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Abstract

We present a definition of generating functions of canonical relations, which are real functions
on symmetric symplectic spaces, discussing some conditions for the presence of caustics. We show
how the actions compose by a neat geometrical formula and are connected to the hamiltonians via a
geometrically simple variational principle which determines the classical trajectories, discussing the
temporal evolution of such “extended hamiltonians” in terms of Hamilton—Jacobi-type equations.
Simplest spaces are treated explicitly.
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1. Introduction

The concepts of momentum and position set together on an equal footing define what
is known today as phase spdd®], geometrically a differentiable manifold endowed
with a symplectic formw (nondegeneracy could be rela{e,45], but here we keep to the
symplectic case). This generalizes Hamilton's formalism, as presented in standard textbooks
[1,2,11,36]

Usually, however, the phase space is first treated as an euclidespage, or even a
cotangent bundle, with canonical coordinat@s;, ¢;)}. While Hamilton’s equation can be
generically written down for each real differentiable function on any symplectic manifold,
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other important and familiar features of the canonical formalism do not always extend in
an obvious fashion.

Furthermore, although Darboux’s theorem allows for a local canonical coordinatization
of general symplectic manifolds, this is not always the most convenient one to use. It is
therefore desirable to have a formalism which takes into account the specific geometry of
the phase space, explicitly, as a further step of the “geometrical revenge” in dyrjddjics

Actually, the importance of considering nontrivial geometries can be seen from many
different perspectives. Although the law of inertia sets euclidean geometry in a privileged
status, once a system is subject to nontrivial constraints its proper phase space geometry
ceases to be trivial, generical9,12,22] Similarly, for a system which is invariant under
a group of symmetries, it is often possible to eliminate redundant degrees of freedom
and the reduced phase space is also generally nontfy22,23] Alternatively, not to
mention relativistic contexts, one may be interested in the classical limit of quantum systems,
which are noneuclidean, as spin systd2®,36] Equivalently, it is convenient to have
formalisms of classical dynamics intimately connected to some important representations
used in quantum mechanics. For instance, coherent §1&&9]or, more pertinent to this
work at hand, the “center representation” of operators (cartesian Weyl syrfd@@|2Y]

Again, itis desirable to have these “semiclassical” formulations in nontrivial geometries,
but this requires previously well-defined classical formalisms.

Particularly, we need well-defined generating functions for finite canonical transforma-
tions. WhenM is the cotangent bundle over a configuration spacthese functions natu-
rally take their values o® x Q. WhenM is a Kéhler manifold8,17], whose metric and
symplectic form are related via its complex structure, one can define generating functions
which are bi-holomorphic oMc x Mc, in which case the trajectories are complex.

Despite the utility of the complex and the configuration space actions in treating a va-
riety of problems, we can greatly benefit from a formalism leading to actions which are
real differentiable functions on nontrivial symplectic manifolds, in relationship to the real
hamiltonian flows obtained from a real variational principle.

Here we present such a formalism. This work is a generalization on concepts developed for
euclidean spacdg5,27], or for linearized neighborhoods of general symplectic manifolds
[41], dating back to the original work of Poincdi@0]. The generating functions are real
functions onM itself and not on a pair of local lagrangian coordinates. An argument of
one such functionn € M, can be viewed as the “center” of the canonical transformation
m_ — m4 which the function generates implicitly.

The corresponding variational principle states that, for an appropriate family of paths
v : [0, 1] = M whose endpoints are “centered” an the action

{— / h(m'(¢), ) dt’ + ﬁ/w} (m, 1)

is stationary for a classical trajectory. Heffw}(m, 1) is the symplectic area between the
curvev and the geodesic arc, centeredmyreturning fromu(z) to v(0).

The restriction on the full foregoing theory is thiat be a symmetric symplectic space
[13,17,20] This means tha admits of a complete affine connection such that every point
m € M isthe isolated fixed point of an involutive symplectomorphism which coincides with
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geodesic inversion at. Accordingly, the above formulation of the variational principle
is invariant at least with respect to general transformationdfopreserving the affine
connection and the symplectic form.

The generalization from flat to nonflat symmetric symplectic spaces starts with the notion
of double phase spadeM [27,44] While in the flat case we define the reflection—translation
group, from which the flat theory develo@dction 2, the equivalent construction for non-
flat spaces is not enough and we must use the facbiss a symplectic groupoifB,46].

Then, via a “symmetric exponential map”, we view all structureBbfin (a subset of)
the tangent bundle oveét, TM. There we define the notion of central groupdse¢tion 3.

The properties of the pullback symplectic form allows us to see the graphs of canonical
transformations as lagrangian submanifatisf (subsets of M and define, irSection 4
(local), generating functions for finite canonical transformations (more generally, relations),
which are real functions oM. Such functions generate well-defined canonical relations
only whenA is a graph over the zero section™fl. For canonical transformations, there

is a further graphical condition. These considerations are discusSatiion 5

The composition of two canonical transformatiens M — M, as generated by such
“central actions”, is treated iSection 6 Here, again we find that despite their abstract
nature, the rule for composing them is very simpleflfis the central action fax;, then

fozl A folz(m) = Statml,mz){fal(ml) + f(xz(mZ) + A(m, my, mZ)}

is the composed central action fer(«1), whereA (m, m1, m2) is the symplectic area of the
geodesic triangle with given midpoints. On general symmetric symplectic spaces, the impor-
tance of this function was first realized in the context of star product quantizdénvhose
euclidean version has long been well established using the idea of centers and42@ids

On the other hand, the above rule naturally generalizes the result previously obtained on
R? [21,25] By iterating these compositions, $ection 7we arrive at the central variational
principle by taking the limit of an infinite number of infinitesimal canonical transformations
(Section §.

Finally, we discuss the temporal evolution of such “finite-time extensions” of hamiltoni-
ans describing, isection 9 a central version of the Hamilton—-Jacobi equation and, more
generally, their time derivative for any hamiltonian flow, mixing Hamilton—Jacobi with
Poisson brackets.

While presenting these concepts we often make use of particular spaces to illustrate the
text. We have focused on the simplest two-dimensional cases: the euclideaiRplahe
torus7 2, the spher&? and the noncompact hyperbolic platié. Of course, extending these
examples to their cartesian produsfs= R?", §2 x - - - x §2, H2 x T2, etc. is reasonably
straightforward and has not been considered here. We emphasize, however, that the theory
in principle applies to generic symmetric symplectic spaces of arbitrary (even) dimensions.

2. Central coordinateson flat spaces

Consider the euclidean plaii#, representing the very simplest phase space of a single
degree of freedomR? is a group, under vector addition, and we can also identify the
group product as a free transitive action®? on itself, the translationsrg(}) =X+
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E. Further,R2 admits a natural involutiorRo(¥) = —X, which represents a reflection,

or rotation by, through the origin. Together with the identity transformation this gives

an action ofZ, on R?. We can form the semidirect produ®T := Z x R?, which is

called the reflection—translation group and can also be seen as a normal subgroup of the

inhomogeneous symplectic group.

Then,R; = (TiRoT-3) = TR0 = RoT-»; is the element oRT which acts as

reflection through the point: R;(¥') = 2x — X’. The elements ofT;, Rs} satisfy:
IeTy = Tz,
RiTy =Ri_g)2

TRz = R
R}R}/ = T2(}—}’)- (21)

Now, let(F_, ¥4) € R? x R2 be such thaf; = R;(3_) < ¥_ = Rz(¥4+). Then,¥ € R?
is called the center of the pai_, x;). Actually, x = (1/2)(x_ + X4), coinciding for
the euclidean metric, with the midpoint of the geodesic arc joiringo X4. ldentifying
5 = X4 — x_, the transformationix_, x;) — (X, g) is a bijection.

Finally, we see how the group of translations®hcan be mterpreted as a composition

of pairs: Letxy = Ty (X)), x- = T S,,(xx). Thenx, = Ty s,,(x ) = Ty (x ).

But noticing that the actiof, = Tg(x,) =x_+ 5 can be identified by any of the sets
(¥_, &}, {*4, &}, {¥_, X} uniquely, we can rewrite the composition of translations as:

(X_, X)) © (X, X4) = (X_, X3). (2.2)

Although (2.2) was derived from the group product &9 it can be generalized for spaces
which are not groups. In other words, we can turn the argument around and id2r2jfy
as the fundamental algebraic structureMrx M. This introduces the concept of groupoid.

3. Central groupoids

Definition 3.1. Let I, M be spacesl” is called agroupoidover M, denoted” = M, if:

(Gd.0) 3two mapsP_, P, : I’ — M, called the source and target maps, respectively.
(Gd.1) Let(I' x D D I = {(y, yNIPL(Y) = P_(y")}. I; is called the set of com-
posable elements. Thel,an associative map® " : I — I, (v,y") —
y' ® y”, called groupoid composition, or product, satisfyi®g(y’ © ") =
P_(y), Pr(y O Y") = P+(¥").
(Gd.2) Janinvolutioni : I' — I', called inversion, s.¥y € I',its unique inversg = i(y)
satisfiesy O (y 0 yY) =Y it (ny) e, YV Oyoy=yif (Y, € I
M can be identified with the set of identitieslih I, ;= {y ©y,0ory O y|y € I'}.
Everyy, € I, satisfiesP_(y.) = P+(y.), but the converse is not necessarily true.

ExamplesThe simplest examples of groupoids are:

() r'isagroupG, I, ={e}=M,I>=G xG.
(i) The pair groupoid” = M x M, P_ and P, being the first and second projections. In
this casel, >~ M is the diagonal, inversion is permutation and the composition is
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(m—,my) © (my, m+) = (m_, m+) (31)

which generalize€.2). These two examples are complementary in the sense that they
have, respectively, the minimal and the maximal identity spaces possible.

We now focus on those groupoidswhich are also symplectic manifolds and for which
groupoid composition respects its symplectic strucf8r46].

Definition 3.2. A groupoidl” = M is symplectidgf (I wr) is a symplectic manifold and:

(LGd) M ~ I, is a submanifold of”, P+ are submersionsand I' - IO : [ —> I’
are smooth. In this casg is called a Lie Groupoid.

(SGd) The graph of®” is a lagrangian submanifold df x I" x I", whereI" — I is an
antisymplectic isomorphisnti”, wf) = (I, —or). In shorthand notation, we write
this as an “additive” propertyo, (y1 © y2) = wr(y1) + or(y2).

As consequenced/ ~ I, is a lagrangian submanifold df and inversion is
anti-symplectic, i.e. the graph af*is a lagrangian submanifold df x I, o () ~
—or(y).

Example Let M be a sympletic manifolde its symplectic structure. Then, the pair
groupoidM x M, with sympletic structurey = dw, where

dw = P} (w) — PX(0) = 0y S w_ 3.2

is a symplectic groupoid, called tipgoductor double phase spa@nd denote®M. That is
DM = (M x M) = M. Notice that whileDM satisfies SGd, the cartesian proditi< M,
with the usual symplectic form & w, does not.
In order to define the notion of “center” precisely, we need to consider phase spaces
which are symplectic, but also have the property of being symm@id 7,20] We now
have the following definition.

Definition 3.3. A differentiable manifold endowed with a symplectic form shall be
called asymmetric symplectic spade(M, w) admits of a complete affine connecti®h
which is symplectic, i.eVw = 0, such tha¥m € M, m is the isolated fixed point of an
involutive symplectomorphisri®,,, : M — M which coincides with the inversion, at,
of the geodesic flow, for all geodesics throughAccordingly, R, satisfiesR,,R,w R, =
Rr,, ') {Rm Ry} is the group of displacements afiandV is the corresponding canon-
ical connection with null torsion and parallel curvature.

This generalizes the reflection—translation structure on euclidean space.

An important particular case is whén is the Levi-Civitta connection associated to a
complete riemannian metrig. In this caseR}, (n, ) = (1, w) and one can sho¥{i5,34]
that(M, w, n) is ahermitian symmetric spacthat is,M is a K&hler manifold8,17]whose
complex structure/ satisfiesVJ = 0 andn(JX Y) = w(X, Y),VX,Y € X(M), and for
which the involutionR,, is holomorphic.

More generally, part of the following theory, namely the local definition of central gener-
ating functions $ection 4, can be developed on general symplectic maniff88s40-42]
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However, the geometrical law of compositioBection § and its consequences need the
full setting of a symmetric symplectic space.

As simplest examples of these, we shall consider the flat euclidearipiamel torusy 2,
both being also groups, and as simplest nonflat examples, the $Stere the noncompact
hyperbolic plang??, both being hermitian symmetric spaces.

WhenM is a symmetric symplectic space, let us denote the exponential map hy. exp
T.M — M,V — p.(1), whereo,(?) is the geodesic i defined byp, (0) = m, p.(0) = .
We can define a (restricted) groupoid structure directly on (a subset of) its tangent bundle
TM, associated t®M via thesymmetric exponential map

@ :TM — DM, T = (m, V) > y = (exp,(—0), exp, (V).

Here,® is “symmetric” in the sense th&R,, o ®)(m, V) = ®(m, —v) and thusy — y =
i(y).

