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Abstract

We present a definition of generating functions of canonical relations, which are real functions
on symmetric symplectic spaces, discussing some conditions for the presence of caustics. We show
how the actions compose by a neat geometrical formula and are connected to the hamiltonians via a
geometrically simple variational principle which determines the classical trajectories, discussing the
temporal evolution of such “extended hamiltonians” in terms of Hamilton–Jacobi-type equations.
Simplest spaces are treated explicitly.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The concepts of momentum and position set together on an equal footing define what
is known today as phase space[19], geometrically a differentiable manifoldM endowed
with a symplectic formω (nondegeneracy could be relaxed[22,45], but here we keep to the
symplectic case). This generalizes Hamilton’s formalism, as presented in standard textbooks
[1,2,11,36].

Usually, however, the phase space is first treated as an euclidean 2n-space, or even a
cotangent bundle, with canonical coordinates{(pi, qi)}. While Hamilton’s equation can be
generically written down for each real differentiable function on any symplectic manifold,
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other important and familiar features of the canonical formalism do not always extend in
an obvious fashion.

Furthermore, although Darboux’s theorem allows for a local canonical coordinatization
of general symplectic manifolds, this is not always the most convenient one to use. It is
therefore desirable to have a formalism which takes into account the specific geometry of
the phase space, explicitly, as a further step of the “geometrical revenge” in dynamics[44].

Actually, the importance of considering nontrivial geometries can be seen from many
different perspectives. Although the law of inertia sets euclidean geometry in a privileged
status, once a system is subject to nontrivial constraints its proper phase space geometry
ceases to be trivial, generically[9,12,22]. Similarly, for a system which is invariant under
a group of symmetries, it is often possible to eliminate redundant degrees of freedom
and the reduced phase space is also generally nontrivial[1,22,23]. Alternatively, not to
mention relativistic contexts, one may be interested in the classical limit of quantum systems,
which are noneuclidean, as spin systems[28,36]. Equivalently, it is convenient to have
formalisms of classical dynamics intimately connected to some important representations
used in quantum mechanics. For instance, coherent states[16,29]or, more pertinent to this
work at hand, the “center representation” of operators (cartesian Weyl symbols)[26,27].

Again, it is desirable to have these “semiclassical” formulations in nontrivial geometries,
but this requires previously well-defined classical formalisms.

Particularly, we need well-defined generating functions for finite canonical transforma-
tions. WhenM is the cotangent bundle over a configuration spaceQ, these functions natu-
rally take their values onQ×Q. WhenM is a Kähler manifold[8,17], whose metric and
symplectic form are related via its complex structure, one can define generating functions
which are bi-holomorphic onMC × M̄C, in which case the trajectories are complex.

Despite the utility of the complex and the configuration space actions in treating a va-
riety of problems, we can greatly benefit from a formalism leading to actions which are
real differentiable functions on nontrivial symplectic manifolds, in relationship to the real
hamiltonian flows obtained from a real variational principle.

Here we present such a formalism. This work is a generalization on concepts developed for
euclidean spaces[25,27], or for linearized neighborhoods of general symplectic manifolds
[41], dating back to the original work of Poincaré[30]. The generating functions are real
functions onM itself and not on a pair of local lagrangian coordinates. An argument of
one such function,m ∈ M, can be viewed as the “center” of the canonical transformation
m− �→ m+ which the function generates implicitly.

The corresponding variational principle states that, for an appropriate family of paths
ν : [0, t] → M whose endpoints are “centered” onm, the action{

−
∫
ν

h(m′(t′), t′)dt′ + ω

}
(m, t)

is stationary for a classical trajectory. Here,{ ω}(m, t) is the symplectic area between the
curveν and the geodesic arc, centered onm, returning fromν(t) to ν(0).

The restriction on the full foregoing theory is thatM be a symmetric symplectic space
[13,17,20]. This means thatM admits of a complete affine connection such that every point
m ∈ M is the isolated fixed point of an involutive symplectomorphism which coincides with
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geodesic inversion atm. Accordingly, the above formulation of the variational principle
is invariant at least with respect to general transformations onM preserving the affine
connection and the symplectic form.

The generalization from flat to nonflat symmetric symplectic spaces starts with the notion
of double phase space,DM [27,44]. While in the flat case we define the reflection–translation
group, from which the flat theory develops (Section 2), the equivalent construction for non-
flat spaces is not enough and we must use the fact thatDM is a symplectic groupoid[3,46].

Then, via a “symmetric exponential map”, we view all structures ofDM in (a subset of)
the tangent bundle overM, TM. There we define the notion of central groupoid (Section 3).
The properties of the pullback symplectic form allows us to see the graphs of canonical
transformations as lagrangian submanifoldsΛ of (subsets of)TM and define, inSection 4
(local), generating functions for finite canonical transformations (more generally, relations),
which are real functions onM. Such functions generate well-defined canonical relations
only whenΛ is a graph over the zero section ofTM. For canonical transformations, there
is a further graphical condition. These considerations are discussed inSection 5.

The composition of two canonical transformationsαi : M → M, as generated by such
“central actions”, is treated inSection 6. Here, again we find that despite their abstract
nature, the rule for composing them is very simple. Iffαi is the central action forαi, then

fα1 � fα2(m) = Stat(m1,m2){fα1(m1)+ fα2(m2)+�(m,m1,m2)}
is the composed central action forα2(α1), where�(m,m1,m2) is the symplectic area of the
geodesic triangle with given midpoints. On general symmetric symplectic spaces, the impor-
tance of this function was first realized in the context of star product quantization[47], whose
euclidean version has long been well established using the idea of centers and chords[4,27].

On the other hand, the above rule naturally generalizes the result previously obtained on
R2n [21,25]. By iterating these compositions, inSection 7, we arrive at the central variational
principle by taking the limit of an infinite number of infinitesimal canonical transformations
(Section 8).

Finally, we discuss the temporal evolution of such “finite-time extensions” of hamiltoni-
ans describing, inSection 9, a central version of the Hamilton–Jacobi equation and, more
generally, their time derivative for any hamiltonian flow, mixing Hamilton–Jacobi with
Poisson brackets.

While presenting these concepts we often make use of particular spaces to illustrate the
text. We have focused on the simplest two-dimensional cases: the euclidean planeR2, the
torusT 2, the sphereS2 and the noncompact hyperbolic planeH2. Of course, extending these
examples to their cartesian productsM = R2n, S2× · · · × S2,H2× T 2, etc. is reasonably
straightforward and has not been considered here. We emphasize, however, that the theory
in principle applies to generic symmetric symplectic spaces of arbitrary (even) dimensions.

2. Central coordinates on flat spaces

Consider the euclidean planeR2, representing the very simplest phase space of a single
degree of freedom.R2 is a group, under vector addition, and we can also identify the
group product as a free transitive action ofR2 on itself, the translations:T�ξ(�x) = �x +
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�ξ. Further,R2 admits a natural involutionR0(�x) = −�x, which represents a reflection,
or rotation byπ, through the origin. Together with the identity transformation this gives
an action ofZ2 on R2. We can form the semidirect product:RT := Z2 � R2, which is
called the reflection–translation group and can also be seen as a normal subgroup of the
inhomogeneous symplectic group.

