, instead of reserving the video itself it would be better to reserve the particular videotape, which is a resource instance.

Source-Party and Destination-Party: as described in the Rent the Resource pattern.

Resource Rental: represents the rental that follows the reservation, as described in the Rent the Resource pattern.

Example

Figure 16 shows an instantiation of the Reserve the Resource pattern for a Video Rental system.

Following patterns

Now look at patterns in Section 2.3, which are useful for modeling other common reservation details.

[image: image23.wmf] 

is 

applicable

 to

 

1

 

asks for

 

*

 

*

 

is related to

 

*

 

1

 

Video Rental

 

number

 

starting  date

 

due date

 

return date

 

rate

 

?rent video

 

?return video

 

!print rental confirmation

 

!print return confirmation

 

!

*

list rentals by period

 

!

*

calculate earnings

 

!

*

list overdue rentals

 

Videotape

 

number

 

shelf position

 

status

 

!

*

get rentals by videotape

 

!

*

list most rented videos

 

1

 

1

 

Rental

-

Store Branch

 

code

 

location

 

!*list branches

 

!

*

get

 rentals b

y branch

 

makes

 

Customer

 

code

 

name

 

!*list customers

 

!

*

get

 rentals by customer

 

 

Resource

 

Rental

 

Resource

 

Fine Rate

 

nb of delayed days

 

fine rate

 

calculate fine

 

 

 

!get rentals by 

resource

 

Fine

 

Rate

 

Source

-

Party

 

Destination

-

Party

 

*

 


Figure 16: Instantiation of the Reserve the Resource pattern

2.2.3 Pattern 6: Trade the Resource
Context

Your application deals with trade of resources, which may involve resources sold and/or purchased. You have already identified and quantified these resources. Resource trading may be thought of as a resource property transference, in which a resource owned by one party becomes owned by another party. In a sale, if the resource is not available in stock, then the customer can fill in an order that will be granted when possible. In a purchase an order is made to the supplier who delivers the resource within a certain period.

Problem

How do you manage the resource trades made by your application?

Forces

· It is essential to log trade information, because it can be used to generate important reports on resource demand and organization gains (most systems in this domain are concerned with profits). 

· The additional storage space and processing time required to log trade information has to be balanced against possible gains in system functionality when evaluating costs versus benefits. For example, it may be enough to increase and decrease stock levels when resources are traded, without considering other trade details. 

Structure

[image: image24.wmf] 

is followed by

 

makes

 

*

 

1

 

refers to

 

0..1

 

0..1

 

*

 

*

 

is related to

 

*

 

1

 

Resource Reservation

 

reservation number

 

reservation date

 

period

 

reservation fee

 

status

 

?do the reservation

 

?cancel the reservation

 

?*

discard old reservations

 

!*

list 

period

 

reservations

 

 

 

 

Resource/ 

R

esource Instance

 

. . .

 

!

*

g

et reservations by

 

   resource/resource instance

 

!*get most reserved 

 

   

resources

 

Resource Rental

 

. . .

 

associate to reservation

 

 

1

 

0..1

 

Source

-

Party

 

code

 

name

 

!get reservations by source

-

 

    

party

 

asks for

 

Destination

-

Party

 

code

 

name

 

!get reservation by destination

-

 

    

p

arty

 

 

[image: image25.wmf] 

*

 

has

 

refers to

 

*

 

1

 

*

 

0..1

 

0..1

 

is followed by

 

asks for

 

1

 

1

 

*

 

makes

 

*

 

asks for

 

*

 

*

 

is related to

 

*

 

Video Reservation

 

reservation number

 

reservation date

 

period

 

-

 

status

 

?make reser

vation

 

?cancel reservation

 

!

*

discard old reservts.

 

!

*

list reservts. by period

 

 

 

Video

 

. . .

 

 

!

*

get reserv. by video

 

!*list most reserved

 

1

 

Rental

-

Store Branch

 

code

 

location

 

!

get reservations by branch

 

makes

 

Customer

 

code

 

name

 

!

get reserv. by cust.

 

R

esource

 

Reservation

 

Resource

 

1

 

1

 

Video Rental

 

number

 

starting  date

 

due return date

 

return date

 

rate

 

. . .

 

associate to reservtn.

 

Videotape

 

number

 

shelf position

 

status

 

!

get rentals by videotape

 

Resource

 

Rental

 

1

 

Source

-

Party

 

Destination

-

Party

 

Resource

 

Instance

 

 REF _Ref462720234 \h 

Figure 17
 shows the Trade the Resource pattern.

Figure 17: Trade the Resource pattern

Participants

Resource Trade: represents all the details involved in trading the resource. The attribute status denotes the trade stage: pending, partially fulfilled, or fully fulfilled. When the Measurable resource sub-pattern has been applied earlier, then an attribute quantity is added to denote a non-unitary resource trade.

Resource/Resource Instance/Resource Lot: the choice among Resource, Resource Instance or Resource Lot depends on the quantification sub-pattern used. 

Source-Party: represents the original resource owner, for example, in the case of a sale it is the organization department or branch that sells the resource, and in the case of a purchase it is the supplier organization. This class is optional for small sale systems where there are no departments or branches.

Destination-Party: represents the final resource owner, for example, in the case of a sale it is the customer buying the resource, and in the case of a purchase it is the organization department or branch buying the resource. This class is optional for small purchase systems where there are no departments or branches and also in systems where the customer is not logged, as in supermarkets.

Example

Figure 18 shows an instantiation of the Trade the Resource pattern for an Inventory Control system.

[image: image26.wmf] 

*

 

*

 

is related to

 

*

 

1

 

Resource Trade

 

trade number

 

trade date

 

status

 

observations

 

?do the trade

 

?cancel the trade

 

!

*

calculate earnings

 

!*list trade in the period

 

!

*

get non

-

delivered trades

 

 

Resource

/Resource 

Instance/Resource Lot

 

. . .