Denoting2 = @*(8w), sw defined in(3.2), we have that2 is a closed 2-form oifM
sincedw is a symplectic form oM. If M has no closed geodesics, as for a hermitian
symmetric space of noncompact type ®#!), then® is a bijection andTM, 2) is a
sympletic manifold.

Otherwise,® is not globally invertible. Consider the s€fM)o C TM, (TM)o being
the maximal subset, connected to the zero sect® = {(m, 0)} c TM, on which®
is invertible. Denotebgy (= P@[(Tm),, 20 ‘= 2|TM), = Pj(dw). Then,((TM)o, $20) is a
symplectic manifold.

It is known[18] that for complete riemannian manifolds, only the stratunX’efc TM
has maximal dimension, whew(m) = X; N T,,M is the subset off,, M defined by
I(v) =i,i =1,2,... with I(v) = number of geodesics of lengty| which connecin
and exp, (v).

Thus, if M is a hermitian symmetric space of compact type (or the torus), although
@ : (TM)o — DM is not onto, it only leaves out a set of measure zero with respect to
the Liouville form onDM obtained fromSw. We conjecture that this may be true for other
symmetric symplectic spaces with closed geodesics, as well. These facts motivate a slight
modification in the concept of symplectic groupoids, suitable to our purposes. We now have
the following definition.

Definition 3.4. Let M be a symmetric symplectic spad€TM)g, £29) shall be called the
standard central groupoid ovevl, denoted TM)o = M, satisfying:

(CG.0) 3 three mapsPy, P—, P+ : (TM)g — M, called the central, source and target
maps, respectively, whe)(m, v) = m is the natural projection an8ly (m, v) =
exp,, ().

(CG.1) On the restricted set of composable elemedl)o x (TM)g) D (TM)% =
{(/, )| Py (") = P_(x") and(P_("), P+(7")) € Imag&dy) C DM}, the com-
position “©® " : (TM)(Z) — (TM)o, satisfying (Gd.1), is defined by © 7/ =
@, H(P_(T)), P+(1")).

(CG.2) 3 an involutioni : (TM)g — (TM)o, called inversion, satisfying all properties
in (Gd.2) plusPy(i(1)) = Po(r), VT € (TM)q. Specifically, ift = (m, v) then
T=i(r) = (m, —0).
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(CG.3) The identity space is the zero section and inversion is smooth. Howvare
only locally submersions and is locally smooth(TM)g is a local Lie groupoid.

(CG.4) The graph of®" is the union of lagrangian submanifolds GfM)g x (TM)g x
(TM)o. The graph of i is a lagrangian submanifold gTM)o x (TM)o, the zero
section being lagrangian i(TM)o. We may call((TM)g, £20) a local symplectic
groupoid.

WhenM has no closed geodesi¢dM)g = TM, &g = @, TMis diffeomorphic toDM.
In this case, the words “restricted” and “local” do not apply and the central groupoid is a
bonafide symplectic groupoid with the extra structure of a central map.

Examples(TR?)o = TR?, (TH%)o = TH?, the trivial cases since botk? and H2 have
no closed geodesics. F@r*> we have the following: LeAS! denote the set of antipodals
in $1 x $1, i.e.{(¢, ¢ + 7)}, under the usual representatish > €%, ¢ € [0, 27]. The
subsetlT' 72 > (TT?)o := {t = (p, q; Vp, v)IIVpl, |vy] < 7/2} is S.t.@g : (TT?)o —
DT\ (AS x AS)) is bijective. ClearlyAS x AS' is a set of measure zero 1? x 7 2.

For 52 the situation is very similar: LeAS denote the set of antipodals 7. Taking
the subselTS > (TL)o 1= {r = (m,V)||v| < 7/2}, thendg : (TF)o — DF\AL is
bijective. Again A has measure zero bS2.

However, whenM has closed geodesics, the standard central groupoid is not the only
central groupoid possible. To see that, consider another sgiddet C TMwhich satisfies:
(TM)1 N (TM)p = #andd((TM)1) = @&((TM)g) = (DM)g c DM. Furthermore, denoting
the map restriction byp1 = ®|Tm),, we limit attention to those subsets on whigh is
almost everywhere injective. In other words, theSet (DM)g on Whichqﬁl_1 is multiple
valued has measure zero with respect to the Liouville forrDbhobtained fromfw.

Then, defining an equivalence relation among different pre-imag@Miy of the same
point in (DM)g, we have another bijectiod; : (TM)1 — (DM)o, Where(TM)l =
(TM)1/ ~1 with the e%lvalence relation ~; 7’ iff &1(7) = ®1(z’). Accordingly, we
denote such points itiTM)1 by 7 = [r]l, where [r]l ={t' e MM)1|7’ ~1 1}. If M C
(DM)g is the diagonal, its pre- |ma@1 M = T1M is a global cross section oT™M)1

setting a fibrationP; : (TM); — M s.t., iff € (TM); and#! € M thenP1(?) = 71
iff Po(r) = Po(rl)~ In other words, the central map is essentiallyPy : TM — M itself.
We denote2; = @] (bw).

Def|n|t|0n 35 We call ((ﬁ/l)l, 21) £ (;1\1\//1 w) a nonstandard central groupoidOn
(TM)1 x (TM)1) D (TM)? := {(%, #)| P4 (7) = P_(¥) and(P_(3), P+(r’)) € (DM)o,
where P1.(7) = P4(1), VT € 7, the restricted groupoid produgt : (TM)1 — (TM)1
is given by? © ¥ = @& 1(@1(?) © @1(7)), and inversion byi(?) = &7 (i(P1(D))).
If (TM)» £ T2M is another central groupoid, it strongly equivalento (TM)1 if, for
everyt € (TM)l and?’ ¢ (TM)Z s.t. @1(7) = P2(7), it follows Pi(7) = Po(¥). If
@1(%) = @2(7) but P() # P»(7), T’ is weakly equivalento 7.
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ExamplesWhenM = T2, there are infinite central groupoids, but only four strongly
inequivalent onest77 %)o1 = {r = (p, g, Vp, U)I|Vp| < /2, vy — 7| < 7/2}, similarly
for (T7?)10, where|v, — 7| < 7/2, [vy| < 7/2, and(TT ?)11, where|v,, — 7|, |v, — 71| <
/2, together with the standard ofiET %)o = (TT %)go. In this case, all the nonstandard
central groupoids are simple subset$bf, i.e. no equivalence relations had to be considered
since eachpjj = <1>|(TTZ)ij is already injective. Each point ilD7 2)o has four strongly
inequivalent pre-imagesp, g, vy, vq), (p £ 7, q, v, £ 7, vy), (p, g £ 7, vp, v, £ ) and
(pxmqgEtmv,Lmv,£m).

In the case of?, there are only two strongly inequivalent central groupoids. The stan-
dard one and a nonstandard central groupdid®); = (TS)1/ ~1, where(TS); =
{(m, )||Y] € (7/2, w]}. The equivalence relation is nontrivial only whgih = =, coincid-
ing with the definition of the nonstandard pre-image of the diagdHal? := {[t1]1, where
= (m,v1) € (TD)1is s.t.[v1| = 7 and(m, V1) ~1 (', V) iff m = m'}. Thus, each
point on(DS)g has two strongly inequivalent pre-images. If we dermgé(m,, my) =
(m,v) = (0, ¢; v, B), see below for definition of the fiber coordinatas ), then EDIl
m_,my)=m—-0,p—m;m—v, f—m).

The reason for considering such nonstandard pre-imaggsliis, of course, that when
M has closed geodesics, the geodesic arc connecting two poiddssmot unique. Ac-
cordingly, the standard central groupoid refers to the shortest of such geodesic arcs and the
k-nonstandard central groupoid refers to idfold ones. Here, a-fold geodesic fromn’
tom” is defined as the geodegia’ — m) * Li(m) * (n — m"), whereL;(m) is ak-fold
geodesic loop based at, the midpoint of the short geodesic, andenotes free product.
(If k =0, Lo = id is the trivial loop andm’ — m”) is the short geodesic.) For instances
of nontrivial geodesic loops, oh?, Ly = L) = L?, * LZ, whereL ,, L, are the single
irreducible circuits, while or$2, Ly is a|k|-repetition of a geodesic meridian and it is easy
to see that in this case we only need to consider strongly inequivalent geodesics. We also
consider the following definition.

Definition 3.6. Let (T’Kﬂ)ﬁ = {(1,7) € (TM); x (TM);|P.(}) = P_(¥) and (P_ (),

P, (7)) € (DM)o}. We define generalized, arixed compositiongvhich are still restricted

in the original sense) ag : ('IT/I)% — (TM), by fF.7) = &1 (@:i(7) © ().

If M is not simply connected, we may want to consider only mixed compositions whose
geodesic triangles of composition are reducible circuits, in which case the(ttipj&) is
calledreducible WhenM is simply connected, itis enough to consider mixed compositions
within the set of strongly inequivalent central groupoids.

Now, the application of central groupoids in classical dynamics rests on the following:

Definition 3.7. Let N be a symplectic space.golarizationon N is an integrable foliation
of N by lagrangian leaves.
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Lemma 3.1. Py sets a polarization oi(TM)g, £20), called the vertical or central polar-
ization

Proof. First, every fibration is an integrable foliation. Second, since each fiber is (an open
subset of) the tangent space at each poin#inthe fiber dimension is half the total di-
mension of(TM)o. To prove isotropy with respect @y = @{(5w), note that inversion is
anti-symplecticinTM)o, i.e.i*(£29) = —£20. But, denoting the fiber restriction §¥;, M)o,

we have that,, := il(7,,m, = Pg 0 Rm © Po. Sincew is R, invariant, i.e R, (w) = ,

it follows thati ((£20)) = (£20)m, Where(20), = 20|z, Myo- Thus,(£20),, = 0. O

Further, we realize thatemma 3.1applies to every; : ('IT/I),- — TiM, as well.

Thus, in what follows we should consider all possible central groupoids similarly. How-
ever, we shall mostly deal with the standard central groupoid, both to simplify the treatment
and because we will often focus on the limit — 0, which can only take place iiTM)o.
Accordingly, we often drop the denomination “standard” in following definitions and dis-
cussions.

Finally, we should compare the central groupoids with the local isomorpbism—
T*M,inaneighborhood of the diagonalliM, for any symplectic manifolds [40-42] The
differences lie in the scope and properties of the symplectic structure. \WHN®;, £2;)
contains explicitinformation on the affine geometry (geodesic structune) tife canonical
symplectic form orf™* M does not.

Formulae To base the abstract concepts of this paper, we will often illustrate them in the
simplest space® = R2, 72, §2, H2. We now provide some useful local formulae for their
standard central groupoids. Start with the flat spaces, locally identical. Take coordinates on
RR? as canonical pairs, with usual metric and symplectic form. The tangent bundle is also a
linear spaceTR? > 7 = (x; 1) = (p, ¢; vp, v,), and the symmetric exponential map is

A =PHE; ) =X —0;X+0) = (F_, ¥4) (3.3)
with pull-back symplectic form given by
2 =2dx, Y =v,dg —v,dp. (3.4)

For the sphere, take local polar coordinat$ss m = (6, ¢), 6 € [0, ], ¢ € [0, 27]. We
shall be using the following abbreviations:

S, = sin(a), Cy = cos(@), T, = tan(e) WwithS71(H, Cc7 (N, TP
denoting their respective inverses. With usual metric and symplectic form, the natural co-

ordinates on the tangent bundle &€ > © = (4, ¢; 6, ¢), but it is more convenient to
introduce polar coordinates on the fibers as we#; (6, ¢; v, 8) where

v =0 = /62 + 5242, vCg = 0, vSs = Sp¢.
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With these local coordinates we write the symmetric exponential map as
Po(0, s v, B) = (0, 9—; 04, 91), 0. = CHCoCy F SoSvCp),

_1{ SuS . T
pr=@E£T? <;—iﬂ> +(1- Slgn(gi))z, g+ = SpCy £ CpS,Cg (3.5)

and the pull-back symplectic for®2o = @{(éw) is given by
20=2dY, ¥ =S,(CsSpdyp — Spdh). (3.6)
On H?, we adapt the local spherical formulas by letting

0 ip, v i, (3.7)
where i= v/—1. Thus,S; > iS,, Co > C,, Sy > iS,, Cy > C,,, with

S, = sinh(w), C, = cosh(w), 7, = tanh(e) and
57, CcHp. TTH

the respective inverses. Then, fr¢f5) and (3.6ve get® and—s2 for H2.

We can see explicitly fronf3.4), (3.6) and (3.73hat the vertical spaces are isotropic
in these examples. The same holding for the zero sedtfod ~ M. Notice also that
the pull-back symplectic form is the exact derivative of a symplectic potential without any
vertical differential components. This fact shall be thoroughly exploited in what follows.

4. Thecentral equation

We started by emphasizing the algebraic structure on double phase spaces, or on central
groupoids. Historically, the symplectic structure was predominant, however, for it intro-
duced the very useful concept of action, or generating function of a canonical transforma-
tion on the original, or simple phase spdad& «). We now recall the concept of generating
function, adapting it to our context.