Then,R�x = (T�xR0T−�x) = T2�xR0 = R0T−2�x is the element ofRT which acts as
reflection through the point�x : R�x(�x′) = 2�x− �x′. The elements of{T�ξ,R�x} satisfy:

T�ξT�ξ′ = T(�ξ+�ξ′), T�ξR�x = R(�x+�ξ/2),
R�xT�ξ = R(�x−�ξ/2), R�xR�x′ = T2(�x−�x′). (2.1)

Now, let (�x−, �x+) ∈ R2 × R2 be such that�x+ = R�x(�x−)⇔ �x− = R�x(�x+). Then,�x ∈ R2

is called the center of the pair(�x−, �x+). Actually, �x = (1/2)(�x− + �x+), coinciding, for
the euclidean metric, with the midpoint of the geodesic arc joining�x− to �x+. Identifying
�ξ = �x+ − �x−, the transformation(�x−, �x+) �→ (�x, �ξ) is a bijection.

Finally, we see how the group of translations onR2 can be interpreted as a composition
of pairs: Let�x+ = T�ξ′(�xλ), �x− = T−�ξ′′(�xλ). Then �x+ = T�ξ′T�ξ′′(�x−) = T

(�ξ′+�ξ′′)(�x−).
But noticing that the action�x+ = T�ξ(�x−) = �x− + �ξ can be identified by any of the sets

{�x−, �ξ}, {�x+, �ξ}, {�x−, �x+} uniquely, we can rewrite the composition of translations as:

(�x−, �xλ)� (�xλ, �x+) = (�x−, �x+). (2.2)

Although(2.2)was derived from the group product onR2 it can be generalized for spaces
which are not groups. In other words, we can turn the argument around and identify(2.2)
as the fundamental algebraic structure onM×M. This introduces the concept of groupoid.

3. Central groupoids

Definition 3.1. Let Γ,M be spaces.Γ is called agroupoidoverM, denotedΓ ⇒ M, if:

(Gd.0) ∃ two mapsP−, P+ : Γ → M, called the source and target maps, respectively.
(Gd.1) Let(Γ × Γ) ⊃ Γ2 := {(γ ′, γ ′′)|P+(γ ′) = P−(γ ′′)}. Γ2 is called the set of com-

posable elements. Then,∃ an associative map “� ” : Γ2 → Γ , (γ ′, γ ′′) →
γ ′ � γ ′′, called groupoid composition, or product, satisfyingP−(γ ′ � γ ′′) =
P−(γ ′), P+(γ ′ � γ ′′) = P+(γ ′′).

(Gd.2) ∃ an involutioni : Γ → Γ , called inversion, s.t.∀γ ∈ Γ , its unique inversēγ ≡ i(γ)
satisfies:̄γ � (γ � γ ′) = γ ′ if (γ, γ ′) ∈ Γ2, (γ

′ � γ)� γ̄ = γ ′ if (γ ′, γ) ∈ Γ2.
M can be identified with the set of identities inΓ ,Γe := {γ� γ̄, or γ̄�γ|γ ∈ Γ }.

Everyγe ∈ Γe satisfiesP−(γe) = P+(γe), but the converse is not necessarily true.

Examples: The simplest examples of groupoids are:

(i) Γ is a groupG, Γe ≡ {e} ≡ M,Γ2 ≡ G×G.
(ii) The pair groupoidΓ ≡ M ×M, P− andP+ being the first and second projections. In

this case,Γe � M is the diagonal, inversion is permutation and the composition is
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(m−,mλ)� (mλ,m+) = (m−,m+) (3.1)

which generalizes(2.2). These two examples are complementary in the sense that they
have, respectively, the minimal and the maximal identity spaces possible.

We now focus on those groupoidsΓ which are also symplectic manifolds and for which
groupoid composition respects its symplectic structure[3,46].

Definition 3.2. A groupoidΓ ⇒ M is symplecticif (Γ, ωΓ ) is a symplectic manifold and:

(LGd) M � Γe is a submanifold ofΓ , P± are submersions andi : Γ → Γ,� : Γ2 → Γ

are smooth. In this caseΓ is called a Lie Groupoid.
(SGd) The graph of “�” is a lagrangian submanifold ofΓ × Γ × Γ̄ , whereΓ → Γ̄ is an

antisymplectic isomorphism:(Γ̄ , ωΓ̄ ) ≡ (Γ,−ωΓ ). In shorthand notation, we write
this as an “additive” property:ωΓ (γ1 � γ2) ≈ ωΓ (γ1)+ ωΓ (γ2).

As consequences,M � Γe is a lagrangian submanifold ofΓ and inversion is
anti-symplectic, i.e. the graph of “i” is a lagrangian submanifold ofΓ ×Γ ,ωΓ (γ̄) ≈
−ωΓ (γ).

Example: Let M be a sympletic manifold,ω its symplectic structure. Then, the pair
groupoidM̄ ×M, with sympletic structureωΓ = δω, where

δω := P∗+(ω)− P∗−(ω) ≡ ω+ � ω− (3.2)

is a symplectic groupoid, called theproductor double phase spaceand denotedDM. That is
DM ≡ (M̄ ×M)⇒ M. Notice that whileDM satisfies SGd, the cartesian productM ×M,
with the usual symplectic formω ⊕ ω, does not.

In order to define the notion of “center” precisely, we need to consider phase spaces
which are symplectic, but also have the property of being symmetric[13,17,20]. We now
have the following definition.

Definition 3.3. A differentiable manifoldM endowed with a symplectic formω shall be
called asymmetric symplectic spaceif (M,ω) admits of a complete affine connection∇
which is symplectic, i.e.∇ω = 0, such that∀m ∈ M,m is the isolated fixed point of an
involutive symplectomorphismRm : M → M which coincides with the inversion, atm,
of the geodesic flow, for all geodesics throughm. Accordingly,Rm satisfiesRmRm′Rm =
RRm(m′), {RmRm′ } is the group of displacements onM and∇ is the corresponding canon-
ical connection with null torsion and parallel curvature.

This generalizes the reflection–translation structure on euclidean space.
An important particular case is when∇ is the Levi-Civitta connection associated to a

complete riemannian metricη. In this case,R∗m(η, ω) = (η, ω) and one can show[15,34]
that(M,ω, η) is ahermitian symmetric space, that is,M is a Kähler manifold[8,17]whose
complex structureJ satisfies∇J = 0 andη(JX, Y) ≡ ω(X, Y),∀X, Y ∈ X(M), and for
which the involutionRm is holomorphic.

More generally, part of the following theory, namely the local definition of central gener-
ating functions (Section 4), can be developed on general symplectic manifolds[30,40–42].
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However, the geometrical law of composition (Section 6) and its consequences need the
full setting of a symmetric symplectic space.