 

!get trades by resource

 

0..1

 

0..1

 

Source

-

Party

 

code

 

name

 

!*list source

-

parties

 

!get trades by source

-

party

 

makes

 

asks for

 

Destination

-

Party

 

code

 

name

 

!*list destination

-

parties

 

!get trades by destination

-

party

 

 


Figure 18: Instantiation of the Trade the Resource pattern

Following patterns

Now, look at patterns in Section 2.3, which are useful for modeling other trade details. As a trade is followed by a delivery and can be preceded by a quotation, try to use the patterns Quote the Trade (7) and Check Resource Delivery (8).

2.2.4 Pattern 7: Quote the Trade 

Context

Your application deals with resource trading and you have applied the Trade the Resource pattern. Buying or selling products is an activity that demands planning by the party that is investing money to acquire the products. For example, organizations usually ask for a product quotation before deciding whether to trade it or not, or to choose among several suppliers. 

Problem

How do you manage quotations that are made before trading a business resource?

Forces

· Keeping information about quotations is important when dealing with purchases or sales. In the first case, a comparative map is helpful for decision making support. In the second case, it is interesting to offer to clients a quotation service, in which the system could track quotations that do not turn into effective trades, giving the organization manager subsidies to investigate possible competitors.

· Additional space and processing time is needed to deal with this extra information.

Structure

Figure 19 shows the Quote the Trade pattern. 

Figure 19: Quote the Trade pattern
Participants

Trade Quotation: represents the details of the quotation done. There are methods to do the quotation (quote) and to assign it to the trade, if the trade becomes effective. Many quotations may be done, but just one of them will become a trade. 

Source-Party, Destination-Party and Resource: as described in pattern 6.

Resource Trade: represents the trade that may or may not follow the quotation, as explained in pattern 6.

Example

Figure 20 shows an instantiation of the Quote the Trade pattern for an Inventory Control system.

[image: image27.wmf] 

*

 

*

 

is related to

 

*

 

1

 

Purchase

 

purchase number

 

purchase  date

 

status

 

observations

 

quantity

 

?do the purchase

 

?cancel the purchase

 

!

*

calculate earnings

 

!

*

list purchases 

by

 period

 

!

*

get non

-

deliv. purch.

 

Product

 

barCode

 

description

 

cost

 

quantity in stock

 

re

-

supply level

 

!get

 purchases by product

 

1

 

1

 

Supplier

 

code

 

location

 

!*

list suppliers

 

!get purchases by supplier

 

makes

 

asks for

 

Store

-

branch

 

code

 

name

 

!

*list 

branches

 

!

get purchases by branch

 

 

Source

-

Party

 

Destination

-

Party

 

Resource

 

Trade

 

Resource

 

[image: image28.wmf] 

0..1

 

i

s 

s

ent 

to

 

*

 

*

 

1

 

i

s 

related to

 

1

 

*

 

i

s 

followed

 

by

 

 

*

 

1

 

Trade

 Quotation

 

number

 

date

 

status

 

 

 

?

make the quotatio

n

 

Resource

 

. . .

 

 

!

get quotations by resource

 

por

 

recurso

 

Resource Trade

 

. . .

 

assign trade to quotation

 

 

Source

-

Party

 

idCode

 

n

a

me

 

!

get quotations by 

 

   

source

-

party

 

makes

 

Destination

-

Party

 

idCode

 

n

a

me

 

!

get quotations by dest

-

party

 

Quotation Item

 

e

xpiration 

date

 

value

 

 

Figure 20: Instantiation of the Quote the Trade pattern

Variants

If the Instantiable Resource sub-pattern has been applied, then you have to check whether different instances of a resource have different costs. If so, the “Resource” class must be replaced by the “Resource Instance” class, because the quotation has to be more specific.

Following patterns

Now, look at patterns in Section 2.3, useful for modeling common transaction details. Then, check for the use of the Check Resource Delivery (8) pattern.

2.2.5 Pattern 8: Check Resource Delivery
Context

Your application deals with trade of resources. You have applied the Trade the Resource pattern, and optionally the Quote the Trade pattern. In some systems, a mechanism is required to check the delivery against the trade. For example, when you make a purchase, it is not guaranteed that you will receive exactly what you asked for. A mechanism has to be created to check whether the delivery corresponds to the purchase before you increase the stock level. Similarly, when you make a sale, your delivery department must ensure that the products were withdrawn from the shelves before you decrease the stock level.

Problem

How do you check the resource delivery of business resources?

Forces

· In some applications, the trade is registered by the system only after successful delivery. Consequently, nothing is known about the trade in the interim. This can cause imprecision in several reports. Though  economic, this decision does not reflect the real situation.

· If checking is done just to confirm the trade, a delivery date attribute may be added to the trade. But if there is more information about the delivery that is important for system effectiveness, then this information needs to be recorded by the system. 

· Knowing about previous deliveries may be important when choosing among several suppliers.

· Storage space and processing time are increased when deliveries are registered individually.

Structure

Figure 21 shows the Check Resource Delivery pattern. 

Participants 

Resource Delivery: represents the details involved in checking a delivery of resources. An attribute quantity needs to be added to this class if you applied the Measurable Resource sub-pattern.

Resource and Resource Trade: as explained in pattern 6.

Example

Figure 22 shows an instantiation of this pattern for an Inventory Control system.

[image: image29.wmf] 

0..1

 

i

s 

sent to

 

*

 

*

 

1

 

i

s 

related to

 

1

 

*

 

i

s 

followed 

 

by

 

 

*

 

1

 

Quotation

 

n

umber

 

date

 

status

 

 

?

make the quo

tation

 

Product

 

barCode

 

description

 

cost

 

...

 

!

get quotations by 

produ

c

t

 

Order

 

. . .

 

assign order to quotation

 

 

Branch

 

idCode

 

address

 

!

get quotations by 

b

ranch

 

makes

 

Supplier

 

idCode

 

n

a

me

 

!

get quotations by 

 

    

supplie

r

 

Quotation 

I

t

em 

 

e

xpirationDate

 

value

 

 

Source

-

Party

 

Resource 

Trade

 

Resource 

Quotation

 

Destin

ation

-

Party

 

I

t

em 

da 

 

Cota

ção

 

Resource

 

[image: image7.wmf]1

is 

related to

*

1

Resource Trade

. . .