Let o be such a symplectomorphisti — M, o*(w) = w. Its graphZ, in the double
phase spac®M D L, := {(m_,m4)|my = a(m_)}, is a lagrangian submanifold for the
symplectic formsw, i.e.8w|Ly = 0. Similarly, if L, C Image(®g) = (DM)g C DM, then
its pre-imageA,, := 0551(50,) is lagrangian in the central groupai@M)g, £20).

Conversely, every lagrangian submanifold, = &g Y(£,) defines asymplecticor
canonical relationon M [42,44], which is a canonical transformation whéy is a graph
overM_ C DM.

Generically, we consider those subséﬁQ C Ly, satisfyingc,({) C Image(®op), and
their corresponding pre-imagerér) in (TM)o.

The definition of localgenerating functiongor lagrangian submanifolds amounts to
realizing such manifolds, locally, as graphs of their corresponding generating functions.

This depends on the choice of alosgiplectic potentidh local 1-form whose derivative
is the symplectic form) suitable to a polarization which is, at least locally, a fibration over
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a referential lagrangian submanifold containing the supports of those generating functions
[37,40-42,44]

For the central groupoid ove¥, we takeM itself, seen as the zero section, as the
referential lagrangian submanifold for the central polarization. The suitable symplectic
potential is given in the following definition.

Definition4.1. Let((TM)g, £20) be the standard central groupoid og&f, w). A symplectic
potential Zo, for £29, shall be called a standacgntral potentiaif it satisfies

X | Zo= Py(X) | Zo, VX € X(TM)o). (4.1)

Here, P} is the differential ofPp andx | o denotes the vector-form contraction.

Of course, anyZ = Zp+dQ, Q € C’ﬁ{((TM)o), is another potential, but not generally
central. Conditior{4.1)tells us that central potentials have no vertical differential compo-
nents, so we can identify these potentials explicitly in our examplegpas 2%, from
(3.4), (3.6) and (3.7)

In these particular examplegg is a global potential oTM)o, i.e., 20 = dZg is exact.

We argue that the general case follow these known examples.

First, such a potential always exists in a small neighborhood of the zero s&€tian
just take the exact 2-forn» on TM defined byw(m, v) := d(@ | w), YU € X(M). Then,
o = Lz (w), the Lie derivative ofv, sincew is closed. On the other hand, wh@gh= r =0

t
Qo(m, 1)—2 lim {(1') / Ly (w) dt’} ~ 2L (w),
t—0 t 0

that is, 20 >2» = 2d(@ | w). Thus, in a neighborhood df°M, 29 =2 d¢, where
&(m,v) = ¥ ] w(m) clearly satisfieg4.1). (On the flat examplesZo = 2¢ globally,
but generally 2 only approximates the central potential in a small neighborhod®af )
Finally, 7°M is lagrangian for2g and each vertical fiber is also lagrangian, as well as
contractible. Hence2g = dZ is exact.

Recalling that1/2) Zo(m, v) S$¢(m, 9) = v | w, as|v| — 0, we may refer to the 1-form
¢ asHamilton’s potential since it is intimately connected tdamilton’s equation

To see this, remember that we can write the latter as a&figp M — TM, Vh € C’H‘Q(JVD,
by m — 15, wherer, = (m, v;) andv, is given by(dh + vy, | w)(m) = 0, or equivalently,
t(tp) = —dh(m),Ym € M. Or still, by denotingTM > A, := graph ofz[4], Hamilton’s
equation becomey ,, = —dh, implicitly defining z[A].

Similarly, the existence of a central potential f@ allows for a“finite timé extension
of Hamilton’s formalismnow in the context of generating functions. Thus, suppose that a
lagrangian submanifold, c (TM)g is locally a graph oveT°M ~ M, that is,

Rank(Py|T;Ay) = 2n =dim(M), Vi€ Ay St.Po(t)=melUCM 4.2)
then, since &p| A, = 0, from(4.1) we obtain the following proposition.
Proposition 4.1. For every lagrangian submanifold, c (TM)q satisfying(4.2) there

exists_a standard central generating functigin e C’]{Q(M), satisfying the standard central
equation
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Zola, = dfy on(TU)p C (TM)o. (4.3)

Converselyfor a given f,, the above equation definet, implicitly, i.e. it provides a
standard section[ f,] = F, : U — (TU)g which is well defined when conditi¢4.2) is
satisfied and as long ag, satisfies appropriate standard consistency conditions

We shall see examples of such consistency conditions shortly. Now, thégnzam be
multiple valued if (7, M)o N A, is not unique, in which case we should bredk into

branchemg), each one uniquely given by a mﬁér) ina subset oM via Zo| ,» = dfo(f),

for eachf”, except for{z;} C A, where RankP| T, As) < 2n. Then, via the symmetric
exponential maf4.3)locally generates a lagrangian submaniféldc DM, a canonical re-
lation onM. The similarity between Hamilton's equation and the central equation is striking.

However, the former provideifinitesimaltransformations while the latter generates
finite relations. For this reason, not every canonical relation can be generated by a real
function onM via the central equation, everywhere. Generically, the presencentfal
catastrophes{r;} C Ay S.t. RankP)| T, Ay) < 2n, is unavoidable. Their projections,
{mi} = {Po(tx)} C M, are calleccentral causticsTo circumvent this problem, new sets
of “complementary” generating functions are neef2s]. Alternatively, we can let the
functions depend on extra parameters and look for their stationary [pojn39]

On the other hand, by introducing a real parametet ¢/2 (a scale) in the magh],
for instance, by multiplying every hamiltonignby ¢/2, we can see Hamilton’s equation
as a map fromM into a small neighborhood of the zero sectionTiM, if 7 is sufficiently
small. Since in such a neighborho(}2) Zo and¢ are approximately equaf, = —this
a central generating function for the infinitesimal canonical transformation generated by
via Hamilton’s equation. Since these are always well defined, every infinitesimal canonical
transformation can be generated by a central function. This is obvious if we notice that such
transformations are small deformations of the identity, associated to lagrangian submani-
folds in (TM)g which are small deformations of the zero section, thus satisfdr).

Furthermore, the map, = —tH : M — (TM)q, obtained via the central equation from
function f,, = —th, where#h is the hamiltonian, is given by: — (m, (¢/2)v;,(m)), for
sufficiently short times ~ ¢. Since(¢/2)v;, — 0, ase — 0, for very short timeg >~ ¢ —
0, the implicit canonical transformatiam: —, m ) obtained via the symmetric exponential
map coincides with the linearized versitn- (¢/2)v;,, X+ (¢/2)vy,), for any choice of local
linear coordinates oty C M, s.t.m ~ X, regardless of the specific affine geometryipf

Thus, for very short time motion, the geodesic segment centered @ynverges onto
the hamiltonian orbit that propagates framforwards and backwards in time.

Now, we remark that generating functions are traditionally defined on the double phase
spaceDM, but this usually requires us to previously take polarizations/oitself.

For general cotangent bundles, with vertical polarization, the generating functions natu-
rally take their values from pairs of base space poifitss f(g—, g+).

For general Kahler manifolds, with complex polarizations, the natural generating func-
tions are bi-holomorphic functiong, = f(z—, z+), z& complex.

The present approach allows us to consider real generating functions on a general sym-
metric symplectic spac#/ itself, defined via a real polarization on the central groupoid.
These functions can sometimes be pictured as “finite time hamiltonians”.
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More generally, such central generating functions can locally be defined on any symplec-
tic manifold by considering a local polarizationBM which is transversal to the diagonal
M c DM.Iflinear coordinates are chosen on a neighborhood of a paMif these functions
can be mapped to Poincaré’s generating funct[80s41] However, the full geometrical
properties of the central generating functions need the symmetric symplectic setting.
Also, we must point out that other versions of the central equation are available from the
following proposition.

Proposition 4.1'. If M has closed geodesidhere are nonstandard central potentiats
S.t.

dzZ; = @' (bw) and X |Z; = P/(X) | Z;, VX e X(TM),)). 4.1)
Each lagrangian submanifold’, = é;l(ﬁa) c (TWy;, satisfying

Rank P;| Tz Al) = 2n, overU c M ~TiM 4.2)
is generated by a nonstandard central functigvia a nonstandard central equation

Zily, =df; on(TU); C (TM;, (4.3)

which provides a nonstandard sectiéf) : U — (TU); defining A,. When no distinction
is made or by means of generalizatipwe refer to(4.3) or (4.3") simply as the central
equation

Notice that we have abbreviated the standard notafifn= f,, A2 = A, FO = F,,
in previous definitions. Also, the index™in (4.3) is not the same as the indé» defined
earlier, referring to different branches of a single pre-image of th{eCé’é} C LN (DM)o.
Thus, a generic central generating function can carry up to two indices} to be fully
identified.

Finally, since central potentials are defined modulo exact differentidls, atris important
to emphasize thatach nonstandard central equatiowith its appropriate nonstandard
consistency conditionss defined with respect to a choice of the corresponding nonstandard
central potential We may fix the standard one by settifg|;0,, = 0, but similar choices
for the nonstandard ones are not necessarily the beSedtion ¢ Proposition 6.1’ we
describe a consistent choice for &J's which is suitable for the mixed composition of
central generating functions.

Such compositions, as we shall see, neatly exhibit the full symplectic and affine geom-
etry of M itself, a fact having some interesting bearings on problems in quantization and
semiclassics.

ExamplesStandard cases only. We show the explicit mpf)] = F, : M — (TM)g,
given by each generating functigf, and the canonical relatiom:_, m) € DM. To get
rid of factors of 2, we often rescale and identjfy = 2. OnR?, using(3.4) and (4.3)F
is written as

_of af

- . of.
Up—aq’ Uq:—g or Ea=2U=—J[a—;] (4.4)
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where J is the symplectic matrix ofR2. Composing with(3.3), we have the canonical
relation:
- - of -1 [dfs
= J| == —J| = 4.5
tooiF [a}] T [a}], (4.5)

see[25,27] On the torus(4.4) and (4.5pre valid, but we impose standard consistency
conditionwhich amounts to constraining the mép4)onto (77 %)g only:

af
dq
On 2, by (3.6) and (4.3)F : §2 — (TS)q is written in polar coordinates as:

_ o=1,00 _ 1 S (9f/ 90) e, % T
v=_S"(S°()), B=-T {—af/aw }+<1 Slgn(aw)) > 4.7)

where, using the contravariant metric §f we define the symbols

ocn—udre HEV (VXYY oo f1
S(f)-—lldf||=\/(39> +((SQ>(3¢)), O = J1— (9 2.

Notice that(4.7) has real solutions only if satisfies theonsistency condition
SO%H =|dfl <1 onU c S> (4.8)

,‘%'<z onU c T2. (4.6)
ap 2

Composing with the symmetric exponential n{&gb), we obtain
0r=C""1 (CeCO(f) ¥ %) ,

g

Sp(9f/00)

} + (1 - Sign(as))Z, (4.9)
o4 2

(/’ﬂ::(O:FTl{

whereay = SGZCO(f) + Cy(9f/9¢p), as the local expression for the canonical relation
(m_, m) which is generated by, = 2f € C&(5?) , satisfying conditior(4.8).
On H?, by (3.6) and (3.7pnd the central equation, the mAp H? — TH? is written as

_ 1,30 _ 1| Sp@f/p) e (Y 7
w=S"(S°(), B=-T {—af/&p }+(1 S|gn(3(p>> 5 (4.10)

in polar coordinates, and this requires no consistency condition. Once more, we have defined

. af\? 1\ 7o\ \° . .
SO(p = ldfI EJ (%) + ((S—) (—f>> . CUp =1+ (SO
P

dp

Finally, composing with the symmetric exponential map we have the local expression

. . 9 S,(3f/9 .
pr=C1 (CpCO(f) + —f> o= 2O g SigngaZ,
0p V+ 2

(4.11)
wherey. = S2CO(f) & C,(df/3¢), for the corresponding canonical relation HA.
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5. Central actionsand relations

We saw in the last paragraph that a functjtine g\’]‘g(m can locally be taken as central
generating function of a canonical r(glgtimf; C (TM);, provided(4.2’) holds. This is a
“graphical” condition ovelt/ ¢ M ~ T'M C (TT/I)i and is therefore written with respect
to AL. But generically, it is precisely this submanifold that needs to be found gijen
Furthermore, it is important to distinguish which of the various lagrangian submanifolds in
(TM), do correspond to canonical transformationsMni.e. which are pre-images, under
the symmetric exponential map, of graphs o¥er c DM.

Again, since we usually start with the central generating function, from a practical point
of view we need such a distinction, as well as an alternative to condii@)), written
directly in terms of£i. We now proceed in this direction, in tistandardcase. First we
obtain the following lemma.

Lemmab.1. Afunctionf = (1/2) f, € C’H‘Q(A/D, k > 2,can locally be the standard central
generating function of a canonical relatipmia central equationonly if it satisfies all
consistency conditions required for the definition of the mfapM > U — (TU)o, F:
m > v e (T, M)o, and

‘det[a—F}
om/J

for any choice of local coordinatgg:’} on U, {v'} on (T,, M)q, with {Fi (m) = v'(1)}.