As simplest examples of these, we shall consider the flat euclidean planeR2 and torusT 2,
both being also groups, and as simplest nonflat examples, the sphereS2 and the noncompact
hyperbolic planeH2, both being hermitian symmetric spaces.

WhenM is a symmetric symplectic space, let us denote the exponential map by expm :
TmM → M, �v �→ ρτ(1), whereρτ(t) is the geodesic inM defined byρτ(0) = m, ρ̇τ(0) = �v.
We can define a (restricted) groupoid structure directly on (a subset of) its tangent bundle
TM, associated toDM via thesymmetric exponential map:

Φ : TM→ DM, τ = (m, �v) �→ γ = (expm(−�v),expm(�v)).
Here,Φ is “symmetric” in the sense that(Rm ◦Φ)(m, �v) = Φ(m,−�v) and thusγ → γ̄ ≡
i(γ).

DenotingΩ = Φ∗(δω), δω defined in(3.2), we have thatΩ is a closed 2-form onTM
sinceδω is a symplectic form onDM. If M has no closed geodesics, as for a hermitian
symmetric space of noncompact type (orR2n), thenΦ is a bijection and(TM,Ω) is a
sympletic manifold.

Otherwise,Φ is not globally invertible. Consider the set(TM)0 ⊂ TM, (TM)0 being
the maximal subset, connected to the zero sectionT 0M ≡ {(m, �0)} ⊂ TM, on whichΦ
is invertible. DenoteΦ0 := Φ|(TM)0, Ω0 := Ω|(TM)0 ≡ Φ∗0(δω). Then,((TM)0,Ω0) is a
symplectic manifold.

It is known[18] that for complete riemannian manifolds, only the stratum ofΣ1 ⊂ TM
has maximal dimension, whereσi(m) = Σi ∩ TmM is the subset ofTmM defined by
I(v) = i, i = 1,2, . . . with I(v) = number of geodesics of length‖v‖ which connectm
and expm(v).

Thus, ifM is a hermitian symmetric space of compact type (or the torus), although
Φ0 : (TM)0 → DM is not onto, it only leaves out a set of measure zero with respect to
the Liouville form onDM obtained fromδω. We conjecture that this may be true for other
symmetric symplectic spaces with closed geodesics, as well. These facts motivate a slight
modification in the concept of symplectic groupoids, suitable to our purposes. We now have
the following definition.

Definition 3.4. LetM be a symmetric symplectic space.((TM)0,Ω0) shall be called the
standard central groupoid overM, denoted(TM)0 ⇒ M, satisfying:

(CG.0) ∃ three mapsP0, P−, P+ : (TM)0 → M, called the central, source and target
maps, respectively, whereP0(m, �v) = m is the natural projection andP±(m, �v) =
expm(±�v).

(CG.1) On the restricted set of composable elements((TM)0 × (TM)0) ⊃ (TM)20 :=
{(τ′, τ′′)|P+(τ′) = P−(τ′′) and(P−(τ′), P+(τ′′)) ∈ Image(Φ0) ⊂ DM}, the com-
position “� ” : (TM)20 → (TM)0, satisfying (Gd.1), is defined byτ′ � τ′′ ≡
Φ−1

0 (P−(τ
′), P+(τ′′)).

(CG.2) ∃ an involutioni : (TM)0 → (TM)0, called inversion, satisfying all properties
in (Gd.2) plusP0(i(τ)) = P0(τ), ∀τ ∈ (TM)0. Specifically, ifτ = (m, �v) then
τ̄ ≡ i(τ) = (m,−�v).
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(CG.3) The identity space is the zero section and inversion is smooth. However,P± are
only locally submersions and� is locally smooth.(TM)0 is a local Lie groupoid.

(CG.4) The graph of “�” is the union of lagrangian submanifolds of(TM)0 × (TM)0 ×
(TM)0. The graph of “i” is a lagrangian submanifold of(TM)0 × (TM)0, the zero
section being lagrangian in(TM)0. We may call((TM)0,Ω0) a local symplectic
groupoid.

WhenM has no closed geodesics,(TM)0 ≡ TM, Φ0 ≡ Φ, TM is diffeomorphic toDM.
In this case, the words “restricted” and “local” do not apply and the central groupoid is a
bonafide symplectic groupoid with the extra structure of a central map.

Examples: (TR2)0 ≡ TR2, (TH2)0 ≡ TH2, the trivial cases since bothR2 andH2 have
no closed geodesics. ForT 2 we have the following: LetAS1 denote the set of antipodals
in S1 × S1, i.e. {(ϕ, ϕ ± π)}, under the usual representationS1 # eiϕ, ϕ ∈ [0,2π]. The
subsetTT 2 ⊃ (TT 2)0 := {τ = (p, q; vp, vq)||vp|, |vq| < π/2} is s.t.Φ0 : (TT 2)0 →
DT 2\(AS1 × AS1) is bijective. ClearlyAS1 × AS1 is a set of measure zero inT 2 × T 2.

ForS2 the situation is very similar: LetAS2 denote the set of antipodals inDS2. Taking
the subsetTS2 ⊃ (TS2)0 := {τ = (m, �v)||�v| < π/2}, thenΦ0 : (TS2)0 → DS2\AS2 is
bijective. Again,AS2 has measure zero inDS2.

However, whenM has closed geodesics, the standard central groupoid is not the only
central groupoid possible. To see that, consider another subset(TM)1 ⊂ TMwhich satisfies:
(TM)1 ∩ (TM)0 = ∅andΦ((TM)1) = Φ((TM)0) ≡ (DM)0 ⊂ DM. Furthermore, denoting
the map restriction byΦ1 ≡ Φ|(TM)1, we limit attention to those subsets on whichΦ1 is
almost everywhere injective. In other words, the setN ⊂ (DM)0 on whichΦ−1

1 is multiple
valued has measure zero with respect to the Liouville form onDM obtained fromδω.

Then, defining an equivalence relation among different pre-images in(TM)1 of the same
point in (DM)0, we have another bijectioñΦ1 : (T̃M)1 → (DM)0, where (T̃M)1 ≡
(TM)1/ ∼1 with the equivalence relationτ ∼1 τ

′ iff Φ1(τ) = Φ1(τ
′). Accordingly, we

denote such points in(T̃M)1 by τ̃ = [τ]1, where [τ]1 = {τ′ ∈ (TM)1|τ′ ∼1 τ}. If M ⊂
(DM)0 is the diagonal, its pre-imagẽΦ−1

1 (M) := T̃ 1M is a global cross section of(T̃M)1

setting a fibrationP1 : (T̃M)1 → T̃ 1M s.t., if τ̃ ∈ (T̃M)1 andτ̃1 ∈ T̃ 1M thenP1(τ̃) = τ̃1

iff P0(τ) = P0(τ
1). In other words, the central mapP1 is essentiallyP0 : TM→ M itself.

We denoteΩ1 ≡ Φ̃∗1(δω).