. . .

Resource

. . .

!

get 

deliveries 

by 

resource

0..*

is 

checked 

by

Resource Delivery

delivery 

number

delivery date

observations

?

make 

delivery

?

cancel 

delivery

assign 

delivery to 

trade

refers to

*

1


Figure 21: Check Resource Delivery pattern

[image: image8.wmf] 

*

 

1

 

1

 

0..*

 

is checked by

 

Delivery

 

d

elivery 

number

 

delivery date

 

observation

 

?make delivery

 

?cancel delivery

 

assign delivery to 

order

 

 

refers to

 

*

 

1

 

is related to

 

Order

 

. . .

 

. . .

 

 

 

Product

 

. . .

 

!get deliveries by product

 

Resource 

Trade

 

Resource

 

Resource 

Delivery

 


Figure 22: Instantiation of the Check Resource Delivery pattern
Following patterns

Use patterns in Section 2.3 for modeling other delivery details.

2.2.6 Pattern 9: Maintain the Resource

Context

Your application deals with resource maintenance or repair. You have already identified and quantified these resources, which are basically customer assets that present faults or need periodic maintenance. They must be fixed to be used again or to prevent them from failing within a time interval. For example, cars, television sets, electric appliances, and computers are resources that often have problems during their life cycle. 

Problem

How do you manage resource maintenance performed by your application?

Forces

· Keeping maintenance records is important both to customers and to organizations that do maintenance. Customers have the right to complain if the maintenance is not satisfactory. Parties usually need this information for financial purposes. A simple alternative when this information does not need to be kept is to have a resource attribute containing the last maintenance date.

· Extra space is needed to store maintenance information, and having several maintenance records related to each resource implies more processing time to retrieve the last maintenance.

Structure

Figure 23 shows the Maintain the Resource pattern. 

Figure 23: Maintain the Resource pattern

Participants

Resource Maintenance: represents all the details involved in maintaining a resource. The attribute faults presented describes what is wrong with the resource. The method open maintenance is used to register the resource to be repaired; close maintenance is executed when the maintenance finishes, and get pending maintenances retrieves maintenances that are not finished. The attribute status denotes the maintenance stage: pending, partially fulfilled, or fully fulfilled. If patterns Identify Maintenance Tasks (14) and Identify Maintenance Parts (15) are not applied, then the attributes tasksPerformed and partsUsed can be added to this class.

Resource/Resource Instance: as described in previous patterns. 

Source-Party: represents the department or branch of the organization that is responsible for doing the maintenance. This class is optional in this pattern because in small organizations, with no branches or departments, it is not worth creating it.

Destination-Party: represents the owner of the resource being maintained as, for example, the customer.

Example

Figure 24 shows an instantiation of the Maintain the Resource pattern for a Car Repair Shop system.

[image: image30.wmf] 

1

 

*

 

*

 

is related to

 

*

 

1

 

Repair Quotation

 

repair number

 

quotation  date

 

expiration date

 

status

 

quote the repair

 

 

ake the quotation

 

 

 

Vehicle

 

license number

 

color

 

year

 

status

 

!

get quotations by vehicle

 

1

 

1

 

Repair

-

shop branch

 

code

 

l

ocation

 

!

get quotations by branch

 

makes

 

asks for

 

Customer

 

code

 

name

 

!

get quotations by customer

 

 

Maintenance

 

Quotation

 

Resource

 

0..1

 

0..1

 

is followed by

 

Repair

 

. . .

 

assign quotation to maintenance

 

 

Resource 

Maintenance

 

Source

-

Party

 

Destination

-

Party

 

refe

rs to

 

*

 


Figure 24: Instantiation of the Maintain the Resource pattern

Following patterns

Check now the other patterns in Section 2.3, which deal with other maintenance details After, check the convenience of using the Quote the Maintenance (10) and the Identify Maintenance Tasks (14) patterns.

2.2.7 Pattern 10: Quote the Maintenance
Context

Your application deals with maintenance of resources and you have applied the Maintain the Resource pattern. Most customers would like to have a cost estimate before doing the repair, because sometimes the resource is not worth fixing. 

Problem

How do you manage the maintenance quotations asked by customers?

Forces

· Quotation information is not important unless a real maintenance follows the quotation. In this case, quotation attributes may be placed together with maintenance attributes. For example, when you take your television set to be fixed you may be informed about the costs involved before deciding to discard or repair it. The television repair shop may or may not want to log the quotation that was not followed by a repair.

· Sometimes a repair shop charges for quotations and this may or may not be used as a discount if maintenance follows. The employee responsible for the quotation may be paid for having spent time to do it, independently of the further occurrence of the maintenance. So the system needs to register the quotation even if a repair does not follow it.

· Additional storage space and processing time are required when you choose to record each quotation.

Structure

Figure 25 shows the Quote the Maintenance pattern.

Participants

Maintenance Quotation: represents the details of the quotation done. Its attributes and methods are similar to those of the Quote the Trade pattern. 

Source-Party, Destination-Party and Resource/ Resource Instance: as described in pattern 9.

Resource Maintenance: represents the resource maintenance that follows (or not) the quotation.

Example

Figure 26 shows an instantiation of the Quote the Maintenance pattern for a Car Repair Shop system.

Following patterns

Now look at patterns in Section 2.3, which are useful for modeling other common transaction details. Also verify the need to apply Identify Maintenance Tasks (14).
[image: image9.wmf]refers to

1

*

*

*

is 

related to

*

1

Maintenance Quotation

quotation number

quotation date

expiration date

value

status

?quote the maintenance

Resource/Resource Instance

. . .