<00, VmeUCM (5.1)

Proof. Letz, € Ay C (TM)o, Po(7e) = mg € M, and take local coordinatgs?, . . ., x2}
on a neighborhood& c A, of the pointry, {m?, ..., m?'} on a neighborhood c M of
the pointm, and{v?, ..., v} on a neighborhood C (7;,, M) of the point, = Py(t,),
P,: N— V,N = (U x V) c (TM)g. Then, any point € X C N is locally written as
= {X' (D} = {x'}, T = {m' (Po(0), V' (Py(D)}, or T = {m' (Po({x’})), v' (Py({x/}))}.

Now, the graphical conditio4.2)is simply [dn] = Ag[dx’], [A{] = [8m'/ax], sat-
isfying 0 < |det(Ag)| < oo, ont, that s, [d'] = Ay [dm/], 0 < |detAgh)| < oo, and
the failure of(4.2)is written as/det(Ag)| = 0 & |det(A51)| = o0. But since no graphical
condition overV is assumed, we have onlyd = A,[dx'], [A}] = [9v'/0x/], satisfying
|det(A,)| < oo, ont, and the same cannot be saiqu;‘1 becausedetA,)] = 0 is a real
possibility. Thus)det(A, - Ag")| = |detdv'/am/]| < oo is a necessary condition for the
existence of central generating functions.

If such exist, then they satisty.3)and we can write the maf generated by e C’H‘Q{(U)
as{vi(r) = Fi(m)}, providedf satisfies any required central consistency condition]

ExamplesOnR?, (5.1) becomesdet[s? f]| = |det[s? f/ax'dx/]| < oc.

On 52 we get the conditiondet[s? f] + (Ca/ Sp) (3f/0¢) (3% f/303¢)| < oo, onU C §2,
where det)? f] = (82£/96%) (82 f/9¢?) — (3% f/360¢)?, provided(® = 0,7) ¢ U, and f
satisfies O< ||df|| < 1. The restriction o is easily removable by choosing a new origin
for the polar coordinates a$?, but a new local analysis is needed whiehy || (mq) = O.
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Since||df|| — O implies|v|] — 0, we know these points correspond to fixed points
of any canonical transformation which can be generatedbyhus, a (local) alterna-
tive is to expandf aroundmyg in linear coordinates and apply the previous flat equation,
on a small neighborhood ofo. Otherwise, we can use thdf ~ v to get|det[s? /] +
(Co/So){(3f109) (32 f1360¢p) — (3f/96) (32 f/3¢?)}| < oo, as the local form of5.1) on a
smaller neighborhood” of a pointmq € U for which ||df||(mg) = O.

Similarly, onU ¢ H?, (p = 0) ¢ U, we write (5.1) locally as|det[s? f] + (C,/S,)
(0f/99) (3 f/3p3)| (S, 52 HCO(M L < oo, if [ldf] > O, and|detly?f] + (C,/S,)
{(3f139) (32 f1 3pdg) — (3f/3p) (3 f189®)}|(S,) 2 < oo on a smaller neighborhood of the
pointmg for which ||df| (mg) = 0. Or we can expang aroundmg in linear coordinates
and use the flat equation.

Lemma 5.1provides a necessary, but not sufficient condition for the existence of central
generating functions, generically. In other words, wherr (TM)g is a generic canonical
relation, it is possible thdtet(Ag)| = |det(A,)| = 0, ont € X C A. Thatis, we do not
necessarily have a graph over eitheor 7, M, ont = (m, 1) € A, generically. Evenwhen
restricting to canonical transformations df it is possible that défig) = det(A,) = O, if
dim(M) > 4. To see this, consider the simple example= R? x R?, w = wq) ® w(2),
a= Rél) ® id@. Furthermore(5.1) does not distinguish between canonical relations and
transformations. In this respect, we extdrainma 5.1to the following lemma.

Lemmab5.2. Afunctionf = (1/2)f, € C’H‘Q(M), k > 2,can locally be the standard central
generating function of a canonical transformation &honly if it satisfies conditionf5.1),
besides any central consistency condition required for the definition of theFfmald >
U— (TU)g, m —~ 17“(m) € (T,, M), via the central equatiarand

a(expm(—?(m»")

omJ

0<‘det|: ]‘<oo, VmeUCM (5.2)

for any choice of local coordinates av1.

Proof. ConsiderA, = @51(£a), whereL,, is a lagrangian graph ovéd_ C DM. Let

y = &o(t) € Y C Lg, Y a neighborhood of,, = ®o(z,) and consider local coordinates
(L, ..., y*"}onY. Similarly, take{m! , ..., m?} as local coordinates on a neighborhood
U_ Cc M_ ofthe pointm® = P_(ty) = P— (V).

Then, L, is locally a graph ovenM_ iff [dm’ ] = B_[dy'], where [B"] = [am" /dy/]
satisfies O< |det(B_)| < oo . Otherwise, ifC, is not a graph ove#/_, from the definition
of B_,det(B_) =0.

Sincedy is a diffeomorphism, we can rewrite above condition as (et(A_)| < oo,
where [A"] = [am’ /0x], sinceA_ = B_ - d®g. On the other hand, ifi, is a graph
over M ~ TOM, this can be further rewritten as |det(A%)| < oo , where [A2)1] =
[om'_/om7], sinceA® = A_ - Ag' and|detA,h)| < .

But sincem_ = P_(7) = exp, (—v), we get(5.2), providedA,, satisfieq4.2)andz is
given by the central maﬁ(m) = v, generated by via the central equation. a
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Example OnR?, from (3.3) and (4.4)(5.2)becomes 0< |1+ det[3? f]| < oo, but since
(5.1) must already be satisfied, we single out the new condition a8%g@tp~ —1, Vx €
U c R?. However, already o2 or H?, the explicit form of(5.2)in local coordinates, for
genericf, becomes rather long and it is much simpler to check it directly, for each specific
f, using the specific expressions far (m) obtained from(4.9)or (4.11)

Conditions similar ta5.1) and (5.2)apply to nonstandard functions, as well. It is im-
portant to emphasize, once again, that any function satisfying the conditibeswfia 5.2
does not necessarily generate a canonical transformatid, aince these conditions do
not comprise a sufficient set, generically. A more complete analysis is needed for such char-
acterization, which lies outside the scope of this work. Ultimately, though, we can check
explicitly the consistency of the implicit map,. (m_) obtained from any functiorf on
U C M, via the central equation and the symmetric exponential map. These functions shall
be singled out from the following definition.

Definition 5.1. A function f = (1/2) f, € C%(M), k > 2, which is (locally, onU c M)

the central generating function of a canonical transformatioMos henceforth referred

to simply as a (localgentral actionon M. The set of all such functions is denotdd(U).
Specifically,Ag(U) for standard actions. More generally, a function which locally generates
a canonical relation oM, via the central equation, shall be called a (locafytral relation

on M, whose set is denoted R&l).

Of course, Ac(U1) C Ac(Uo) if Uy D Usz. Thus,YU C M, Ac(U) D Ac(M) the space
of central actions oM, clearly nonempty since every functigh = —th, 4 € C’lﬁ(m,
is a central action, for sufficiently small. On the other hand, since central relations must
satisfy(5.1), but not necessaril(.2), Ac(U) C Rel(U).

More generally, one might still wish to be free from constraints imposed by central
caustics. For functions oM, this is generically impossible.

On the other hand, inspired by some works in symplectic topo]6¢g#,39] we could
allow the generating functions to be defineddnx R¢, instead, using the extra variables
to analyse the behaviour at those critical points. But the study of their general definitions
and properties is not to be found here. In an independent context, a very important and
particular case of such “extended” functions shall be se&egtion 8 and 9whered = 1.

Back to functions onM, our main interest, in what follows, is concerned with their
compositions. For central actions we need only worry about the presence of caustics, but
for canonical relations we must also worry about the possibility of their compositions being
well defined(clean products)10,14,42,43] Thus, for simplicity, we shall not pursue on
this broader context here, focusing instead on the compositions of central actions properly,
from now on.

But we emphasize that, whenever well defined, the following rules of composition apply
for central relations as well.

llustrations The simplest examples of central actions are those which generate uniform
translations on flat space. Let= T; R? — R?, by X ~ ¥ + &, which corresponds to

the lagrangian plané = §/2 a constant i R2. From (4.5) one ha§ = —J(afa/ax)
integrated ag, (x) = (J- 5) x modulo constants, rewritten as a skew-prodic¢t) = E/\x
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In particular (whenf—‘ = 0) the null action (or any constant) generates the identity. And this
is true for every symmetric symplectic spatfe

The next simplest examples, still on flat spaces, are the homogeneous quadratic func-
tions f,(x) = X' BX, where B is a symmetric matrix, or equivalently,(x) = Bp° +
B'q%> + 2ypq, wherep, B,y € R. Wheny = 0,8 = B = —tan(r/2), f, gener-
ates a rotation by an angbe through the origin. Notice thaf,, as well as(5.1), di-
verges everywhere when = +x. This is a reflection at the origirfRg, and the cor-
responding lagrangian submanifold fR? is Ag, = ToR? which is not a graph over
TOR? anywhere. Wher8 = g = 0,y = —tanh(1/2), f, generates a pure hyper-
bolic transformation with stable/unstable submanifold coinciding withpthgaxis. Now
(5.1) is always satisfied, byb.2) fails asymptotically asr| — oo. It is not hard to see
that every quadratic central action generates an element of the homogeneous symplec-
tic group onR? and, conversely, every such element which can be centrally generated,
is done by a quadratic central action (Cayley transform). This is not a property of the
more familiar generating functions of mechanicsRf e.g. f(¢_, ¢.), for which generic
translations on¥/ are also generated by quadratic functions. Adding the former two ex-
amples, f,(X) = & A X + X' BX generate elements of the inhomogeneous symplectic
group.

On §2, the simplest examples are the central actions for rotations. Here, standard case
only. Leta = a(p, 2y) be an element of the group of rotations @Dacting ons?, whose
pole (fixed point) isp and whose angle of rotation ig’2Taking local polar coordinates for
m = (0, ¢) andp = (x, ¢), andy € [—n/2, /2], the central action is written as

falm) = =287HS,[C,Co + Sy SCp-o]}- (5.3)

Although it looks complicated in local coordinates, = (1/2) f,, has the simple geo-
metrical interpretation shown iRig. 1(a). If we notice thatC,Cy + S,S6Cp—e) = Cy,

~ Line equidistant to pole Line equidistant to axis ‘\\

/ Axis

Fig. 1. Full lines represent geodesics.
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y = distancém, p), the mapF, : $2 — (TS)q is given by(4.7)as

U:C_l —CV = _1{&},
J1=(5,Cy)2
f=1-1 { SyCoCp—e) — CxSo
SXS(<P—€)

. 4
} + (1~ Signty — ) (5.4)
and the implicit transformatiom . (m ) generated by, is given by(4.9)as

C,Co = SySsSyS(pe)

0 =C71 ,
J1-(S,Cy)2
1 [ S/[C,Se — S, CoCrp— . T
pr =T 1{ V[ X206 Aix 0% (p 8)]}+(1—Slgr(ki))§, (5.5)

whereiy = C,, Sy £+ S, CoS,S(,—s). Notice that whem: — p or p, v — 0 andm is a fixed
point of the transformatio(b.5), as expectedy < [0, 7/2). However, whery = n/2 the
transformation(5.5) is not well defined. Again, in this casgp, 2y) = a(p, 7)) = R, :
§2 — 52, and the corresponding lagrangian submanifoldTi&?)g is Az, = (T5?)o,
which is not a graph ovef®s? anywhere. We can also see this singularity ugbg.),
wheny = 7/2. To see thatn — p is not a caustic singularity, fop = 7/2, one can
check directly in(5.1). Similarly, expandingf aroundm in linear coordinatesp, q), gives
fa(m) = constantt (T,)y? + o(y*) > (T,)y?, with y? = p? + ¢?, which is the central
action for rotations on the plane.

On H?2, we now consider the central actions for some elemermSO(2, 1). A subclass
of such elements is characterized by thase «(p, 2y), which are real rotations of?
around the real polp € H?, through an anglej2y € [—nr/2, 7/2]. The corresponding
central actions and canonical transformations are analogous to the spherical ones.