Definition 3.5. We call ((T̃M)1,Ω1) −→P1 (T̃ 1M,ω) a nonstandard central groupoid. On
((T̃M)1 × (T̃M)1) ⊃ (T̃M)21 := {(τ̃, τ̃′)|P̃+(τ̃) = P̃−(τ̃′) and(P̃−(τ̃), P̃+(τ′)) ∈ (DM)0},
whereP̃±(τ̃) ≡ P±(τ),∀τ ∈ τ̃, the restricted groupoid product� : (T̃M)21 → (T̃M)1
is given by τ̃ � τ̃′ ≡ Φ̃−1

1 (Φ̃1(τ̃) � Φ̃1(τ̃
′)), and inversion byi(τ̃) ≡ Φ̃−1

1 (i(Φ̃1(τ̃))).

If (T̃M)2 −→P2 T̃ 2M is another central groupoid, it isstrongly equivalentto (T̃M)1 if, for
every τ̃ ∈ (T̃M)1 and τ̃′ ∈ (T̃M)2 s.t. Φ̃1(τ̃) = Φ̃2(τ̃

′), it follows P1(τ̃) = P2(τ̃
′). If

Φ̃1(τ̃) = Φ̃2(τ̃
′) butP1(τ̃) )= P2(τ̃

′), τ̃′ is weakly equivalentto τ̃.
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Examples: WhenM = T 2, there are infinite central groupoids, but only four strongly
inequivalent ones:(TT 2)01 ≡ {τ = (p, q, vp, vq)||vp| < π/2, |vq − π| < π/2}, similarly
for (TT 2)10, where|vp−π| < π/2, |vq| < π/2, and(TT 2)11, where|vp−π|, |vq−π| <
π/2, together with the standard one(TT 2)0 ≡ (TT 2)00. In this case, all the nonstandard
central groupoids are simple subsets ofTM, i.e. no equivalence relations had to be considered
since eachΦij ≡ Φ|(TT 2)ij

is already injective. Each point in(DT 2)0 has four strongly
inequivalent pre-images:(p, q, vq, vq), (p ± π, q, vp ± π, vq), (p, q ± π, vp, vq ± π) and
(p± π, q± π, vp ± π, vq ± π).

In the case ofS2, there are only two strongly inequivalent central groupoids. The stan-
dard one and a nonstandard central groupoid:(T̃S2)1 ≡ (TS2)1/ ∼1, where(TS2)1 ≡
{(m, �v)||�v| ∈ (π/2, π]}. The equivalence relation is nontrivial only when|�v| = π, coincid-

ing with the definition of the nonstandard pre-image of the diagonal,̃T 1S2 := {[τ1]1, where
τ1 = (m, �v1) ∈ (TS2)1 is s.t.|�v1| = π and(m, �v1) ∼1 (m

′, �v′1) iff m = m′}. Thus, each
point on(DS2)0 has two strongly inequivalent pre-images. If we denoteΦ−1

0 (m−,m+) =
(m, �v) ≡ (θ, ϕ; v, β), see below for definition of the fiber coordinates(v, β), thenΦ̃−1

1
(m−,m+) = (π − θ, ϕ − π;π − v, β − π).

The reason for considering such nonstandard pre-images inTM is, of course, that when
M has closed geodesics, the geodesic arc connecting two points inM is not unique. Ac-
cordingly, the standard central groupoid refers to the shortest of such geodesic arcs and the
k-nonstandard central groupoid refers to thek-fold ones. Here, ak-fold geodesic fromm′
tom′′ is defined as the geodesic(m′ → m) ∗Lk(m) ∗ (m→ m′′), whereLk(m) is ak-fold
geodesic loop based atm, the midpoint of the short geodesic, and∗ denotes free product.
(If k ≡ 0,L0 ≡ id is the trivial loop and(m′ → m′′) is the short geodesic.) For instances
of nontrivial geodesic loops, onT 2, Lk ≡ L(a,b) ≡ Lap ∗ Lbq, whereLp, Lq are the single

irreducible circuits, while onS2,Lk is a|k|-repetition of a geodesic meridian and it is easy
to see that in this case we only need to consider strongly inequivalent geodesics. We also
consider the following definition.

Definition 3.6. Let (T̃M)2ij := {(τ̃, τ̃′) ∈ (T̃M)i × (T̃M)j|P̃+(τ̃) = P̃−(τ̃′) and (P̃−(τ̃),
P̃+(τ̃′)) ∈ (DM)0}. We define generalized, ormixed compositions(which are still restricted
in the original sense) asckij : (T̃M)2ij → (T̃M)k, by ckij (τ̃, τ̃

′) ≡ Φ̃−1
k (Φ̃i(τ̃) � Φ̃j(τ̃′)).

If M is not simply connected, we may want to consider only mixed compositions whose
geodesic triangles of composition are reducible circuits, in which case the triple(i, j; k) is
calledreducible. WhenM is simply connected, it is enough to consider mixed compositions
within the set of strongly inequivalent central groupoids.

Now, the application of central groupoids in classical dynamics rests on the following:

Definition 3.7. LetN be a symplectic space. ApolarizationonN is an integrable foliation
of N by lagrangian leaves.
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Lemma 3.1. P0 sets a polarization on((TM)0,Ω0), called the vertical or central polar-
ization.

Proof. First, every fibration is an integrable foliation. Second, since each fiber is (an open
subset of) the tangent space at each point inM, the fiber dimension is half the total di-
mension of(TM)0. To prove isotropy with respect toΩ0 = Φ∗0(δω), note that inversion is
anti-symplectic in(TM)0, i.e.i∗(Ω0) = −Ω0. But, denoting the fiber restriction by(TmM)0,
we have thatim := i|(TmM)0 ≡ Φ−1

0 ◦Rm ◦Φ0. Sinceω isRm invariant, i.e.R∗m(ω) = ω,
it follows thati∗m((Ω0)m) = (Ω0)m, where(Ω0)m ≡ Ω0|(TmM)0. Thus,(Ω0)m ≡ 0. �

Further, we realize thatLemma 3.1applies to everyPi : (T̃M)i → T̃ iM, as well.
Thus, in what follows we should consider all possible central groupoids similarly. How-

ever, we shall mostly deal with the standard central groupoid, both to simplify the treatment
and because we will often focus on the limit|�v| → 0, which can only take place in(TM)0.
Accordingly, we often drop the denomination “standard” in following definitions and dis-
cussions.

Finally, we should compare the central groupoids with the local isomorphismDM →
T ∗M, in a neighborhood of the diagonal inDM, for any symplectic manifoldM [40–42]. The
differences lie in the scope and properties of the symplectic structure. While((T̃M)i,Ωi)
contains explicit information on the affine geometry (geodesic structure) ofM, the canonical
symplectic form onT ∗M does not.