!get quotations by resource

0..1

0..1

is 

followed 

by

Resource Maintenance

. . .

assign quotation to maintenance

1

0..1

Source-Party

code

name

!get quotations by 

source-

       

party

makes

asks for

Destination-Party

code

name

!get quotations by 

destination-

      

party


Figure 25: Quote the Maintenance pattern

[image: image31.wmf] 

*

 

 

1

 

1..*

 

*

 

contains 

 

 

contains 

 

 

*

 

attends

 

1

 

*

 

contains 

 

 

*

 

1..*

 

1

 

*

 

contains 

 

 

1

 

is made by 

 

 

asks for

 

 

produces 

 

 

is a

 

1

 

1

 

Customer 

 

code

 

name

 

!get repairs by 

customer

 

Car repair 

 

entry date

 

exit date

 

faults presented

 

?open maintenance

 

?close maintenan

ce

 

!print entry confirmation

 

!print exit confirmation

 

!*

get pending repair

s

 

!*list repairs in the period

 

!

*

calculate total labor

 

!

*

calculate total spent with parts

 

1..*

 

Installments to receive

 

due date

 

payment date

 

installment number

 

value

 

situation

 

!

*

coming installments

 

!

*

overdue payments 

 

?register payment

 

!

*

payments done

 

Part used in repair

 

quantity

 

cost

 

. . .

 

 

*

 

Repairman

 

code

 

name

 

commission percentage

 

salary

 

specialty

 

!

*

get repairs by repairman

 

!

*

list commisions paid

 

 

 

made in 

 

1

 

Car 

 

license number

 

color

 

status

 

!#list by model

 

 

 

 

Car model

 

 

code

 

description

 

. . .

 

 

 

 

has 

 

 

*

 

1

 

Labor Task 

 

problem to solve

 

labor description

 

hour spent 

 

cost

 

?schedule tasks

 

 

 

is a

 

is logged by 

 

 

is sent to

 

 

produces 

 

 

has 

 

 

1

 

is a

 

*

 

Part 

 

code

 

name

 

status

 

quantity in stock

 

!*

list by name

 

 

1

 

Part Categ

ory 

 

code

 

description

 

 

*

 

Request 

 

request date

 

situation

 

observations

 

?make request

 

?cancel request

 

!

*

get non

-

attended requests

 

1

 

1

 

Supplier

 

Code

 

Name

 

. . .

 

*

 

Purchase

 

date

 

observations

 

?purchase

 

?cancel purchase

 

!

*

get non

-

delivered purch.

 

1..*

 

Installments to pay

 

due date

 

payment date

 

installment number

 

value

 

situation

 

!*

coming installments

 

!

*

overdue payments 

 

?register payment

 

!

*

payments done

 

1

 

1..*

 

Requested Item

 

quantity

 

value

 

. . .

 

1..*

 

Purchased Item 

 

quantity

 

value

 

 

1

 

*

 

Stock keeper

 

code

 

name

 

. . .

 

1

 

P#9

: 

Destination

-

 

Party 

 

P#1: Resource 

 

P#2(Single Resource): Resource

 

P#1: Resource

-

Type

 

P#

9

: Resource Maintenance 

 

P#1

2

,1

4

 and 1

5

: Resource Transaction 

 

P#1

5

: Part used in 

Maintenance 

 

P#1

2

: Payment 

 

P#1

4

: 

Maintenance 

Task 

 

P#1

4

: Tran

saction 

Executor 

 

P#

6

: Source

-

Party 

 

P#

6

: Resource Trade

 

P#1

1

: Resource Transaction 

 

P#

8

: Resource Delivery 

 

P#1

1

, 1

2

 and 1

3

: 

Resource Transaction 

 

P#1

2

: Payment 

 

P#13: Transaction Executor

 

P#1

1

: Transaction 

Item

 

P#1: Resource 

 

P#2(Measurable Resource): Resource

 

P

#1

5

: Part 

 

P#1: Resource Type 

 

Interest Rate

 

number of installments

 

interest percentage

 

calculate interest

 

*

 

1

 

is applicable to

 

P#1

2

: Interest 

Rate

 

has

 

M

easure Unity

 

idCode

 

description

 

 

 

P#2: Measure Unity

 

*

 

1

 

*

 

1

 

Fine Rate

 

number of days

 

fine percentage

 

calculate fine

 

P#1

2

: 

Fine Rate

 

is applicable to

 


Figure 26: Instantiation of the Quote the Maintenance pattern

2.3 Business Transaction Detail

This section presents five patterns that concern the details involved in the transactions identified in section 2.2, which involve the resources identified in section 2.1. The three first patterns (Itemize the Resource Transaction, Pay for the Resource Transaction and Identify the Transaction Executor) are applicable to all transactions of section 2.2. The last two patterns (Identify Maintenance Tasks and Identify Maintenance Parts) are applicable to the transactions contained in patterns 14 and 15. 

The classes that represent business resource transactions, obtained after the application of Section 2.2 patterns, are indicated in Table 1. From now on, we will use the term “Resource Transaction” to denote any of the transactions of the third columns of this table, as this section contains patterns to deal with them.

Table 1: Possible Business Resources Transactions

	#
	Pattern
	Business Resource Transaction class

	4
	Rent the Resource 
	Resource Rental

	5
	Reserve the Resource
	Resource Reservation

	6
	Trade the Resource 
	Resource Trade

	7
	Quote the Trade
	Trade Quotation

	8
	Check Resource Delivery
	Resource Delivery

	9
	Maintain the Resource
	Resource Maintenance

	10
	Quote the Maintenance 
	Maintenance Quotation


2.3.1 Pattern 11: Itemize the Resource Transaction

Context

Your application manages resources, and you have applied one or more of the patterns in Section 2.2. In some applications, it would be desirable to have more than one resource being managed in just one resource transaction. For example, when a customer goes to a video rental store, he or she will probably rent more than one videotape in the same visit. Or when a request is made to a supplier, usually several different products are requested at the same time.  Thus, it is convenient to allow a single transaction to have many items.

Problem 

How can you allow several resources to be managed in a single transaction?

Forces

· Having just an attribute quantity in the class that represents the transaction is not a valid solution when different resources are managed in the same transaction: this would only solve the problem of managing more than one unit of the same resource in the same transaction.

