3ª Lista de Exercícios de SMA-332- Cálculo II

- 1. Encontre alguma função f(x,y), que tenha a reta y=3x-4 como uma curva de nível.
- 2. Encontre alguma função f(x,y), que tenha a $y=\frac{3}{x^2}$ como uma curva de nível.
- 3. Se T(x,y) for a temperatura num ponto (x,y) sobre uma placa delgada de metal no plano xy, então as curvas de nível de T são chamadas de curvas isotérmicas, pois todos os pontos sobre cada uma dessas curvas possuem a mesma temperatura, suponha que uma placa ocupa o primeiro quadrante y T(x,y) = xy.
 - a) Esboce as curvas isotérmicas sobre as quais T=1, T=2 e T=3.
 - b) Uma formiga, inicialmente no ponto (1,4), anda sobre a placa de modo que a temperatura ao longo de sua trajetória permanece constante. Qual é essa trajetória, e qual é a temperatura correspondente?.
- 4. Se V(x,y) for a voltagem ou potencial sobre um ponto (x,y) no plano xy, então as curvas de nível de V são chamadas de curvas equipotenciais , pois todos os pontos sobre cada uma dessas curvas possuem a mesma voltagem, dado que $V(x,y)=\frac{8}{\sqrt{16+x^2+y^2}}$, esboce as curvas equipotenciais nas quais V=1 e V = 0, 5.
- 5. Dê exemplo de uma função f(x,y) tal que para qualquer reta $l_m:y=mx$ o limit ao longo de l_m seja igual a zero e que $\lim_{(x,y)\to(0,0)} f(x,y)$ não exista. Com limite ao longo da reta l_m referimos:

$$\lim_{(x,y)\to(0,0)} f(x,y) \quad \text{onde} \quad (x,y) \in l_m.$$

6. Determine o conjunto dos pontos de continuidade. Justifique a resposta.

a)
$$f(x,y) = 3x^2y^2 - 5xy + 6$$

b)
$$f(x,y) = \sqrt{6 - 2x^2 - 3y^2}$$

c)
$$f(x,y) = \ln \frac{x-y}{x^2 + y^2}$$

d)
$$f(x,y) = \frac{x-y}{1-x^2-y^2}$$

e)
$$f(x,y) = \begin{cases} \frac{x-3y}{x^2+y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

e)
$$f(x,y) = \begin{cases} \frac{x-3y}{x^2+y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

f) $f(x,y) = \begin{cases} \frac{\sin(x^2+y^2)}{x^2+y^2}, & (x,y) \neq (0,0) \\ 1, & (x,y) = (0,0) \end{cases}$

g)
$$f(x,y) = \begin{cases} 1, & (x,y) = (0,0) \\ e^{\left(\frac{1}{r^2-1}\right)}, & r < 1 \\ f(x,y) = 1, & r \ge 1 \end{cases}$$
, onde $r = \|(x,y)\|$.

- 7. A função $f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$ é contínua em (0,0)? Justifique.
- 8. A função $f(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$ é contínua em (0,0)? Justifique.
- 9. Prove que se f for contínua em (x_0, y_0) e se $f(x_0, y_0) > 0$, então existirá r > 0 tal que f(x, y) > 0 para $||(x,y) - (x_0,y_0)|| < r.$

10. Seja A um subconjunto do \mathbb{R}^2 que goza da propriedade: quaisquer que sejam (x_0,y_0) e (x_1,y_1) em A, existe uma curva contínua $\gamma:[a,b]\to A$ tal que $\gamma(a)=(x_0,y_0)$ e $\gamma(b)=(x_1,y_1)$. Prove que se f for contínua em A e se $f(x_0,y_0)< m< f(x_1,y_1)$, então existirá $(\overline{x},\overline{y})\in A$ tal que $f(\overline{x},\overline{y})=m$.

Sugestão: aplique o Teorema do Valor Intermediário à função contínua $g(t) = f(\gamma(t)), t \in [a, b]$.

- 11. Determine as derivadas parciais da função dada em todos os pontos do seu domínio:
 - a) $f(x,y) = 5x^4y^2 + xy^3 + 4$
 - b) $f(x,y) = \cos xy$
 - c) $f(x,y) = \frac{x^3 + y^2}{x^2 + y^2}$
 - d) $f(x,y) = e^{-x^2 y^2}$
 - e) $f(x,y) = x^2 \ln(1 + x^2 + y^2)$
 - f) $f(x,y) = xye^{xy}$
 - g) $f(x,y) = (4xy 3y^3)^3 + 5x^2y$
 - h) $f(x,y) = arctg\frac{x}{y}$
 - i) $f(x, y) = x^{y}$
 - j) $f(x,y) = (x^2 + y^2) \ln(x^2 + y^2)$
 - 1) $f(x,y) = \frac{x \sin y}{\cos(x^2 + u^2)}$
 - m) $f(x,y) = (4xy 3y^3)^3 + x^2 arct g \frac{x}{y}$
- 12. Seja $f(x,y) = y(x^4 + y^4)^{\frac{-3}{4}} \cos \frac{x}{y}$. Calcule $\frac{\partial f(0,1)}{\partial y}$. (observe que, neste caso, a maneira menos trabalhosa de se calcular a derivada parcial é calculando-a pela definiçção.)
- 13. Seja $\phi: R \to R$ uma função de uma variável real, diferenciável e tal que $\phi'(1) = 4$. Seja $g(x,y) = \phi\left(\begin{array}{c} x \\ y \end{array}\right)$. Calcule:
 - a) $\frac{\partial g}{\partial x}(1,1)$
 - b) $\frac{\partial g}{\partial y}(1,1)$
- 14. Seja $g(x,y) = \phi\left(\begin{array}{c} x \\ y \end{array}\right)$ a função do exercício anterior. Verifique que