However, in opposition to the real hyperbolic rotations, stand the ideal hyperbolic ro-
tations. These can be characterized in two ways. We may considera(p, 2y), y €
[—n/2, /2], p an ideal fixed point (a point ift3 satisfyingx? + y2 — z2 = 1, while a real
pointin H2 c R3 satisfiex? — (x2 + y2) = 1). Alternatively, we taker = @(v, ¢, z) where
v € [0, 00), z € (—00, 00), ¢ € [0, 27]; (v, €) being the coordinates of a real axighft, i.e.

a geodesic irH? s.t.v is its distance to the origin angiis the angle this minimal geodesic
arc makes at the origin, as showrFig. 1(b). We interpretz| < oo as a geodesic segment
along this axis, its sign determining a particular orientation f§8%j. The corresponding
central action is given by

Jfa(m) = ZS_l{Sz[évspC(cp—e) - S11)(?,4)]}’ (5-6)

whereC,S,Cy—e) — $yCp = Sy, x = distancém, axis). From(5.6) f exists only when

. A
1.8,/ <1 0=<x<5§! (lS—|> (5.7)
Z
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butin this neighborhood of the axis, itis a well-defined real function whose simple geometric
interpretation is shown iffig. 1(b). From(4.10), the mapF; : H> — TH? is given by

p=C"1 __ G 56‘1{2}
J1- (3.3 s
CoCoCloer — 803
p=T 12O T b (1 4 Signip — e) = (5.8)
CuSip—e) 2

and thef;-generated intrinsic transformatien, (m_) is given by(4.11)as

pr=C" — ,
1—(5.5,)2
S, [CyCyCioe) — SuS . T
soi:goﬂli 1GG (;;) "]}+<1+Slgn<si>)§, (5.9)

wherety = C,S,+5,C,C,S(,—e). The transformatio(s.9)describes finite motions along
lines equidistant to the ax{®, ¢), as shown irFig. 1(b). We see thaf.9) has no real fixed

point and is also free of central caustics, i.e. it is well defined everywhere on the same
neighborhood of the axi®, ¢) on which f; is well defined. In other words, the lagrangian
submanifoldA; c TH? is a graph over this neighborhood; one can check explicitly that
(5.1)does not diverge anywhere. Notice thatxas- 0, m, m andm_ all lie on the axis,

with z = distancém, m,). However, agz| — oo, (5.2)fails asymptotically, in agreement
with (5.7), which impliesx = 0, when|z| = oco.

6. Composition of central actions

Having explored the symplectic structure on central groupoids, we now add their algebraic
structure in order to answer the following question: lfgt, fu, < C’H‘Q(M) locally be the
central actions for two canonical transformations, respectivalyx, : M — M, m
a;(m). Sincea = a2(x1) is another canonical transformations &) what is, locally, its
central action? In other words, How do central actions compose? We start by considering
the following definition.

Definition 6.1. Let ¢ be a (local) symplectic potential faron U, € M. Then, onDU, C
DM, 8¢ := P7 () — P*(¢) is alocal symplectic potential férw andZ; := @{(5¢) is locally
a symplectic potential fof2g on W, C (TM)o, @o(W;) C DU, to be called ammdditive
potential

The reason for this name is obvious once we realize that

Zi(t11 O 12) & Zi(11) + Ze(72). (6.1)
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Here, as inDefinition 3.2 this is a shorthand notation for the fact that the local 1-form
Z; ® Z; © Z; vanishes on the graph of the groupoid composition.

Such additive potentials do not coincide with the central potentials,i. @oes not satisfy
property(4.1), even locally, and we cannot use it to define central generating functions
directly. On the other hand, the central potentials are not additive, (&slij but in order
to compose central actions, we now realize thation

Ze=Zo+dQ;. Q= QY e CL(Wy). (6.2)

Therefore, ift; € Aq,;, With Po(t;) = m; € U, is locally generated by the standard central
action f,, € C%(m, then on(TU)g N W; : Z,(7;) = df, (m;) +dQ.(7;), combining(4.3)
and (6.2) Hence, ifA,, satisfieq4.2)on (TU)q, for a = a2(x1), andt = 11 © 12 € Ay,
with Po(t) = m € U, is locally generated by the standard central acfipe C’]ER(M), then,

on W, N (TU)o, from (6.1),

dfa(m) ~ dfo, (m1) + dfo,(m2) + dx(t1, 72), (6.3)
where we define the standard phase funcfipes x? : (TU)3 — R, locally by
Xe(11, 72) = Qc(t1) + Qr(12) — Qr (11 O 12). (6.4)

Now we apply the crucial result stated in the following proposition.

Proposition 6.1. The functiony, defined abov¢6.4)is well defined on the Whol(e'I'M)S
and independs on choices of local symplectic potential oActually it coincidesmodulo
constantswith the symplectic area of a standard geodesic triangléfn.e. which can be
defined by elements '(mvng, determined by its midpoinis, m1 andms. This area shall
be denoted by\o(m, m1, m»).

Proof. Here we rely on a mathematical construct{dr3] which consists of building an
S1-principal fiber bundle over a symplectic manifol#/, w) with connectiona whose
curvature isw/A. We denote this as! — (SM «) &(M, w/A), da = 7*(w/A). Such
bundle is well defined only if1/27)) {0 = p € Z, whereB is any oriented, closed
two-surface without boundary ai. Here, 1 is an auxiliary constant which can be set to
zero in the end.

To extend this construction to the double phase sptgjewe identifySDM= (SM_ x
SM,)/St, (SMy, Fa) being the same principal bundles owéf, but for opposite con-
nections, and the quotient is taken with respect to the diagonal acti6h af 72 on
SM_ x SM,. Actually, we have chosen the connection whose curvaturedis/, So we
should perhaps denote this bundleRPM but to simplify the notation we keep DM
Thus, S — (SDM [—éa]) 481 (DM, —8w /A1), d[—8a] = [7]*(—8w/A), whose elements
are denoted byd] ¢'], where(o, ') € SML x SM,..

Choosing identity elements of the form p], we extend [51] the groupoid composition
from DM to SDMby [0, 6'] © [¢7, 6] = [0, ¢”]. Pulling backSDM by the (restricted)
symmetric exponential map, we get a (trivial) bundle o¢&M)g, denoted(STMo =
@5 (SDM) %0 (TM)g x SDM

Next, consider sectionsy : (TM)g — (STMygo which are obtained via the parallel
transport along thé-fibers of identity elements i6STM), the latter being fixed by the
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above choice o8DM These polarized sections are such ko (1)) = [0/, o”'], where
(o’, 0”") are the endpoints of a horizontal lift BM of the short geodesic from’ to m”,
centered om = Po(1), for @g(7) = (m’, m”).

Hence, if(z1, 12) € (TM)(ZJ, theneg(t) © eo(12) = €o(t1 © 12)Ko(T1, T2), WhereKy :
(TM)g — S1is the holonomy inSM over the triangle of composition oM. That is,
Ko(t1, 12) = exp{(~/—1/1)Ao(t1, T2)}, where the standard triangular area functityis
well defined and continuous c(FTM)(Z). This means thaKo(z1, 72) is well defined on the
whole(TM)(Z), as well as being independent of local expressions for the conneetiad |
and its pull-backyg.

But the pull-back connectiaig can locally be written a8g ~ do — (1/A)Z;, whered is
the fiber coordinate, for a local choice of symplectic potentiat dz. Over thePy-fibers,
these can locally be rewritten as|,, ~ (d9 — (1/A)(Z; — Zo)) | == (d6 — (1/2) dQ¢) |m,
thus, provided); |03, = 0 and for a local representation of identity element&a; 0),
the trivializing sectiongg can locally be written asp(t) =~ (t; exp{(\/—_l/)»)QC(r)}) and
therefore the holonomy phasiy(ry, 1) is locally identified asy;(t1, 12) = Q¢(11) +
0¢(12) — Q¢(71 O 12).

On the other hand, denoting a point dﬁiM)g by (m1, v1; m2, v2), with 11 © 72 =
13 = (m3, v3), we can almost everywhere eliminate the three vectors by, éxp1) =
expna(—vg) = a, expﬂl(vl) = expnz(—vg) = b, expnz(vz) = exgns(vg) = ¢, and
Do(m1, v1) = (a, RmyRmgz(@) = b), Po(mz, v2) = (b, RmzgRm, (b) = ¢), Po(m3z, v3) =
(a, Rm,Rm,(a) = c), the exception being those midpoint tripletgpz = (m1, mo, m3) for
which the fixed point set oR,,; R,., R, has nontrivial dimension. But we can assume,
based on the lower dimensional examples, that the set of such singular midpoint triplets
has codimension always greater than 1. In other words, the%a‘p(TM)g — (M x
M x M)midpointsiS invertible on its image set, except for a subset of codimension greater
than 1.

Hence, ifu123 is a regular midpoint tripletAg(u123) = Ao(m1, mo, m3) = Ao(llfo‘1
(;123)). Otherwise, ifu123 is a singular midpoint triplet, consider any continuous family
of regular midpoint tripletg) ,4(€), € > 0s.t.1},45(0) = n123. These families always exist
and, for any # 0, 11/0—1 is well defined and continuous, so thisg(u},5(€)) is a continuous
function of e. It follows that Ag(11123) = Ao(m1, m2, m3) = lim._o{Ao(u],5(€))}, for
any family 1/ 55(€) — p123.

Therefore, the holonomy can be identified with 6xg—1/1) Ag(m, m1, m2)}, form; =
Po(zi), m = Po(r1 © 12), whereAo(m, m1, mp) stands for the symplectic area, modulo
2n., of a standard geodesic triangle with given midpoints, for whigfry, 7o) is thus a
local expression. |

Let us remark that in the simplest casé®3f , the midpoint triangular area is a unique
well-defined function on the wholB?" x R?" x R?*. Generically, howeverAg is well
defined only on a subsét ¢ M x M x M, as exemplified below for the torus, the sphere
and the hyperbolic plane.

In every case, though, for any triplet of points for whigly is well defined, modulo
constants, we get frofRropositions 4.1 and 6,.Yia (6.3), the main result. We now have
the following theorem.
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Theorem 6.1. Let f,,, fa, locally be standard central actions far, a2 : M — M,
respectivelylf £, is locally the standard central action for = a2(«1), then

fa(m) = for A fap(m) = Sty my){ fay (1) + fa,(m2) + Ag(m, m1, m2)}  (6.5)

defining the standard composition of central action@bnf Ag(m, m1, m2) is well defined
up to constantg.e. if (m, m1, m2) stand as midpoints of a standard geodesic triangle

As a product onAg(U), for & fo, May not exist or if so, it may not be unique, for
Ay C (TM)p may not satisfy(4.2)overU c M, or it may be composed of many sheets in
(TUo.

Furthermore, the composition ru(6.5) is not unique when considering nonstandard
central actions as well, #7 has closed geodesics. In this case, repeating the steps that led
to (6.3), for reducible triplegi, j; k), using(4.3") we get the generalized version:

dfkm) ~ dfl (my) + dfd,(m2) + dlx ]k (r. 72). (6.3)
where b(;]i’j is a local representation for a general phase func(ffJn)ﬁ — R, given by
[xJE (71, %2) = Q7)) + 0L(72) — QF(ck (71, 7)), (6.4)

with eachQ} being a function defined as@} = Z} — Z;, on appropriate subse®; c
(TM);. As in the standard case, we identify this function by the following proposition.

Proposition 6.1'. For (i, j; k) reduciblg and for appropriate choices df;, Z;, and Z;,

the function[x.]% is well defined on the whoté’T/l)ﬁ, independs on local choices ofaind
coincides modulo constantsith the symplectic area of a reducible geodesic triangles on
M which can be defined by elements(ﬂ/l)ﬁ x (TM); and determined by its midpoints
(m1, m2; m), in other words geodesic triangles with given midpoints and sides which are
(i, j; k)-fold geodesics. Such area shall be denotedﬁkﬁy(m; m1, mp) Or generically by
A(m, m1, mo).

Proof. This is an elaboration on the proof Bfoposition 6.1Here, we must argue that
there is a consistent choice for thg’s, such that eac@gm =y/: M — Ris given by

exp{(v/—1/0)yi(m)} = n';(m), wherer’,(m) is the horizontal transport oved ~ TJM of
the L ;(mg) loop holonomy, given a reference poing.

Explicitly, if exp{~/—18;} denotes the. ;(mo) holonomy inSM (its homology class, if
irreducible), thery/ (m) = fm’j(m) w, modulo Zrx and the constargt;, WhereBEL}(m) =

L/j(m) = L j(mg, m) is the reducible loop inV/ given as(mg — m) o L;(m) o (m —
mo) o L]l(mo), with L ;(m) denoting thej-fold geodesic loop based at

Each®; : (TM); — DM provides a pull-back (trivial) bundleSTM) ; % SDM Taking
local trivializing sectiong; : TiM — (Sﬂ(/l)j of the formg; = plfl([a, o}]), Wherea}. =
o- n;(m), for (o) = n(c6’) = m, locally represented ég(%f) ~ (m, [v;]; exp{(v/—1/1)
y/(m)}), then, from a similar analysis to the standard case, the trivializing seations
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(TM); — (STM) ; which are obtained fror; via parallel transport along thej-fibers are
such thaip;(e (7)) = [¢/, 0], where(o’, o) are the endpoints of a horizontal lift BIM
of the j-fold geodesic fromm’ to m”, centered om = P; (%) for @ ; (@) = (m',m").

Hence, if(71, 72) € (TM)Z, thenCf (ei(71), £;(72)) = ex(cf (1, 72)) - Kf (1. 72), where
cf (Sﬁ/l)ﬁ — (STM); is the “extension” of the mixed compositiarf, defined as
C{J?(zl, 22) = o H(pi(z21) ©pj(22)), 21 € (STM);, etc. andKi’J?(%l, 7o) € Stisthe holonomy
in SMover the (, j; k)-triangle of composition, which, ifi( j; k) is reducible, corresponds
to the exponential of its symplectic area.