· Allowing multiple items to be managed in the same transaction is not essential in some applications: for example, in a car repair shop, one customer rarely takes more than one car to repair. In this case, possible exceptions could be treated by creating two or more transactions. But because this functionality is not often needed, it is not worth its cost.

Structure

Figure 27 shows the Itemize the Resource Transaction pattern. Notice that the link between classes “Resource Transaction” and “Resource/ Resource Instance”, present in all Section 2.2 patterns, has been removed. Instead, we have a link between classes “Transaction Item” and “Resource” or “Resource Instance”. 

The link removal mentioned above implies in re-evaluating the relationship cardinalities. For example, now that a resource trade refers to several different resources, several resource deliveries may occur, all related to the same resource trade.

[image: image10.wmf]is 

related to

0..*

1

Resource 

Transaction

. . .

 calculate total

Resource/

Resource

Instance/

Resource 

Lot

. . .

. . .

1..*

contains

Transaction Item

quantity

value


Figure 27: Itemize the Resource Transaction pattern

Participants

Transaction Item: represents each different resource managed by the transaction.  It has optional attributes quantity and value, applicable only if the Measurable resource sub-pattern has been used. 

Resource Transaction: represents the transaction being itemized (see Table 1).

Resource/Resource Instance/Resource Lot: as explained in patterns 1 and 2. The choice between “Resource”, “Resource Instance” and “Resource Lot” depends on the quantification sub-pattern chosen: use “Resource Instance” if you have applied the Instantiable resource sub-pattern. Use “Resource Lot” if you have applied the Lotable resource sub-pattern. Otherwise, choose “Resource”.

Example

Figure 28 shows an instantiation of the Itemize the Resource Transaction pattern for a Purchase system.

[image: image11.wmf]is 

related to

0..*

1

Purchase

. . .

calculate total

Product

barCode

description

cost

quantity in stock

re-supply 

level

...

1..*

contains

Purchase Item

quantity

value

Resource

Transaction

Resource

Transaction

Item


Figure 28: Instantiation of the Itemize the Resource Transaction pattern

Following patterns

Now verify whether or not it is necessary to Pay for the Resource Transaction (12).

2.3.2 Pattern 12: Pay for the Resource Transaction
Context

Your application manages resources, and you have applied one or more of the patterns in Section 2.2. Most resource transactions have a cost, paid by one of the involved parties. For example, to rent a house, to buy a refrigerator or to have their car repaired, customers have to pay a certain amount. If the party does not have all the money available at once, some applications offer the option of paying in installments. This results in more complex management by the system, because incoming and overdue installments need an accurate control. Furthermore, organizations need to offer their customers several payment options, so that they feel free to use the most suitable one.

Problem 

How can you manage payments associated with resource transactions?

Forces

· Having just a few attributes in the “Resource Transaction” class to control the payments done is not always enough, because more accurate information is necessary for an adequate management of incoming and overdue installments.

· Having customer’s historical information about old payments gives the organization better support when they ask for more credit. Also, this may be required by law.

· Treating each installment individually adds complexity to the system. This must be considered, for example, when most customers pay cash.

· Having several payment options attracts more clients but implies more complexity in the system. For certain options the payment may be effective only after a confirmation, for example, a check may be out of funds or the customer may forget to pay his invoice.

Structure

Figure 29 shows the Pay for the Resource Transaction pattern.

Participants

Payment: represents the payments done by one of the parties involved in a business resource transaction. The attribute status controls the possible stages of an installment, for example, it can be an incoming, overdue or already paid installment. The method coming installments lists all the installments with dates in the future. The method overdue payments lists all the installments with dates in the past that are not paid yet. The method register payment takes care of acquitting an installment when it is paid by the customer. The method payments done lists all the installments paid in a certain period. 

Immediate Receiving: abstract class that represents payments received immediately by the source-party, without the need of a second confirmation.

Later Receiving: abstract class that represents payments received later by the source-party, i.e., it is necessary a second confirmation for the installment be considered really paid.

Cash: payment method in which money is given as payment for the transaction. 

Money Order: payment method in which the customer makes a deposit in a company account that corresponds to the payment for a transaction.

Electronic transfer: payment method in which the customer has an electronic card that transfers the money from his bank account to the company’s bank account, by supplying a personal password.

Credit card: payment method in which the customer has a credit card to pay for the transaction. The customer pays, some days after, directly to the financial organization that issued the credit card and the company receives the money from this financial organization, possibly in different dates.

Check: payment method in which the customer issues a check corresponding to his bank account, that can be received in a bank by the source party. The check may be due in a future date.

Invoice: payment method in which the company issues an invoice to be paid by the customer at one of several pre-established banks before its due date, or in a special bank, with possible addition of interests and fine, after the due date is over.

Cash on delivery: payment method in which the transaction is paid on delivery, i.e., the customer needs to pay in order to obtain the product/service.

Resource Transaction: represents the transaction being paid (see Table 1). The method calculate interests obtains the interest rates based on how many installments the customer wants to pay.
Fine Rate and Interest Rate: contain the business rules that guide the calculation of additional rates when a payment is done after its due date (Fine Rate), and when a transaction is paid in more than one installment (Interest Rate). These classes are optional, because some applications do not charge fine or interest.

Example

Figure 30 shows an instantiation of the Pay for the Resource Transaction pattern for a Sale system that accepts three types of payment: cash, credit card and check.

Following patterns

Now check whether it is necessary to apply Identify the Transaction Executor  (13).

[image: image32.wmf] 

produces 

 

 

1

 

1..*

 

is applicable to

 

1

 

is applicable to

 

*

 

*

 

Resource 

Transaction

 

Payment

 

Installments

 

due date

 

payment date

 

installment

 number

 

value

 

status

 

!

*

coming installments

 

!

*

overdue payments 

 

?register payment

 

!

*

payments done

 

Sale

 

sale date

 

status

 

number of installments

 

. . .