Formulae: To base the abstract concepts of this paper, we will often illustrate them in the
simplest spacesM = R2, T 2, S2, H2. We now provide some useful local formulae for their
standard central groupoids. Start with the flat spaces, locally identical. Take coordinates on
R2 as canonical pairs, with usual metric and symplectic form. The tangent bundle is also a
linear space:TR2 # �τ = (�x; �v) = (p, q; vp, vq), and the symmetric exponential map is

Φ(�τ) ≡ Φ(�x; �v) = (�x− �v; �x+ �v) ≡ (�x−, �x+) (3.3)

with pull-back symplectic form given by

Ω = 2 dΣ, Σ = vp dq− vq dp. (3.4)

For the sphere, take local polar coordinates:S2 # m = (θ, ϕ), θ ∈ [0, π], ϕ ∈ [0,2π]. We
shall be using the following abbreviations:

Sα ≡ sin(α), Cα ≡ cos(α), Tα ≡ tan(α) with S−1(f), C−1(f), T−1(f)

denoting their respective inverses. With usual metric and symplectic form, the natural co-
ordinates on the tangent bundle areTS2 # τ = (θ, ϕ; θ̇, ϕ̇), but it is more convenient to
introduce polar coordinates on the fibers as well,τ = (θ, ϕ; v, β) where

v = |�v| =
√
θ̇2 + S2

θ ϕ̇
2, vCβ = θ̇, vSβ = Sθϕ̇.
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With these local coordinates we write the symmetric exponential map as

Φ0(θ, ϕ; v, β) = (θ−, ϕ−; θ+, ϕ+), θ± = C−1(CθCv ∓ SθSvCβ),
ϕ± = ϕ ± T−1

(
SvSβ

g±

)
+ (1− Sign(g±))

π

2
, g± = SθCv ± CθSvCβ (3.5)

and the pull-back symplectic formΩ0 ≡ Φ∗0(δω) is given by

Ω0 = 2 dΣ, Σ = Sv(CβSθ dϕ − Sβ dθ). (3.6)

OnH2, we adapt the local spherical formulas by letting

θ �→ iρ, v �→ iµ, (3.7)

where i= √−1. Thus,Sθ �→ iS̃ρ, Cθ �→ C̃ρ, Sv �→ iS̃µ, Cv �→ C̃µ, with

S̃α ≡ sinh(α), C̃α ≡ cosh(α), T̃α ≡ tanh(α) and

S̃−1(f), C̃−1(f), T̃−1(f)

the respective inverses. Then, from(3.5) and (3.6)we getΦ and−Ω for H2.
We can see explicitly from(3.4), (3.6) and (3.7)that the vertical spaces are isotropic

in these examples. The same holding for the zero sectionT 0M � M. Notice also that
the pull-back symplectic form is the exact derivative of a symplectic potential without any
vertical differential components. This fact shall be thoroughly exploited in what follows.

4. The central equation

We started by emphasizing the algebraic structure on double phase spaces, or on central
groupoids. Historically, the symplectic structure was predominant, however, for it intro-
duced the very useful concept of action, or generating function of a canonical transforma-
tion on the original, or simple phase space(M,ω). We now recall the concept of generating
function, adapting it to our context.

Let α be such a symplectomorphismM → M, α∗(w) = w. Its graphLα in the double
phase space,DM ⊃ Lα := {(m−,m+)|m+ = α(m−)}, is a lagrangian submanifold for the
symplectic formδω, i.e.δω|Lα ≡ 0. Similarly, ifLα ⊂ Image(Φ0) ≡ (DM)0 ⊂ DM, then
its pre-imageΛα := Φ−1

0 (Lα) is lagrangian in the central groupoid((TM)0,Ω0).
Conversely, every lagrangian submanifoldΛα := Φ−1

0 (Lα) defines asymplecticor
canonical relationonM [42,44], which is a canonical transformation whenLα is a graph
overM− ⊂ DM.

Generically, we consider those subsetsL(r)α ⊂ Lα, satisfyingL(r)α ⊂ Image(Φ0), and
their corresponding pre-imagesΛ(r)α in (TM)0.

The definition of localgenerating functionsfor lagrangian submanifolds amounts to
realizing such manifolds, locally, as graphs of their corresponding generating functions.

This depends on the choice of a localsymplectic potential(a local 1-form whose derivative
is the symplectic form) suitable to a polarization which is, at least locally, a fibration over



414 P. de M. Rios, A.O. de Almeida / Journal of Geometry and Physics 51 (2004) 404–441

a referential lagrangian submanifold containing the supports of those generating functions
[37,40–42,44].

For the central groupoid overM, we takeM itself, seen as the zero section, as the
referential lagrangian submanifold for the central polarization. The suitable symplectic
potential is given in the following definition.

Definition 4.1. Let((TM)0,Ω0)be the standard central groupoid over(M,ω). A symplectic
potentialZ0, forΩ0, shall be called a standardcentral potentialif it satisfies

X ,Z0 = P ′0(X) ,Z0, ∀X ∈ X((TM)0). (4.1)

Here,P ′0 is the differential ofP0 and�x ,α denotes the vector-form contraction.

Of course, anyZ = Z0 + dQ, Q ∈ Ck
R
((TM)0), is another potential, but not generally

central. Condition(4.1) tells us that central potentials have no vertical differential compo-
nents, so we can identify these potentials explicitly in our examples asZ0 = 2Σ, from
(3.4), (3.6) and (3.7).

In these particular examples,Z0 is a global potential on(TM)0, i.e.,Ω0 ≡ dZ0 is exact.
We argue that the general case follow these known examples.

First, such a potential always exists in a small neighborhood of the zero sectionT 0M,
just take the exact 2-forṁω on TM defined byω̇(m, �v) := d(�v ,ω), ∀�v ∈ X(M). Then,
ω̇ ≡ L�v(w), the Lie derivative ofω, sinceω is closed. On the other hand, when|�v| ≡ t −→∼ 0

Ω0(m, �v) ∼−→2 lim
t→0

{(
1

t

)∫ t

0
L�v(ω)dt′

}
� 2L�v(ω),

that is,Ω0 −→∼ 2ω̇ = 2 d(�v ,ω). Thus, in a neighborhood ofT 0M, Ω0 −→∼ 2 dζ̇, where
ζ̇(m, �v) := �v ,ω(m) clearly satisfies(4.1). (On the flat examples,Z0 ≡ 2ζ̇ globally,
but generally 2̇ζ only approximates the central potential in a small neighborhood ofT 0M.)
Finally, T 0M is lagrangian forΩ0 and each vertical fiber is also lagrangian, as well as
contractible. Hence,Ω0 ≡ dZ0 is exact.

Recalling that(1/2)Z0(m, �v) −→∼ ζ̇(m, �v) ≡ �v ,ω, as|�v| → 0, we may refer to the 1-form
ζ̇ asHamilton’s potential, since it is intimately connected toHamilton’s equation.

To see this, remember that we can write the latter as a mapż[h] : M → TM,∀h ∈ Ck
R
(M),

bym �→ τh, whereτh = (m, �vh) and�vh is given by(dh+ �vh ,ω)(m) = 0, or equivalently,
ζ̇(τh) = −dh(m),∀m ∈ M. Or still, by denotingTM ⊃ Λ̇h := graph ofż[h], Hamilton’s
equation becomeṡζ|Λ̇h = −dh, implicitly defining ż[h].