Furthermore, since any reduciblg f; k)-geodesic triangle stands in a bijective corre-
spondence with a standard one, it follows that the; (k)-triangular area is a well-defined
function A§ of the midpoints.

Therefore, the holonomy can be identified as{éxzﬁ?l/k)A{j (m; my, mp)}, formy =
Pi(T1), mp = Pj(T2) andm = Pk(Cﬁ(%ls )), whereAﬁ(m; m1, mp) stands for the sym-
plectic area, modulos2\, of the reducible geodesic triangle with given midpoints and sides
which are {; i, j)-fold geodesics. This also means thgt(71, 72) = expl(v—=1/M)Af
(m; m1, m2)} is well defined on the WhO|(§ﬂ\7|)§ and independs on local expressions for
the connection{é«] and its pull-backs ;.

But, from the form of such pull-back connections and Qgﬂﬂ =yl ands,| =
£, as above, it follows that the trivializing sectioascan locally be written as,(r) -~

(T; expl (v — /A)Qg(r)}) and therefore)[g]IJ is a local representation fox (m;ml, m2),
modulo 2rA. a

The appropriate choices of central potentials referred to in the statement are explained
in its proof. Loosely speaking, eady is chosen as the pull-back of a single 1-fofon
TM, for each |mmer5|omTM)J — TM. Using(6.3") we get the following theorem.

Theorem 6.1'. Let fél, fo{z locally be central actions fow1, 0y : M — M, respec-

tively. If (i, j; k) is reducible andf¥ is locally a central action fox = az(a1), then it is
given by

fhm) = fi, A* fl, = Sty 12, m1) + fiy(m2) + Ak (i my,mp)}  (65)

defining the(i, j; k) composition of local central actions av, provided(m1, m2; m) can
stand as midpoints for a reducib{& j; k)-geodesic triangle and each action is defined with
respect to the choices of central potentials referred to and explained above

Clearly, (6.5)is a particular case 6.5"), with Ago = Ag. However, by restricting to
the standard composition we have obtained a uniquely defined rule. In extending to generic
central actions this rule ceased to be unique, even though each instance is well defined.
Thus, for simplicity, when considering multiple compositionsSection 7we keep to the
standard case.

Finally we remind thatwhenever meaningfgtlean producf43]), (6.5’) applies for the
composition of central relations o#f.
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Examples Standard cases, only. In the simplest spaces, we provide the expressions
for A and analyse the specific nontrivial restrictions which apply, in each case. First, on
RZ:

A(X, X1, X2) = 2{X A X1+ X1 A X2+ X2 A X} (6.6)

is the midpoint triangular area, defining \(®5)the composition of central actions &¥.
On 72, we add the restriction on the lengths of the triangles, in terms of midpoints:

T
lgi — ql, Ipi — pl, lg1 — q2l, |p1 — p2| < 5 = 1,2 (6.7)

On the 2-sphere, the midpoint triangular area is given by Aggendix A):
A=2Arg[am+i1)], (6.8)

whereo = o(m,my,mp) € {—1,0,1} has the same sign as any of the scalar prod-
ucts (m - mi), (m - mp), (m1 - m2), and D = D(m,m1, mp) = detfn, m1, mo]. Here,
m € §2 ¢ R3. For small triangles, i.elA| < n, (6.8) simplifies to A(m, m1, mp) =
25~ L(detfn, g, mo)).

This explicit form for A must be placed i(6.5), provided the tripletm, m1, m») stand
as midpoints of a spherical triangle with all sides shorter tharhis nontrivial restriction:

signGin - riny) = sign(imny - f2) = signGin - i) (6.9)

is the constraint that must be imposed(6rb) and (6.8Jo define the standard composition
of two central actions on the sphere. Constraints analogo{@&apor (6.7) apply to each
mixed composition, for every space with closed geodesics.

The hyperbolic plane presents one subtle distinction. Herey form € H? ¢ RS,

A(m, m1, mp) = 28~ L(detfn, i1, m2)). (6.10)

But now we notice tha6.10)only makes sense on the subsetH8fx H2 x H? determined
by:

|detfm, my, m2]| < 1. (6.11)

The composition of two central actions @i is given by (6.5) and (6.1Q) subject to
constraint(6.11) Actually, (6.11)is a necessary and sufficient condition any triplet of
points onH? must satisfy in order to be the set of midpoints of a hyperbolic triangle.

As in the case of the sphere, there is a nontrivial constraint in the composition of two
central actions, but in the hyperbolic ca$g,11) comes naturally from the definition of
the area functiof6.10) being intrinsic to the hyperbolic geometry. Its interpretation is that
the three midpoints can never be too far apart, as can be pictured by drawing a geodesic
triangle on the Poincaré disc. For the sphere, on the other If@u8),is a consequence
of the restricted groupoidTS)o. In other words, there do exist spherical triangles whose
midpoints do not satisfy6.9), but they cannot be used in the definition of the standard
composition of central actions (they can be used for mixed compositions), contrary to the
hyperbolic case where, for every triang(é,11)holds.

Also note that, when defining triangles by their triplets of vertices, instead of midpoints,
no nontrivial restriction exists (except for sets of measure zero), which is a consequence
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of the fact that the mafvertices — {midpointg is generally less trivial than one would
guess by looking only at the euclidean plane. See Afgmendix Aand[31,33,38,47]

7. Multiple compositions

So far we have seen how two central actions may compose into a new o(&5/)a
Now, we want to generalize it for the composition of an arbitrary number of standard central
actions, whenever possible. This should be done with some care, so we first get the following
lemma.

Lemma 7.1. Let f,, locally be standard central actions fot,, C (TU)g. If fu, A fo,
and f,, A fo, are unique standard central actions &h as well as( fy; A fa,) A fos and
Jor B (fop D fug), then(foy A fo,) A faz = fog A& (foup & fus) 1S given by

fal A faz A fas(m) = Statml,mz,m:g) {Z foz,- (m;) + Pa(m, m1, mp, m3) ¢, (7-1)

1

P4 being the smallest symplectic area of doyiented quadrilateral decomposable in tri-
angles defined by elements‘lrn\/l)(z) only and determined by the midpoiits, m1, m2, m3),
up to constants

Proof. Supposef,, A fu,, given by(6.5), is a unique standard central action@nc M,
just asfy,. Applying (6.5) again:

(fOll A faz) A fa3(m) = Statm’,m;;){fal A faz(m/) + fota(m3) + A(m, m/a m3)}
= Statm',mg){Statml,mz){fotl (ml) + fotz (mZ)
+A(m', m1, ma)} + fug(mz) + A(m', m3, m)}.

If a unique solution exists, this rewrites as:

Statml.mg,mg){fal(ml) + fOlz(mZ) + focg(m3)
+ Stag,{A(m', m1, ma) A(m', m3, m)}}.

But, with {m;} constrained by the overall stationary condition then, via the cezadtion
(4.3), A(m', m1,mp) =: g1(m’) andA(m’, m3, m) =: g2(m") provide well-defined maps
G1, G2 : m' — V1,02 € (T,y M)o, supposing that botp; andg , as well asfy, A fu,
and(fy, A fay) A foy are well defined unique central actions, i.e. both partial and complete
unigue solutions to the stationary conditions exist.

From the form of the central equation and the involutive character of the central potential:
Zo(1t) = —Zo(7), them’ stationary condition implieé?l(m’) = —Gao(m').

Using the symmetric exponential map, we see that the two triangles composed form a
single quadrilateral, i.e. their sides centeregiaaire precisely opposite to each other. That
is,

Stat,){A(m’, m1, mo) + A(m', m3, m)} = Pa(m1, mo, m3, m), (7.2)



430 P. de M. Rios, A.O. de Almeida/Journal of Geometry and Physics 51 (2004) 404—-441

where P4(m1, mp, m3, m) is the symplectic area of a standard quadrilateral with these
midpoints.

Generically, the four midpoints do not determine the quadrilateral uniquely. But if all
triangular decompositions yield triangles which are defined by eIemer(fENl)% only,
then byProposition 6.2and(7.2), P4 is the symplectic area of any such quadrilateral, up to
constants: any degeneracy in its specific geometry, which is a continuous function of
does not alter the symplectic area, and any otliEM)g-quadrilateral”, in the above sense,
has the same symplectic area up to constants. a

The existence and uniqueness requirements are quite difficult to assure beforehand, in
general. Of course, if any,, or intermediary composition is not a central action, the triple
composition is void. On the other hand, if an intermediary composition is not unique, say
fou & fa, = {81, g2}, then we could proceed tg1 A fu,, 82 A fas} in just the same
manner, but the final compositiaife, A fa,) A fus IS NOt guaranteed to be associative,
in principle. However, if allA;, Ag,q;, ... are composed of sheets whose one of them
can be consistently singled out, for some particular reason, as well as their corresponding
central actions, then we can applgmma 7.1exclusively to this particular set. Carefully
reiterating all steps t¢7.1) gives the following corollary.

Corollary 7.1. Let f;, locally be standard central actions fot,;, C (TU)o. If all interme-
diary, ordered compositiongy; A fu,, 1, fo; A (S A faiio)s (e A faiin) D faiin) D faiss
etc. are unique standard central actions bipthen anyr-string of ordered compositions
which is a unique standard central action equals any other sustring and is given by

fal A fotz JANRRRIVAN foz,l (m) = Stat{m,}) {Z foz,-(mi) + Pn+1(ma {ml})} s (73)

P,+1(m, {m;}) being the smallest symplectic area of dngiented (n + 1)-polygon which
can be triangulated by elements defineo[TrM)S only and determined by the midpoints
(m, {m;}).

Again, if uniqueness fails, but a unique set of central actions can be consistently singled
out, then we can usgorollary 7.1for these particular standard central actions exclusively
(seeSection §. We should note that, with greater care, the above rules can be generalized to
multiple mixed compositions of central actions and, even more generally, central relations
whenever meaningful.

Corollary 7.1generalizes a previous result &% [27]. We remark that some of this
discussion on composition of midpoint triangles, in general symmetric symplectic spaces,
has been approached independently from the point of view of associativity for star products
[31].

ExamplesFor the composition of three actions, the euclidean plane presents an interesting
feature. Fron(6.6) and (7.2)we getPs/2 = Stagy) {X1 AX2+X3AX+X A (X1—X2+X3—X)},
which implies:x1 — ¥» + X3 — X = 0 . This means thatx, {x;}) are the vertices of a
parallelogram with diagonal — ¥1, ¥ — ¥». But this is true for any quadrilateral iR?,

i.e. their midpoints are vertices of a parallelogram. Conversely, given any parallelogram on
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R?, there exists a continuous family of circumscribed quadrilaterals whose midpoints are
the vertices of the given parallelogram.

Such a family can be parameterized by one of the vertices of each circumscribed quadri-
lateral or, equivalently, by the midpoint of one of its diagonalsy’above. In accordance
with (7.2), the symplectic area independs nbeing uniquely given as twice the area of
the inscribed parallelogranPs(x, ¥1, X2, X3) = 2(X1 A X2 + X3 A X = X A X1 + X2 A X3),
which, inserted irf7.1), defines the composition of three central action&éywith (¥, {x;})
subject to the parallelogram relation, and under the conditiohewima 7.1

On the torus, the same analysis and results apply, but now subject to the extra (standard
groupoid) constrainty — gil, g: — q;l, |p — pil, |pi — pjl < 7/2,i,j=1,2,3.

On $2, however, the above quadrilateral ambiguity is an exception, when considering
only those quadrilaterals defined by composing elemer®)o. Then, as with spherical
triangles, a near-bijection between the sets of vertices and midpoints allows for a unique
definition of the quadrilateral geometry either way, i.e. each quadrilateral is uniquely de-
termined by its vertices or its midpoints (with a few exceptions) and the only restrictions
derive from the restricted groupoi@<)o.

DenotingCjj = m; - i1; = cosinddistancém;, m;)), we can write the midpoint area
of convex quadrilaterals which are decomposable in small trianglesidle< w, as
Pa(my, mp, m3, ma) = 201234 C {C12C34 + C23Ca1 — C13C24}, Whereoypzq = +1
is the orientation ofm1, mo, m3, m4) and the standard groupoid restrictions on the mid-
points of these simplest quadrilaterals now becomMgis, D234, D341, D412 > 0, where
Dij = detfm;, mj, ], which, together with(7.1), define this simplest composition of
three central actions a$?, under the existence and uniqueness assumptions as required in
Lemma 7.1

On H?, the midpoint area funct|on for a convex quadrilateral is given similarly by
Pa(m1, mo, m3, ma) = 201234 - C~1{C12C34 + C23Ca1 — C13C24}, WhereCj = cosh
(distancém;, m ;)). Again, the restrictions are intrinsic to the hyperbolic geometry and can
be obtained d|rectly from the area function, i.e. the convexisetmo, ms, ma) must sat-
isfy |C12C34 + C23Ca1 — C13C24| < 1 and each quadruplet of midpoints satisfying this
constraint determines a unique convex hyperbolic quadrilateral and vice versa (with a few
exceptions, see below). Usinggmma 7.1 we obtain this simplest composition of three
central actions oif?.