$$x\frac{\partial g}{\partial x}(x,y) + y\frac{\partial g}{\partial y}(x,y) = 0$$

para todo $(x, y) \in \mathbb{R}^2$, com $y \neq 0$.

15. Considere a função dada por $z = x \sin\left(\frac{x}{y}\right)$. Verifique que

$$x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = z.$$

- 16. A função p=p(V,T) é dada implicitamente pela equação pV=nRT onde n e R são constantes não nulas. Calcule $\frac{\partial p}{\partial V}$ e $\frac{\partial p}{\partial T}$.
- 17. Seja $z=e^y\phi(x-y)$, onde ϕ é uma função de uma variável real. Mostre que:

$$\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = z$$

18. Seja $\phi: R \to R$ uma função diferenciável de uma variável real e seja $f(x,y) = (x^2 + y^2)\phi\left(\frac{x}{y}\right)$. Mostre que

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = 2f$$

- 19. Calcule as derivadas parciais de $2^{\underline{a}}$ ordem:
 - a) $f(x,y) = x^3 y^2$
 - b) $z = e^{x^2 y^2}$
 - c) $z = ln(1 + x^2 + y^2)$
 - d) $g(x,y) = 4x^3y^4 + y^3$
- 20. Seja $f(x,y) = \frac{1}{x^2 + y^2}$. Verifique que:
 - a) $x \frac{\partial^2 f}{\partial x^2}(x, y) + y \frac{\partial^2 f}{\partial u \partial x} = -3 \frac{\partial f}{\partial x}(x, y).$
 - b) $\frac{\partial^2 f}{\partial x^2}(x,y) + \frac{\partial^2 f}{\partial y^2} = \frac{4}{(x^2 + y^2)^2}$.
- 21. Uma função f(x,y) e dita HARMÔNICA se $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$ em todo o domínio de f. Verifique que as fuções abaixo são harmônicas:
 - a) $f(x,y) = ln(1 + x^2 + y^2)$.
 - b) $f(x,y) = ln(\sqrt{x^2 + y^2})$
 - c) $f(x,y) = e^{-x}\cos(y) + e^{-y}\cos(x)$
 - d) $f(x,y) = arctg(\frac{y}{x})$
- 22. Verifique que $x \frac{\partial^2 z}{\partial x \partial y} + y \frac{\partial^2 z}{\partial y^2} = 0$, onde $z = (x+y)e^{\frac{x}{y}}$.
- 23. Sejam $f, g: A \subset \mathbb{R}^2 \to \mathbb{R}$, A aberto, duas funções de classe C^2 e tais que $(x, y) = \frac{1}{x^2 + y^2}$. Verifique que:

$$\frac{\partial f}{\partial x} = \frac{\partial g}{\partial y} e \frac{\partial f}{\partial y} = -\frac{\partial g}{\partial x}$$

Prove que

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0 e \frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2} = 0$$

- 24. Seja $f:A\subset\mathbb{R}^3\to\mathbb{R}$ de classe C^2 no aberto A. Justifique as igualdades:
 - a) $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$
 - b) $\frac{\partial^2 f}{\partial x \partial z} = \frac{\partial^2 f}{\partial z \partial x}$
 - c) $\frac{\partial^2 f}{\partial y \partial z} = \frac{\partial^2 f}{\partial z \partial y}$
- 25. Seja $f(x,y,z) =: \frac{1}{\sqrt{x^2 + y^2 + z^2}}$. Verifique que

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = 0$$

b)
$$\frac{\partial^2 f}{\partial x \partial z} = \frac{\partial^2 f}{\partial z \partial x}$$

c)
$$\frac{\partial^2 f}{\partial y \partial z} = \frac{\partial^2 f}{\partial z \partial y}$$

26. Seja
$$f(x,y)=\left\{ \begin{array}{ll} xy\frac{x^2-y^2}{x^2+y^2}, & (x,y)\neq (0,0)\\ 0, & (x,y)=(0,0) \end{array} \right.$$
. Calcule $\frac{\partial^2 f}{\partial x\partial y}(0,0)$ e $\frac{\partial^2 f}{\partial y\partial x}(0,0)$.

27. Seja
$$z=xye^{\frac{x}{y}}.$$
 Verifique que

$$x\frac{\partial^3 f}{\partial x^3} + y\frac{\partial^3 z}{\partial y \partial x^2} = 0$$