Similarly, the existence of a central potential forΩ0 allows for a“finite time” extension
of Hamilton’s formalism, now in the context of generating functions. Thus, suppose that a
lagrangian submanifoldΛα ⊂ (TM)0 is locally a graph overT 0M � M, that is,

Rank(P ′0|TτΛα) = 2n = dim (M), ∀τ ∈ Λα s.t. P0(τ) = m ∈ U ⊂ M (4.2)

then, since dZ0|Λα = 0, from(4.1)we obtain the following proposition.

Proposition 4.1. For every lagrangian submanifoldΛα ⊂ (TM)0 satisfying(4.2) there
exists a standard central generating functionfα ∈ CkR(M), satisfying the standard central
equation
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Z0|Λα = dfα on(TU)0 ⊂ (TM)0. (4.3)

Conversely, for a givenfα, the above equation definesΛα implicitly, i.e. it provides a
standard sectionz[fα] ≡ Fα : U → (TU)0 which is well defined when condition(4.2) is
satisfied and as long asfα satisfies appropriate standard consistency conditions.

We shall see examples of such consistency conditions shortly. Now, the mapFα can be
multiple valued if(TmM)0 ∩ Λα is not unique, in which case we should breakΛα into
branchesΛ(r)α , each one uniquely given by a mapF(r)α in a subset ofM viaZ0|Λ(r)α = df (r)α ,

for eachf (r)α , except for{τk} ⊂ Λα where Rank(P ′0|TτkΛα) < 2n. Then, via the symmetric
exponential map,(4.3)locally generates a lagrangian submanifoldLα ⊂ DM, a canonical re-
lation onM. The similarity between Hamilton’s equation and the central equation is striking.

However, the former providesinfinitesimal transformations while the latter generates
finite relations. For this reason, not every canonical relation can be generated by a real
function onM via the central equation, everywhere. Generically, the presence ofcentral
catastrophes, {τk} ⊂ Λα s.t. Rank(P ′0|TτkΛα) < 2n, is unavoidable. Their projections,
{mk} ≡ {P0(τk)} ⊂ M, are calledcentral caustics. To circumvent this problem, new sets
of “complementary” generating functions are needed[25]. Alternatively, we can let the
functions depend on extra parameters and look for their stationary points[6,7,39].

On the other hand, by introducing a real parameterλ = t/2 (a scale) in the maṗz[h],
for instance, by multiplying every hamiltonianh by t/2, we can see Hamilton’s equation
as a map fromM into a small neighborhood of the zero section inTM, if t is sufficiently
small. Since in such a neighborhood(1/2)Z0 andζ̇ are approximately equal,fα = −th is
a central generating function for the infinitesimal canonical transformation generated byh

via Hamilton’s equation. Since these are always well defined, every infinitesimal canonical
transformation can be generated by a central function. This is obvious if we notice that such
transformations are small deformations of the identity, associated to lagrangian submani-
folds in (TM)0 which are small deformations of the zero section, thus satisfying(4.2).

Furthermore, the mapFα = −tH : M → (TM)0, obtained via the central equation from
function fα = −th, whereh is the hamiltonian, is given bym �→ (m, (ε/2)�vh(m)), for
sufficiently short timest � ε. Since(ε/2)�vh → 0, asε→ 0, for very short timest � ε→
0, the implicit canonical transformation(m−,m+) obtained via the symmetric exponential
map coincides with the linearized version(�x−(ε/2)�vh, �x+(ε/2)�vh), for any choice of local
linear coordinates onU ⊂ M, s.t.m � �x, regardless of the specific affine geometry ofM.

Thus, for very short time motion, the geodesic segment centered onm converges onto
the hamiltonian orbit that propagates fromm forwards and backwards in time.

Now, we remark that generating functions are traditionally defined on the double phase
spaceDM, but this usually requires us to previously take polarizations onM itself.

For general cotangent bundles, with vertical polarization, the generating functions natu-
rally take their values from pairs of base space points,f ≡ f(q−, q+).

For general Kähler manifolds, with complex polarizations, the natural generating func-
tions are bi-holomorphic functions,f ≡ f(z−, z+), z± complex.

The present approach allows us to consider real generating functions on a general sym-
metric symplectic spaceM itself, defined via a real polarization on the central groupoid.
These functions can sometimes be pictured as “finite time hamiltonians”.
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More generally, such central generating functions can locally be defined on any symplec-
tic manifold by considering a local polarization ofDM which is transversal to the diagonal
M ⊂ DM. If linear coordinates are chosen on a neighborhood of a point inM, these functions
can be mapped to Poincaré’s generating functions[30,41]. However, the full geometrical
properties of the central generating functions need the symmetric symplectic setting.

Also, we must point out that other versions of the central equation are available from the
following proposition.

Proposition 4.1’. If M has closed geodesics, there are nonstandard central potentialsZi
s.t.

dZi = Φ̃∗i (δω) and X ,Zi = P ′i (X) ,Zi, ∀X ∈ X((T̃M)i). (4.1′)

Each lagrangian submanifoldΛiα = Φ̃−1
i (Lα) ⊂ (T̃M)i, satisfying

Rank(P ′i |Tτ̃Λiα) = 2n, overU ⊂ M � T̃ iM (4.2′)

is generated by a nonstandard central functionf iα via a nonstandard central equation:

Zi|Λiα = df iα on(T̃U)i ⊂ (T̃M)i, (4.3′)

which provides a nonstandard sectionFiα : U → (T̃U)i definingΛiα. When no distinction
is made, or by means of generalization, we refer to(4.3) or (4.3’) simply as the central
equation.

Notice that we have abbreviated the standard notation:f 0
α ≡ fα,Λ0

α ≡ Λα, F0
α ≡ Fα,

in previous definitions. Also, the index “i” in (4.3’) is not the same as the index(r) defined
earlier, referring to different branches of a single pre-image of the set{L(r)α } ⊂ Lα∩ (DM)0.
Thus, a generic central generating function can carry up to two indices{i, (r)} to be fully
identified.

Finally, since central potentials are defined modulo exact differentials onM, it is important
to emphasize thateach nonstandard central equation, with its appropriate nonstandard
consistency conditions,is defined with respect to a choice of the corresponding nonstandard
central potential. We may fix the standard one by settingZ0|T 0M ≡ 0, but similar choices
for the nonstandard ones are not necessarily the best. InSection 6, Proposition 6.1’, we
describe a consistent choice for allZi’s which is suitable for the mixed composition of
central generating functions.

Such compositions, as we shall see, neatly exhibit the full symplectic and affine geom-
etry ofM itself, a fact having some interesting bearings on problems in quantization and
semiclassics.