SeeAppendix Afor a more detailed analysis on these quadrilateral geometries.

Besides providing explicit equations for compositions of three central actions, the previ-
ous discussions further illustrate some kinds of constraints which the midpoints, or centers
(the arguments of the composing actions) are subject to.

In this respect, the euclidean plane presents the feature that, when the number of compos-
ing actions s even, no restrictions apply, but when the number is odd, there is a degeneracy in
the determination of thef2polygon from its midpoints, corresponding to a linear functional
restrictiong(x, X1, . .., X2._1) = 0 on the arguments of the composing central actions. For
the torus, one must further add the groupoid restrictions.

On the other hand, in the nonflat cases studied, such a degeneracy is an exception and
its corresponding extra constraint is not present. When considering only those polygons
which can be obtained by iterated (standard) central groupoid compositions, there is a
near-bijection between the sets of midpoints and verticesH8yrintrinsic restrictions on
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the midpoints exist, though, which show explicitly in the midpoint area function, whatever
the number of composing actions. Gf, only the (standard) central groupoid restrictions
apply.

Another way to view degeneracies and extra constraints is the followingud, €in;},,)
be a candidate for the set of midpoints for(@rt 1)-polygon onM. Also, for eachn;, let
Rm; - M — M be the corresponding involution whose fixed poimtjsThen, the existence
of a circumscribedn +1)-polygon to the midpointén, {m;},) is equivalent to the existence
of a fixed point for the symplectomorphisBi+1 = R, - Ry Rm, - Rm : M — M.

OnR?, whenn is oddP, 1 is a translation, seg.1). Fixed points exist only when this
translation is the identity, in which case every point is fixed. For the sphere, on the other
hand,P,+1 € SO3), Vn € N, and there is always a fixed point (actually two). However,
for H2, P,1 € SO2, 1) and there may or may not exist a fixed point&A, Vn > 2, but
when there exists, it is unique. The exception, in both cases, is When= 1 and for
these sets of points the corresponding circumscribed polygon is not uniquely defined, but
SO is its area.

We shall not present here an explicit characterization of multiple compositions, for generic
n, in every example. The reader is referred26], for the euclidean case. Instead, in the
next paragraph we study a particular limit {r3), asn — oo.

8. Thecentral variational principle

We now focus on the relationship between finite and infinitesimal canonical transforma-
tions in the central description, i.e., on the relation between finite and infinitesimal central
actions.

Tothis end, considdr); = {a(x)}r, a continuous sequence of canonical transformations

on M for which the following properties holdx, y, z,t €0, T]stx+y+z=t, a(x) :

M — M satisfies@”)*o = 0, ¢, = ¢/? = o« @? - o?) = o ~a§3:y =
oty (x)) o = Sﬁz 9 and alsax,+g = aé) o; = o, + 0(¢), ase — 0, with

aé” —id: M —> M, wherea is the infinitesimal canonical transformation defined by

the hamiltonian function(r), via Hamilton’s equation or, equivalently, by the infinitesimal
central action f, o = —eh(1), via the centralequation (4.3) We assume thak(zs) is a

continuous funct|on of, buti(r) # h(¢), in general. In other wordg,is a nonautonomous
hamiltonian, i.e. a continuous function @t x [0, T]. Accordingly, we denoté&(0) = &
and, ifh(t) = h, Vt € [0, T], we say that is autonomous. In this particular casér) = 4,
we have that, for € [-7, T], («;) "t = a_;. But generally, i.eh(r) # h(r'), such simplest
inversibility relation only applies for very short intervals of time, (e(’)) 1= a(,’)g only
in the limite — 0. In other words, the flow of;} 7 is locally hamiltonian (autonomous),
but not globally.

Now, we will seek local central actions fog; given in terms ofi (7). To achieve this
goal we shall use the results from the previous paragraph, but, in doing so, we should
certify that f,, exists and is uniqueys’ € [0, #), in principle. Actually, both conditions
can be relaxed in this particular case, as is shown below. Then, we obtain the following
theorem.
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Theorem 8.1. Let («)7 be a continuous sequence of canonical transformation&foas

above where ag — 0, a§’> is the infinitesimal canonical transformation generated by the

hamiltoniank (1) = h(m, r) continuous inr. Then wherever the central action for; = aﬁo)

exists fo, (m) = lI/,i (m) = ¥, (m, 1), it satisfies the Central Variational Principle
W, (m, 1) = Stag, {— f h(m' (), )y dt’ + ﬁw} (m, 1) (8.1)

for a family of continuous paths : [0,7] — M geodesically centered on, wherg by
definition {(Sw)(m, 1) = [Hw]'(m) is the symplectic area between the cutvand the
geodesic fromv(r) to v(0) centered onn (seeFig. 2). This area function is well defined
up to constantsprovided the geodesic is such that the full closed circuit is reducible.
Furthermore the stationary paths solving(8.1) coincide with the classical trajectories
on phase space describing the continuous evolution fri@nto v(z).

Proof. We start by considering those central actions which are continuously deformed from
the hamiltonian, i.ef,, — —eh, ast >~ ¢ — 0, continuously oV C M.

Thus, let{ A,,} be a continuous set of lagrangian submanifoldgTM)o, £20), evolving
from the zero sectiof°M = Agy = M, st.VT € Ay, P(v) = (m_, my) satisfies
my = o;(m_). )

Suppose that ove/ C M there aref branches ofA, = A,,, wherea, = o, for
t =t, € (0, T], generated by central actionsy, , j = 1, ..., £. GenericallyU is an open
neighborhood bounded by the sets of central caugiig$/, j = 1, ..., £ — 1. Further, let
1 € (0, 1,) be the time when a central catastrophe first appeafAgy}, i.e. A, satisfies
(4.2) everywhere oM, for ¢ < #.

Denoting{m;} the set of central caustics fot;, then we can find neighborhoods i
divided by{m}. This is not so clear when codit{m;}) > 1, but following the evolution of
these caustics we can find appropriate subdivisiond.ihet us denote byj,} one of such

neighborhoods, containing. Then A2(U) > A2(UY). Let £ € A2(U) be the central

action forex onU C Ui € M.
="

v(0)

Fig. 2. Central symplectic area of a curve.
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Now, of all the branches af,,, overU, only one is a continuous deformation fram,
overU, therefore, of all the central actions fay on U, only one is a continuous deformation
from fo}k onU. And sincefo}k is continuously deformed fromsh, even though there are
more than one central actions f@; on U, there is a unique central action fe on U,
denotedfO}”, which is continuously deformed froffy, = —¢h,t ~ ¢ — 0.

This result clearly independs on the number of subsets,obver U, or equivalently,
on the number of central actions fey on U. Also, the other sets of central catastrophes
for A, {t,}/, j=2,...,¢— 1, are not connected m,%, sofaln is actually a continuously
deformed central action on the larger neighborhtigd> U, U ¢ U,g C M being limited
only by the set of central caustipa, }1, V¢’ € (0, #,). This also means that, for such values
of ', fo},, exists, besides being continuously deformed from the hamiltoniaU,}ocn M.

We are now ready to apporollary 7.1to f; = f;(,_l)Af;(,_z) o -Afia)Af;(o),rtimes.

t/r t/r t/r t/r
Thatis, the continuity of(}t has substituted for uniqueness. From the involutive character of
the central potentialo, via the central equation we have thfgt )1 = fo . = — f,,, which

implies thatf, , = +¢h + o(e%). Also forfa(,f) = —eh(r') + 0(¢%). Then, letting: — oo,
we can safely make the approximatigsh,.) = —(t/r)h() + o((t/r3 > — (t/r)h (1), to

t/r
getonU! c M:

r

. —1 o /
fﬂ:}t (m) = r||~>moo |:Stahml/}r) {Zl (T) h(mi’ ti) + Pr+1(m’ {ml}r)}:| ’ (82)

wherem; = m'(t), t; <t/ , € [0, ¢]. Now we realize tha{8.2) takes on the fornf8.1) as

1
we identify v = lim,_, oo ({m'(z))},) : [0, 7] — Ut1 C M as a continuous curve satisfying
Po(@5 (v(0), v(@)) = m.

In passing from(8.2) to (8.1), this area is integrated via a limit — oo) of the area
of (r + 1)-polygons whose midpoints ate:, {m’},), asr of the sides tend to length zero
while the other tends to the geodesic frerhto m centered om:. In order to see that the
stationary path is the classical trajectory with endpoints geodesically centeredvoa
notice that each small side of tite+ 1)-polygon is a geodesic which, in the limit of very
short time intervals, i.e. of very small sides, coincides with the local hamiltonian flow of
h(m}, t}), which is centered om;, as discussed iBection 4 Thus, taking the limit — oo
of {m'(¢))},, we obtain a path that is everywhere tangent to the locally hamiltonian flow, in
other words, that converges onto the classical trajectory.

At first, (8.1) and (8.2yvould apply only to those central actions that can be continuously
deformed from the hamiltoniah, on U} c M. However, if f,, is not of this type, it is
always possible to decompose it S = fi“/) A fj@ or fl(,/+,~> A ( fi(/,) A f;(o)), etc.

t—t/ 4 t—t/ -t " 4
where each “smaller” component is continuously deformed from the appropiiateon
each appropriate neighborhood. Thus, they can be written as soluti@d yavith each
VY, t—1] — M, etc.

However, the laws for compositions of central actiges’), plus the fact that we are
composing central actions for the continuous sequéage, imply that the trajectories
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v, v compose into a single continuous trajectory= v o v/, for appropriate choices of
fo}t,, fal(t,), with the corresponding arefsw and® w summing up tc&w.

To see this, we notice that the stationary conditionsgnin (6.5’) implies, via cen-
tral equation, that$w]” (m’) and A(m’, m”, m) provide maps fromn’ into reciprocally
inverse elements iff,,; M, which, via the symmetric exponential map, tells us that they
compose into a single geometric figure. Repeating the analysismiifwe have that
[Bw]” (m'), [Bw]” (m”) and A(m, m’, m") compose intofw]'(m) = {Bw}(m, 1), for
t = ' + ¢, using the fact that = V" o V/, provided the composition is reducible, i.e.
provided the triangle of composition = A{J? is a reducible circuit, which means that
the geodesic from(f) to v(0) centered onn is such that it closes the trajectoryinto a
reducible circuit. And so on, it follows thaf,, can also be written as a solution (®.1),
even when it is not continuously deformed from the hamiltonian, meaning that, for some
(m', 1)y e M x[0,1), fo,(m") does not exist, i.en’ is a central caustic singularity fot,,,,

! <t

So, even though genericalfy, does not exist everywhere a#, for " < ¢, and f,, is not
everywhere deformed from the hamiltonian functipoontinuously, wherevef,, exists it
can be written as a solution {8.1), with v being a continuous trajectory,: [0, 1] — M,
andm being the center of the (short or long) geodesic figmto v(0) closing the trajectory
into a reducible circuit. O

Theorem 8.1generalizes to nonflat symmetric symplectic spaces the previous result
on euclidean spac5]. It is a real variational principle which is invariant at least un-
der general transformations avl preserving the affine connection and the symplectic
form.

Besides, it does not require any local decomposition of the phase &piate lagrangian
subsets. In other words, it is fully adapted to the nontrivial geometny of

Furthermore, in opposition to the complex counterparts, this real variational principle
has only real classical trajectories as stationary solutions.

The novel feature is that the trajectories are constrained on their geodesic centers instead
of the more familiar (local) lagrangian coordinates of their endpoints. Therefore, in solving
for the paths which are stationary i8.1), only the timer and the center are held fixed.

Finally, the central actiow;, (m, r) provides, via central equation, the finite transformation
v(0) — v(r) and, given its explicit relationship to the infinitesimal generatgrs, 1), plus
the fact that it is a real function ol x [0, T], ¥, can be seen asfaite time extension of
the hamiltonian function

9. Temporal evolution of central actions

We have just seen how the central variational principle provides, not only for the classical
trajectories obtained by the stationary condition, but also for the central actions which
generate finite canonical transformations and can thus be seen as finite time extensions of
the hamiltonian functions. Now, we shall investigate the temporal evolution of such central
actions.
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First, we can examine the temporal evolutiongim, 1, for fixedm. The total variation
of ¥, (m, 1) with respect ta depends on the direction of. We have:

Wy (m, 1)

e-VilWp(m, ) =¢- { o

+ 1 | dw,;(m)}, (9.1)

denotingst = ¢. On the other hand, b{g.1),
£- Vi (Wh(m)) = —& - h(v(@), 1) + & - {m | d[Bw]’ (m)} + 0(&), (9.2)

since ¥} (m) is stationary inv and only terms in(3v)2 contribute, where @v)2) ~ o
(2).

In Eq. (9.2)we are thus approximating the new path, by the old onev,, i.e. we
consider only infinitesimal variations in the endpaitr) along the same classical trajectory
v:(0,t+¢) — M.