 

 

Interest Rate

 

number of installments

 

interest percentage

 

calculate interest

 

Fine Rate

 

number of days

 

fine percentage

 

calculate fine

 

Interest 

 

Rate

 

Fine

 Rate

 

1

 

Visa/Master

card

 

c

ard 

number

 

type

 

bank

 

expiration date

 

due 

day

 

 

C

ash

 

 

Check

 

account

 

number

 

bank

 

check number

 

 

 

Credit card

 

Check

 

Cash

 

Immediate Receiving

 

 

?

r

egist

e

r 

pa

y

ment

 

Later 

Receivin

g

 

 

?

r

egist

e

r 

pay

ment

 

?cancel

 pa

y

ment

 

 

Figure 29: Pay for the Resource Transaction pattern
[image: image33.wmf] 

is applicable to

 

Fine Rate

 

number of days

 

fine percentage

 

calculate fine

 

*

 

*

 

1

 

1

 

is applicable to

 

1

 

produces 

 

 

1..*

 

Payment

 

due date

 

payment date

 

installment number

 

value

 

status

 

 

!*coming installments

 

!*overdue payments 

 

?register payment

 

!*payments done

 

Resource Transaction

 

. . .

 

number of installments

 

. . .

 

!*print invoices

 

Interest Rate

 

number of installments

 

interest percentage

 

calculate interest

 

Credit card

 

card number

 

type

 

bank

 

expiration date

 

p

ayment day

 

check validity

 

Electronic

 

transfer

 

card number

 

bank

 

authorize

 

Cash

 

 

Cash on 

 

delivery

 

payment type

 

!print receipt

 

Check

 

account number

 

bank

 

check number

 

check validity

 

Money order

 

bank

 

 

Invoice

 

in

voice number

 

!print invoice

 

Immediate Receiving

 

 

?register payment

 

Later Receiving

 

 

?register payment

 

?cancel payment

 

 


Figure 30: Instantiation of the Pay for the Resource Transaction pattern
2.3.3 Pattern 13: Identify the Transaction Executor
Context

Your application manages resources, and you have applied one or more of the patterns in Section 2.2. Knowing the person or team who executed the resource transaction is useful in certain applications; for example, in a computer store, the salesman who sells computers and peripherals may receive a commission for the sales. The system will need this information to generate commission reports.

Problem 

How do you identify the person or entity responsible for the transaction execution?

Forces

· Having just an executor attribute in the “Resource Transaction” class may be a good solution for small systems where nothing except the executor name is available. But in some systems the executor has other attributes that are necessary for appropriate management as, for example, a settled salary, a special commission percentage, a minimum sales value, etc.

· Storing each executor separately demands more space and processing. This is worth only if such functionality is essential for the application.

Structure

Figure 31 shows the Identify the Transaction Executor pattern. 

[image: image34.wmf] 

1

 

*

 

is made by 

 

 

*

 

*

 

Resource 

Transaction 

 

. . .

 

. . .

 

 

Transaction Executor

 

code

 

name

 

specialty

 

commission  percentage

 

minimum sales value

 

salary

 

!get transactions by executor

 

!*list executors

 

?pay commission to executor

 

 

Commission 

 

payment date

 

value

 

!

*

list commissions paid

 

receives

 

 


Figure 31: Identify the Transaction Executor pattern

Participants

Transaction Executor: represents the person or team responsible for doing the resource transaction. 

Resource Transaction: represents the transaction being done (see Table 1). 

Commission: represents the commissions paid to the executor of the transaction.

Example

[image: image35.wmf] 

receives

 

 

Resource 

 

Transaction

 

Transaction

 

Executor

 

is made by 

 

 

*

 

*

 

Sale 

 

sale date

 

status

 

number of installments

 

 . . .

 

Salesman

 

code

 

name

 

commission  percentage

 

minimum sales value

 

salary

 

!get sales by salesman

 

!*list salesmen

 

?pay commission to salesman

 

 

*

 

Commission 

 

payment date

 

value

 

!

*

list commissions paid

 

1

 

Commission

 

[image: image36.wmf] 

is done by

 

0..*

 

1

 

Vehicle Repair

 

entry date

 

exit date

 

faults presented

 

?

o

p

e

n

 

r

e

p

a

i

r

 

?

r

e

l

e

a

s

e

 

r

e

p

a

i

r

 

 

!

*

g

e

t

 

p

e

n

d

i

n

g

 

r

e

p

a

i

r

s

 

?schedule tasks

 

 

 

Repairman

 

code

 

name

 

specialty

 

commission

 

!get tasks by repairman

 

.

 

1..*

 

contains

 

Labor task

 

problem to solve

 

labor description

 

hours spent

 

cost

 

?finish task

 

 

Maintenance

 

Executor

 

Maintenance

 

Task

 

Resource 

Maintenance

 

 

 REF _Ref464443148 \h 

Figure 32
 shows an instantiation of the Identify the Transaction Executor pattern for a Sale system.

Figure 32: Instantiation of the Identify the Transaction Executor pattern
Variations

In large applications, the executor could be a team, so it would be necessary to include one more class, related to Transaction Executor, to control the sharing of commission among team members. 

In some business systems, commissions are paid to executors according to each installment acquitted by the customer. In this case, class “Payment” (see Pattern 12) is added to the pattern, linked to class “Commission”. 

Following patterns

Now check Table 1 to see whether your application has other transactions to which the patterns of this section have not been applied yet. Finally, return to the resources that you have identified in pattern 1 and try to apply other patterns of Section 2.2. If you are not successful, then you have completed the analysis of your system.

2.3.4 Pattern 14: Identify Maintenance Tasks 

Context

Your application deals with resource maintenance and you have applied the Maintain the Resource  pattern  and optionally the patterns 10, 11, 12 and 13 (or any combination of them). When a resource presents a fault and needs to be maintained, usually some labor services are necessary. For example, a car with a brake problem could need to have a change of the brake shoes, an adjustment of the brake cable and a lubrication of the support pedal. In some cases, each of these labor services is done by a different person. Thus, it is important to specify the several tasks performed during maintenance.

[image: image37.wmf] 

is a

 

0..*

 

1

 

Resource Maintenance

/

 

Maintenance Quotation

 

. . .