Examples: Standard cases only. We show the explicit mapz[fα] ≡ Fα : M → (TM)0,
given by each generating functionfα, and the canonical relation(m−,m+) ∈ DM. To get
rid of factors of 2, we often rescale and identifyfα ≡ 2f . OnR2, using(3.4) and (4.3), F
is written as

vp = ∂f

∂q
, vq = −∂f

∂p
or �ξα = 2�v = −J

[
∂fα

∂�x
]
, (4.4)
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whereJ is the symplectic matrix onR2. Composing with(3.3), we have the canonical
relation:

�x± = �x∓ J
[
∂f

∂�x
]
= �x∓ 1

2
J

[
∂fα

∂�x
]
, (4.5)

see[25,27]. On the torus,(4.4) and (4.5)are valid, but we impose astandard consistency
conditionwhich amounts to constraining the map(4.4)onto(TT 2)0 only:∣∣∣∣∂f∂q

∣∣∣∣ , ∣∣∣∣∂f∂p
∣∣∣∣ < π2 onU ⊂ T 2. (4.6)

OnS2, by (3.6) and (4.3), F : S2 → (TS2)0 is written in polar coordinates as:

v = S−1(S0(f)), β = −T−1
{
Sθ(∂f/∂θ)

∂f/∂ϕ

}
+
(

1− Sign

(
∂f

∂ϕ

))
π

2
, (4.7)

where, using the contravariant metric onS2, we define the symbols

S0(f) := ‖df‖ ≡
√(

∂f

∂θ

)2

+
((

1

Sθ

)(
∂f

∂ϕ

))2

, C0(f) :=
√

1− (S0(f))2.

Notice that(4.7)has real solutions only iff satisfies theconsistency condition

S0(f) ≡ ‖df‖ < 1 onU ⊂ S2. (4.8)

Composing with the symmetric exponential map(3.5), we obtain

θ± = C−1
(
CθC

0(f)∓ ∂f
∂ϕ

)
,

ϕ± = ϕ ∓ T−1
{
Sθ(∂f/∂θ)

α±

}
+ (1− Sign(α±))

π

2
, (4.9)

whereα± = S2
θC

0(f) ± Cθ(∂f/∂ϕ), as the local expression for the canonical relation
(m−,m+) which is generated byfα ≡ 2f ∈ Ck

R
(S2) , satisfying condition(4.8).

OnH2, by (3.6) and (3.7)and the central equation, the mapF : H2 → TH2 is written as

µ = S̃−1(S̃0(f)), β = −T−1

{
S̃ρ(∂f/∂ρ)

∂f/∂ϕ

}
+
(

1− Sign

(
∂f

∂ϕ

))
π

2
(4.10)

in polar coordinates, and this requires no consistency condition. Once more, we have defined

S̃0(f) := ‖df‖ ≡

√√√√(
∂f

∂ρ

)2

+
((

1

S̃ρ

)(
∂f

∂ϕ

))2

, C̃0(f) :=
√

1+ (S̃0(f))2.

Finally, composing with the symmetric exponential map we have the local expression

ρ± = C̃−1
(
C̃ρC̃

0(f)± ∂f
∂ϕ

)
, ϕ± = ϕ ∓ T−1

{
S̃ρ(∂f/∂ρ)

γ±

}
+ (1− Sign(γ±))

π

2
,

(4.11)

whereγ± = S̃2
ρC̃

0(f)± C̃ρ(∂f/∂ϕ), for the corresponding canonical relation onH2.
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5. Central actions and relations

We saw in the last paragraph that a functionf iα ∈ CkR(M) can locally be taken as central
generating function of a canonical relationΛiα ⊂ (T̃M)i, provided(4.2’) holds. This is a
“graphical” condition overU ⊂ M � T̃ iM ⊂ (T̃M)i and is therefore written with respect
to Λiα. But generically, it is precisely this submanifold that needs to be found givenf iα.
Furthermore, it is important to distinguish which of the various lagrangian submanifolds in
(T̃M)i do correspond to canonical transformations onM, i.e. which are pre-images, under
the symmetric exponential map, of graphs overM− ⊂ DM.

Again, since we usually start with the central generating function, from a practical point
of view we need such a distinction, as well as an alternative to condition(4.2’), written
directly in terms off iα. We now proceed in this direction, in thestandardcase. First we
obtain the following lemma.

Lemma 5.1. A functionf ≡ (1/2)fα ∈ CkR(M), k ≥ 2,can locally be the standard central
generating function of a canonical relation, via central equation, only if it satisfies all
consistency conditions required for the definition of the mapF : M ⊃ U → (TU)0, �F :
m �→ �v ∈ (TmM)0, and∣∣∣∣det

[
∂Fi

∂mj

]∣∣∣∣ <∞, ∀m ∈ U ⊂ M (5.1)

for any choice of local coordinates{mi} onU, {vi} on (TmM)0, with {Fi(m) = vi(τ)}.

Proof. Let τα ∈ Λα ⊂ (TM)0,P0(τα) = mα ∈ M, and take local coordinates{x1, . . . , x2n}
on a neighborhoodX ⊂ Λα of the pointτα, {m1, . . . , m2n} on a neighborhoodU ⊂ M of
the pointmα and{v1, . . . , v2n} on a neighborhoodV ⊂ (TmαM)0 of the point�vα = Pv(τα),
Pv : N → V , N = (U × V) ⊂ (TM)0. Then, any pointτ ∈ X ⊂ N is locally written as
τ ≡ {xi(τ)} ≡ {xi}, τ ≡ {mi(P0(τ)), vi(Pv(τ))}, or τ ≡ {mi(P0({xj})), vi(Pv({xj}))}.

Now, the graphical condition(4.2) is simply [dmi] = A0[dxj], [Aij
0] = [∂mi/∂xj], sat-

isfying 0 < |det(A0)| < ∞, on τ, that is, [dxi] = A−1
0 [dmj],0 < |det(A−1

0 )| < ∞, and
the failure of(4.2) is written as|det(A0)| = 0⇔ |det(A−1

0 )| = ∞. But since no graphical

condition overV is assumed, we have only [dvi] = Av[dxi], [Aij
v ] = [∂vi/∂xj], satisfying

|det(Av)| < ∞,onτ, and the same cannot be said ofA−1
v because|det(Av)| = 0 is a real

possibility. Thus,|det(Av · A−1
0 )| ≡ |det[∂vi/∂mj]| < ∞ is a necessary condition for the

existence of central generating functions.
If such exist, then they satisfy(4.3)and we can write the mapF generated byf ∈ Ck

R
(U)

as{vi(τ) = Fi(m)}, providedf satisfies any required central consistency condition.�

Examples: OnR2, (5.1)becomes|det[∂2f ]| ≡ |det[∂2f/∂xi∂xj]| <∞.
OnS2 we get the condition|det[∂2f ] + (Cθ/Sθ)(∂f/∂ϕ)(∂2f/∂θ∂ϕ)| < ∞, onU ⊂ S2,

where det[∂2f ] = (∂2f/∂θ2)(∂2f/∂ϕ2) − (∂2f/∂θ∂ϕ)2, provided(θ = 0, π) /∈ U, andf
satisfies 0< ‖df‖ < 1. The restriction onθ is easily removable by choosing a new origin
for the polar coordinates onS2, but a new local analysis is needed when‖df‖(m0) = 0.
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Since‖df‖ → 0 implies |�v| → 0, we know these points correspond to fixed points
of any canonical transformation which can be generated byf . Thus, a (local) alterna-
tive is to expandf aroundm0 in linear coordinates and apply the previous flat equation,
on a small neighborhood ofm0. Otherwise, we can use thatSv � v to get |det[∂2f ] +
(Cθ/Sθ){(∂f/∂ϕ)(∂2f/∂θ∂ϕ) − (∂f/∂θ)(∂2f/∂ϕ2)}| < ∞, as the local form of(5.1) on a
smaller neighborhoodU ′ of a pointm0 ∈ U for which‖df‖(m0) = 0.