Via central equation, we havel) = df,, : m > T, while dffw]’ : m — T,. But, by
constructionz,, = 7, = 55[1(v(0), v(f)) and therefore &} (m) = d[®w]’ (m), where now
we identify &) (m) = lI/;'l(m, t) as a generic central action. From this gadl) and (9.2)
we identify:

Wy (m, 1)

o = hme. (9.3)

Sincem = expﬁ(+lj“g;t(m)), Wheref?g;t (m) € (T,,M); is defined by ¢}, = d¥; via the
central equation, then

H[w 0m, 0] := h(exp, (+FL, (m)), (9.4)

defines the functiondil on Ac(U). Thus,(9.3)can be rewritten as:

oW (m, 1)
ot

which is the central version of tHéamilton—Jacobi equatian

ExamplesOnR? (9.5)become$¥, (%, 1) /9t + h(x — (1/2) J(3¥;, (%, 1)/9%), ) = 0, see
[21,27]

Ons?andH?, however, its explicit generic form in local coordinates is quite complicated
and it is rather simpler to ugd.9) or (4.11)to write H[¥; (m)], for each specifi:.

As simplest example, consider & the hamiltonian functioth = —Cjy, genera-
tor of infinitesimal rotations around the south/north axis, or poles. Using the conven-
tion ¥, = f,, = 2f;, by (4.9) we rewrite the standard version (4.5) as3f(0, 1) /3t —
(1/2)Cy/1 — (3f(8,1)/36)2 = 0, where we denoted;; (8, ) = f(6, 1), exploiting the
p-invariance of the action; and remembering that, by rescalifig= f,,, we must also
rescalg:, and hencél by the same factor. Check that the central action givebI8), with
x = 0 andr = 2y, satisfies the previous equation.

Finally, we notice that we could rewritq. (9.1)as: Vi (¥} (m)) = 0¥} (m)/or +
v, | dw; (m), form = v, defined by, | w = —dg, g € C(M). Using(9.5), we get the
following proposition.

+ H[W,(m, ] = 0, (9.5)
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Proposition 9.1. Letg, h € C’;Q(M x [0, T]) and¥; € Ac(U), U C M, where¥; = (1)
is related tok via the central variational principl€8.1), for a given timer € [0, T]. The
time derivative of; “along g”, i.e. in the direction of the local hamiltonian flow gf
denotedv; (), is given by

VEWL(D) = (¥ (1), g0} — H[¥, (1], (9.6)

where{, }isthe Poisson bracketand the functiofiik defined by9.4)via central equation

Remark that the RHS dB.6) involves partial derivatives i only. Particularly inter-
esting is the case whetg is known to be invariant in a given directiap,

VEWL (1)) =0, giving {¥ (1), g(t)} = H[¥, (1] (9.7)

as a direct relationship between the functiodadnd the Poisson bracket wigh

Conversely, any functiogsatisfying the second part(¥.7)defines curvesy, : [0, T] —
U C M, along which¥; is constant. The other particularly interesting case is when
(W (D), g} = 0, for which V¥ (¥, (m, £)) = 0w, (m, 1)/3t, computable by the Hamilton—
Jacobi equation.

10. Conclusion

We have presented a general formalism for describing hamiltonian systems defined on
symmetric symplectic spaces, where the local generating functions are real functions on
phase space. We have seen how the central actions (relations) are defined, generating finite
canonical transformations (relations) via the central equation and the symmetric exponential
map, and how they compose via a neat formula involving the midpoint triangular (polyg-
onal) area. We have also seen how the “extended hamiltonians” satisfy a geometrically
simple real variational principle, which determines the classical trajectories, and satisfy a
Hamilton—Jacobi equation, mixed with Poisson brackets.

The authors’ main motivation into this central formalism lies in its application to prob-
lems in quantization and semiclassical analysis, more specifically in connection to “Weyl
quantization” and “star products”, which attempt to understand the classical-quantum re-
lationship within the phase space formalism. In this respect, and specially for oscillatory
phenomena, it turns into a definite advantage the definition of real phase space generating
functions, which can be connected to hamiltonians in such geometrical fashion, with their
neat triangular law of composition (sfg27,31-33,47)]

A possible extra application refers to implementing new symplectic integratorf2@ee
for a review). Here, the polygonal law of compositiéh3) could be applied in the dis-
cretization process, making use of the fact that each local action for a finite small interval
of time is a small, in principle controlled, deformation of the hamiltonian. Also, for au-
tonomous hamiltonians the formalism is symmetric with respect to trajectories in both
temporal directions.

On its own, however, such geometrically simple law of compaosition presents new routes
of investigation on symplectic dynamical systems. For, as hamiltonian functions correspond
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to generators of infinitesimal canonical transformations, the actions correspond to elements
in the Lie group. Therefore, their homogeneous presentation, which naturally extends to
relations, sheds new light on the canonical formalism on symmetric symplectic spaces.
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Appendix A
A.1. Triangular computations

In the spherical case, recgli5] that if A; are the angles of a geodesic triangle
whose opposite sides afe < , respectively, then the following trigonometric equalities
hold: Se; /S5, = constantCy, = CgiCzj + SgngjC)Lk, Cy = S)LiS)nngk — CkiCAj- Also,
the area of a spherical triangle is its excess afg¢

Now, for any spherical triangle with sidés < m, a simple computation shows that
T, = K/(Cy; — Cy;Cy,) Wherey; is the angle opposite t§ andX is a constant for this
triangle, K2 = 1 — Cl?l — Cl?z - C%a 4 2Cy,Cy,Cyy = Detlay, &z, &3], wherea; are the
vertices of the triangle. By correctly fixing the orientations, we can take-tb@gn in the
square root.

Let us denotel; = 2y; andx; = distancém, my), wherem; is the midpoint of the
¢; side. Thenn; = (1/2C,,)(&; + ai), from which, sinceCy, = m; - my, we get that
Cy, = (1/2Cy)(Cy; + C;;) = (1/2Cy,)(Cy, + C,), Wherez; = distancém j, ;). From
this we get:.Cy, /Cy, = Cy,/Cy, = Cx;/Cyy, = I', a constant. This is a generalization of
the plane trigonometric relation/y; = 1.

Now, in order to computd”, we substitute the previous equation in the trigonometric
equalities, to obtainf™? = C2 + C2, 4 C2, — 2C,,Cx,Cy; = 1 — Defin, iz, 3.
Using the previous equations f@y,, I" and I"?, we finally getT;, = I'vV1— '2/(I'?> —
Cy;Cy/Cx) ANAT (g aptng) = Ta = I'V1=T2/(I'? — 1/2). Identifying I' = C,,
we haveTy = T, that isCajz = #,/C2 + €% + 3, = 2C4,Ci,Cug = [ Saj2 =
Det[m1, mo, m3].

The sign choice fo§ 4 /2 is fixed by the orientation. We still have to determine the sign of
the square root if'a /2. Obviously, if|[A| < r, we must choose thesign. These triangular
areas are continuously deformed from infinitesimal triangles, for wéiich- 0, Vi. Since
we are considering only short triangles, ve< 7/2,Vi, fromC,,/C,, = I', we get/" > 0.

On the other hand, l¢A| = 27, i.e. considern1, m», m3 to be collinear, same fary,
a2, a3, such that the “triangle” coincides with a geodesic meridian. Agaip, € /2, Vi,
it is clear that in this cas€,, < 0,Vi, fromCy,/C,, = I", sinceCa 2 = I < 0. And so on
for triangular areas continuously deformed from this “big triangle”.
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Finally, when|A| = 7, Ca/2 = 0 and we have thawi, Cy, = 0. In this case(), is
completely undetermined and so is the triangle, although the area of all such triangles is
uniquely given by their common midpoints. It follows that the sign of the square root is the
same as the sign of th@,,, or in other words# ; - ik, Vi, j, k, if all sides are short. Hence,
we have got6.8).

As for the restrictions on the midpoints@f;, > 0,Vi, then eitheCy, > 0,Vi,orCy, =0,

Vi or elseC,, < 0, Vi. In all cases, sigiC,,) = sign(Cy;), Vi, j, which is condition(6.9).
With some care, these results can be modified for general spherical triangles.

Again, the previous analysis can be adapteH fowith some care (refer {85]). On H?
we do not have problems of antipodals or sign choices, $inte: 7, always. On the other
hand, the analogous {6.8), namely(6.10) is well defined only whei(6.11)is satisfied.
Butoncel’ = Ca 2 = CXl + sz + Cx3 — 2Cxle2Cx3 is well defined, we go through the
argument backwards fronﬁxl/Cyl = I, to see that the triangle is also well defined.

See[38] for an alternative discussion on these triangular geometries.

A.2. Quadrilateral computations

Againwe proceed inthe spherical case and later adapt the hyperbolic formulas. Consider a
shortquadrilateral with verticeg and midpoints:; = mid(e;, a;11), S.t. distancey;, ;) <
m, Vi, j € {1,...,4}. This means that not only the sides, but also the diagonals are short.
Now, denote byng the midpoint of the diagondlr1, a3) and byyy its half length. Simi-
larly, denote byy; = (1/2)distancéw;, o;+1). Then, each of the triangléas, a2, @3) and
(a3, ag, a1) are uniquely determined by their midpoiniso, m1, m2) and (mo, m3, ma),
which shall be denoted b2 and Asg, respectively, with the same notation referring to
their respective areas. Further, we dengte= distancém;, m ).

From the triangular analysis, we know th@f,,/Cy, = Ca;y/2, Cxzs/Cyg = Cagy/2-
Similarly for the other partitionCy,;/Cy; = Cagy2, Cryy/Cyy = Cagy2, Whereyy =
(1/2) distance(az, as), m being its midpoint, and so on. Therefo®, ,/ Cx;, = Cay,/2/
CAza/2s Crpa/ Cxyn = Caggr2/ Cagyy2- These equations generalize the parallelogram relation
on the planexi2/x34 = 1 = x23/x41, but contrary to the plane, they impose no constraint
on the midpoints.

In compensation, o§? the four midpoints uniquely determine the area as well as the
specific geometry of the short quadrilateral. Thabig,= mo({m;}) and similarly formy,.

To see this, let us denotg = ¢5l(a1, asz), i.e. 19 = (mg, v0), |Y0| = yo. Also, we
denote byR,, the involution throughn and consider the element of &) defined as
02, = Rny Rmy. Similarly, 02, := Ry Rm,. Now, for any element € SO(3), consider
the vector fieldY, c TS defined byr € X, iff ®(1) = (m_, m4) s.t.m, = o2(m_).

The condition which guarantees that triangles and Az4 compose into a quadrilateral
O1234can be written asy € X4y, N X@l. But, 79 € X,,, only if the polepy, of o2 lies in

the polar line ofrg, which is defined as the orthogonal geodesitgtaatmg. Thus, the first
condition obtained is thakg, p12 and p34 be collinear. That is, Deflo, p12, p34] = O.

In fact, we have morepis> = (1/8y,,)f1 x i, paa = (1/Sy,,)m3 x ma. Therefore,
Detlig, m1 x g, m3 x fig] = 0. We can thus writéig = 7/|z|, wherez = z12(m11 x 1i2) +
z34(m3 x mg). Further, denotingu12 = distancémg, p12) anduz4 = distancémg, p3a),
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we have|S, ,Tx,| = 1Tyl = 18134 xs,l, DUt SINCE[S,1,Sx,| = l1itg % (1 x )| and
1S54 Sxsq] = |710X (3 x7i14) |, itfOllows that|mig x (711 X 1i12)|- |1tz sl = |iox (g xHa)|-
lm1-mo|. Then, we gefig = Z/|z|, wherez = aCy,, (113 X fig) + BCyy, (111 X M2), at, f €
{—1, 1}

The sign choices must be made with care, but for small convex quadrilaterals we take
the + choice twice. In this case, WitR = Cy;,Cyzy + Cxp3Cxysy — Cx13Cxyy, We have that
2% = z2 C§12 + C§34 2C,,,Cx3,R. Analogous equations hold fary,.

We have fixed the geometry of the small convex quadrilateral uniquely from the midpoints
{m1, ..., my}, as mentioned earlier. The exception is wiefiR,R3R4 = 1, but now,
contrary to the euclidean plane, this is really the exception, not the rule.

Asforthe area, fron(6.8)we haveSa,,/2 = (1/2){Cx3 —RCi 5}, Sags2 = (1/2){Cxpp—

RC,,,}. Then, in this simpler case, denoting the quadrilateral areybwe getCp, 2 = R,
P4 = 201234 C"HCrypCrgy + CrpCrrgy — Cr3Crna)-

Here we have restricted to convex quadrilaterals decomposed in small triangles (area
< 7). Greater care is needed for the sign choices in the expressiag otherwise. As for
the restrictions, in this simpler case, by imposiiag m; > 0, we getD123 > 0, and cyclic.

Again, in transposing to the hyperbolic plane, we do not have as many worries about sign
ch0|ces however, in this case the analogous area fundtips; 201234 C~ L(R), where

= C12C34+ C23Ca1— C13C24, is well defined onlywhenR| < land, asinthe triangular
anaIyS|s, once this holds the convex quadrilateral exists. And so on for the general case.
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