 

calculate total spent with parts

 

 

 

 

Part 

 

code

 

name

 

quantity in stock

 

!

*

list by name

 

1..*

 

uses

 

Part used in 

Maintenance

 

quantity

 

cost

 

 

 


Problem 

How can you identify the tasks involved in a maintenance transaction or in a maintenance quotation?

Forces

· If little information about maintenance activities is necessary, then this information might be logged as maintenance attributes. However, all maintenance cases would be limited to a certain number of tasks. If this number is small, certain cases are not covered and, if this number is big, space is wasted.

· In most systems it is desirable to control each maintenance activity individually, as this allows for its repetition in different maintenance cases to be better controlled and compared. This could help to prepare quotations and schedule new cases. 

Structure

Figure 33 shows the Identify Maintenance Tasks pattern. 

Participants

Maintenance Task: represents the tasks to be done so that the maintenance succeeds. The method schedule task is responsible for assigning each task to an appropriate executor. 

Resource Maintenance/Maintenance Quotation: as described in patterns 9 and 10. The choice between one or other depends on whether this pattern is being applied to the maintenance or to the maintenance quotation.

Maintenance Executor: it is optional and  equivalent to the “Transaction Executor” class of pattern 13. The decision to use it or not is based on the same subsidies related on the Identify the Resource Executor pattern. If the decision is to use it, link it either to the “Maintenance Task” class (if each task may be performed by a different executor), as shown in Figure 33, or to the “Resource Maintenance” class (if the whole maintenance is performed by only one executor).

[image: image12.wmf]is 

done 

by

0..*

1

Resource Maintenance

. . .

?

schedule 

tasks

Maintenance

Executor

. . .

!

get 

tasks 

by executor

1..*

contains

Maintenance 

Task

problem to solve

labor 

description

hours 

spent

cost

?

finish 

task


Figure 33: Identify Maintenance Tasks pattern

Example

Figure 34 shows an instantiation of the Identify Maintenance Tasks pattern for a Car Repair Shop.

Figure 34: Instantiation of the Identify Maintenance Tasks pattern
Following patterns

Now check whether it is necessary to Identify Maintenance Parts (15). 

2.3.5 Pattern 15: Identify Maintenance Parts
Context

Your application deals with resource maintenance and you have applied the Maintain the Resource pattern and optionally the patterns 10, 11,12, 13 and 14 (or any combination of them). During maintenance, probably some parts that belong to the resource need to be changed, either because they have failed or because they are likely to fail soon. For example, if a car has a brake problem then the break shoes has to be substituted by a new one and grease has to be provided to lubricate the support pedal. In such cases it is important to specify which parts are used in maintenance.

[image: image38.wmf] 

is a

 

0..*

 

1

 

Vehicle Repair

 

. . .

 

calculate total spent with parts

 

 

 

 

Stock

-

Part 

 

barCode

 

name

 

quantity in stock

 

!

*

list by name

 

1..*

 

uses

 

Part used 

 

quantity

 

cost

 

 

Part 

 

Part Used in 

Maintenance

 

Resource 

Maintenance

 

 


Problem 

How can you identify the parts used in a maintenance transaction or in a maintenance quotation?

Forces

· In applications where there is an inventory control sub-system, it is desirable to enumerate the parts used in maintenance, because this information can be used to decrease stock level, thus linking the two sub-systems. It is also important to individually treat parts to ease warranty control, although space and processing time requirements are increased.

· On the other hand, if parts are not logged by any sub-system, then information about parts used in maintenance might be logged as attributes of the maintenance. Using this approach would either limit the number of parts used in each maintenance to a pre-defined value or establish a certain space to textually list the parts used.

Structure

Figure 35 shows the Identify Maintenance Parts pattern.

Figure 35: Identify Maintenance Parts pattern

Participants

Part used in Maintenance: represents the parts that were changed in the resource so that the maintenance could succeed. 

Resource Maintenance/Maintenance Quotation: as described in pattern 14.

Part: represents the parts kept in stock by the source-party to be used in the maintenance.

Example

Figure 36 shows an instantiation of the Identify Maintenance Parts pattern for a Car Repair Shop system.

Following patterns

Now, return to the resources that you have identified in pattern 1 and proceed with the patterns of Section 2.2.

Figure 36: Instantiation of the Identify Maintenance Parts pattern

3 An Application Example

Applying GRN for modeling a small Car Repair Shop, patterns (1), (2), (9), (12), (13), (14), and (15) were used for the Repair sub-system, where the car is the resource being managed, and patterns (1), (2), (6), (11), (12), (13), (8) and (11) were used for the Purchase sub-system, where the parts are the resource being managed. Table 2 shows the new classes obtained after the application of each pattern. It can be noticed that “car” was the first resource identified, and consequently the Repair sub-system involving it was built. Afterwards, “part” was identified as another managed resource, so the Purchase sub-system was built.

The final object model produced is shown in Figure 37. The tags show the role played by the class it points to. The tags contain labels like “P#n: role”, where “n” is the pattern number and “role” is the role played by the class in that pattern [13].

This model may be enhanced by finding possible class generalizations as, for example, for “Installments to Pay/Installments to Receive”, for “Purchased item/Requested item”, and for “Stock keeper/ Repairman”.

Table 2: Process of application of the pattern language

	Pattern
	New classes obtained

	1 – Identify the Resource
	Car, Car model

	2 – Quantify the Resource
	

	9 – Maintain the Resource
	Car repair, Customer

	12 – Pay for the Resource Transaction
	Installments to receive

	13 – Identify the Transaction Executor
	Repairman

	14 – Identify Maintenance Tasks
	Labor task

	15 – Identify Maintenance Parts
	Part used in repair

	1 – Identify the Resource
	Part, Part category

	2 – Quantify the Resource
	Measure Unity

	6 – Trade the Resource
	Request, Supplier

	11 – Itemize the Resource Transaction
	Requested item

	12 – Pay for the Resource Transaction
	Installments to pay, Interest Rate, Fine Rate

	13 – Identify the Transaction Executor
	Stock keeper

	8 – Check the Resource Delivery
	Purchase

	11 – Itemize the Resource Transaction
	Purchased item


4 Related Patterns

Table 3 shows the correspondence between the patterns of our language and other existing patterns. Our patterns are placed in each line and the related patterns are placed in the columns, with a reference to the publication where they appear. When more than one “A” appears in the same row, it is considered that our pattern is the application of each corresponding pattern (probably because these patterns have common concepts or solve the same problem). For example, Identify the Resource is the application of the Type-Object pattern [9] and also of the Accountability pattern [7]. When more than one “C” appears at the same row, it is considered that our pattern is an application of the combination of the corresponding patterns. For example, Rent the Resource is an application of a combination of the patterns Specific Item-Transaction and Participant-Transaction [3]. 

5 Concluding Remarks

The presented pattern language reflects ten years of professional practice developing systems in the resource management domain. Its application to new cases has made analysis much easier, as it supplies a guideline for more disciplined analysis with the assurance that the main aspects of systems in this domain are taken care of. More experiments are intended to be done with newly graduated students with no professional practice in this domain and with professionals, in order to get some feedback to improve the pattern language usability. 

We plan to extend this language to include on-line auctions, and a better treatment for resources shipment. A white-box framework is also being developed based on GRN, using VisualWorks [14]. This framework will implement all the classes of each GRN and their relationships. Objects are persisted in a relational database. The framework classes can be instantiated to create new applications in this domain. In a next effort, we plan to transform the framework into a black-box one. This will ease the framework usage, as developers will be able to choose components of their applications to obtain most of the design and code necessary for the implementation.

Acknowledgments

We are grateful to Professor Ralph Johnson, from the University of Illinois at Champaign-Urbana, for his careful reading of a first version of this paper, as well as for his suggestions that have been used to reach its present form. We also thank Dr. John Vlissides (another GoF author) that, as the leader of our group at PLoP’99, has offered precious suggestions for this paper, mainly on the notation that he uses in his book to document the application of patterns in the construction of an object model, referred by him as “pattern:role annotation” [13].

References

	[1]
	L. Boyd. Business Patterns of Association Objects. In: “R. Martin, D. Riehle, F. Buschmann (eds) Pattern Languages of Program Design 3, Addison-Wesley, 1998”, p. 395-408.

	[2]
	P. Coad. Object-Oriented Patterns. Communica-tions of the ACM, V. 35, nº9, p. 152-159, 1992.

	[3]
	P. Coad, D. North, M. Mayfield. Object Models: Strategies, Patterns and Applications, Yourdon Press, 2nd edition, 1997.

	[4]
	D. Coleman et. al. Object Oriented Development - the Fusion Method. Prentice Hall, 1994.

	[5]
	W. Cunningham. The CHECKS Pattern Language of Information Integrity. In: “J. Coplien, D. Schmidt (eds.). Pattern Languages of Program Design, Addison-Wesley, 1995”, p. 145-155.

	[6]
	H. E. Eriksson, M. Penker. UML Toolkit, Wiley Computer Publishing, 1998.

	[7]
	M. Fowler. Analysis Patterns. Addison-Wesley, 1997.

	[8]
	R. T. V. Braga, F. S. R. Germano, P. C. Masiero. A Pattern Language for Business Resource Management. Proceedings of the 6th Pattern Language of Programs Conference (PLoP’99), Monticello-IL, EUA, v.7, p. 1-34, Aug/1999 

	[9]
	R. Johnson, B. Woolf. Type Object. In “R. C. Martin, D. Riehle, F. Buschmann (eds.) Pattern Languages of Program Design 3, Addison-Wesley, 1998”, p. 47-65.

	[10]
	C. Larman. Applying UML and Patterns, Prentice Hall, 1998.

	[11]
	D. Roberts, R. Johnson. Evolving Frameworks: A Pattern Language for Developing Object-Oriented Frameworks, In: “R. C. Martin, D. Riehle, F. Buschmann (eds.) Pattern Languages of Program Design 3, Addison-Wesley, 1998”, p. 471-486.

	[12]
	C. C. Schmidt, M. Fayad, R. Johnson (guest editors). Software Patterns. Communications of the ACM, V. 39, nº10, p. 36-39, October 1996.

	[13]
	J. Vlissides. Pattern Hatching – Design Patterns Applied, Addison-Wesley, 1998.

	[14]
	Cincom Systems, Inc. VisualWorks 5i.1, http://www.cincom.com/visualworks/

	[15]
	Ré, Reginaldo. Extension of the Pattern Language for Business Resource Management and its Framework to support Web Based Information Systems, Qualifying Monograph (Master degree), supervision of Prof. Dr. Paulo Cesar Masiero, 2000.





Figure 37: Application of the Pattern Language to a simple Car Repair Shop
Table 3: Related Patterns

[image: image13.wmf]References

[1]

[7]

[9]

A = Application                                        

C = Application of Combination

Association-Object

Accountability

Type-Object

Item-Description

Time Association

Behavior across a collection

State across a collection

Item-Specific Item

Item-Line Item

Specific Item-Transaction

Transaction-Transaction Line Item

Transaction-Subsequent Transaction

Particiipant-Transaction

Container-Content

Identify the Resource

A

A

Resource Instance Sub-pattern

A

A

A

Store the Resource 

A

Rent the Resource

A

A

C

C

Trade the Resource

A

A

C

C

Maintain the Resource

A

A

C

C

Reserve the Resource

A

A

C

C

Quote the Trade

A

A

C

C

Quote the Maintenance

A

A

C

C

Check Resource Delivery

A

A

C

C

Itemize the Resource Transaction

A

A

A

A

Pay for the Resource Transaction

A

Identify the Resource Executor

A

Identiffy Maintenance Tasks

A

A

A

[2]

[3]




























































































































































































































































































� Financial support from FAPESP grant  98/13588-4

� Financial support from CNPq  and FAPESP

� GRN is the acronym for Gerenciamento de Recursos de Negócios, which means Business Resource Management in Portuguese.

� Operations appear in Fowler’s “Event Diagram” and “Interaction Diagram”.