Similarly, onU ⊂ H2, (ρ = 0) /∈ U, we write (5.1) locally as|det[∂2f ] + (C̃ρ/S̃ρ)
(∂f/∂ϕ)(∂2f/∂ρ∂ϕ)|(S̃ρS̃0(f)C̃0(f))−1 < ∞, if ‖df‖ > 0, and |det[∂2f ] + (C̃ρ/S̃ρ)
{(∂f/∂ϕ)(∂2f/∂ρ∂ϕ) − (∂f/∂ρ)(∂2f/∂ϕ2)}|(S̃ρ)−2 < ∞ on a smaller neighborhood of the
pointm0 for which ‖df‖(m0) = 0. Or we can expandf aroundm0 in linear coordinates
and use the flat equation.

Lemma 5.1provides a necessary, but not sufficient condition for the existence of central
generating functions, generically. In other words, whenΛ ⊂ (TM)0 is a generic canonical
relation, it is possible that|det(A0)| = |det(Av)| = 0, onτ ∈ X ⊂ Λ. That is, we do not
necessarily have a graph over eitherM orTmM, onτ = (m, �v) ∈ Λ, generically. Even when
restricting to canonical transformations onM, it is possible that det(A0) = det(Av) = 0, if
dim(M) ≥ 4. To see this, consider the simple example:M = R2 × R2, ω = ω(1) ⊕ ω(2),
α = R(1)0 ⊗ id(2). Furthermore,(5.1)does not distinguish between canonical relations and
transformations. In this respect, we extendLemma 5.1to the following lemma.

Lemma 5.2. A functionf ≡ (1/2)fα ∈ CkR(M), k ≥ 2,can locally be the standard central
generating function of a canonical transformation onM only if it satisfies condition(5.1),
besides any central consistency condition required for the definition of the mapF : M ⊃
U → (TU)0,m �→ �F(m) ∈ (TmM)0, via the central equation, and

0<

∣∣∣∣∣det

[
∂(expm(−�F(m))i)

∂mj

]∣∣∣∣∣ <∞, ∀m ∈ U ⊂ M (5.2)

for any choice of local coordinates onM.

Proof. ConsiderΛα = Φ−1
0 (Lα), whereLα is a lagrangian graph overM− ⊂ DM. Let

γ = Φ0(τ) ∈ Y ⊂ Lα, Y a neighborhood ofγα = Φ0(τα) and consider local coordinates
{y1, . . . , y2n} onY . Similarly, take{m1−, . . . , m2n− } as local coordinates on a neighborhood
U− ⊂ M− of the pointmα− = P−(τα) = P−(γα).

Then,Lα is locally a graph overM− iff [dmi−] = B−[dyi], where [Bij
−] = [∂mi−/∂yj]

satisfies 0< |det(B−)| <∞ . Otherwise, ifLα is not a graph overM−, from the definition
of B−,det(B−) = 0.

SinceΦ0 is a diffeomorphism, we can rewrite above condition as 0< |det(A−)| < ∞,
where [Aij

−] = [∂mi−/∂xi], sinceA− = B− · dΦ0. On the other hand, ifΛα is a graph
overM � T 0M, this can be further rewritten as 0< |det(A0−)| < ∞ , where [(A0−)ij ] =
[∂mi−/∂mj], sinceA0− = A− · A−1

0 and|det(A−1
0 )| <∞.

But sincem− = P−(τ) = expm(−�v), we get(5.2), providedΛα satisfies(4.2) andτ is
given by the central map�F(m) = �v, generated byf via the central equation. �
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Example: OnR2, from(3.3) and (4.4), (5.2)becomes 0< |1+det[∂2f ]| <∞, but since
(5.1) must already be satisfied, we single out the new condition as det[∂2f ] )= −1,∀�x ∈
U ⊂ R2. However, already onS2 orH2, the explicit form of(5.2) in local coordinates, for
genericf , becomes rather long and it is much simpler to check it directly, for each specific
f , using the specific expressions form−(m) obtained from(4.9)or (4.11).

Conditions similar to(5.1) and (5.2)apply to nonstandard functions, as well. It is im-
portant to emphasize, once again, that any function satisfying the conditions ofLemma 5.2
does not necessarily generate a canonical transformation onM, since these conditions do
not comprise a sufficient set, generically. A more complete analysis is needed for such char-
acterization, which lies outside the scope of this work. Ultimately, though, we can check
explicitly the consistency of the implicit mapm+(m−) obtained from any functionf on
U ⊂ M, via the central equation and the symmetric exponential map. These functions shall
be singled out from the following definition.

Definition 5.1. A function f ≡ (1/2)fα ∈ CkR(M), k ≥ 2, which is (locally, onU ⊂ M)
the central generating function of a canonical transformation onM is henceforth referred
to simply as a (local)central actiononM. The set of all such functions is denotedAc(U).
Specifically,A0

c(U) for standard actions. More generally, a function which locally generates
a canonical relation onM, via the central equation, shall be called a (local)central relation
onM, whose set is denoted Relc(U).

Of course,Ac(U1) ⊂ Ac(U2) if U1 ⊃ U2. Thus,∀U ⊂ M,Ac(U) ⊃ Ac(M) the space
of central actions onM, clearly nonempty since every functionfα = −th, h ∈ Ck

R
(M),

is a central action, fort sufficiently small. On the other hand, since central relations must
satisfy(5.1), but not necessarily(5.2),Ac(U) ⊂ Relc(U).

More generally, one might still wish to be free from constraints imposed by central
caustics. For functions onM, this is generically impossible.

On the other hand, inspired by some works in symplectic topology[6,7,39], we could
allow the generating functions to be defined onM × Rd , instead, using the extra variables
to analyse the behaviour at those critical points. But the study of their general definitions
and properties is not to be found here. In an independent context, a very important and
particular case of such “extended” functions shall be seen inSection 8 and 9, whered = 1.

Back to functions onM, our main interest, in what follows, is concerned with their
compositions. For central actions we need only worry about the presence of caustics, but
for canonical relations we must also worry about the possibility of their compositions being
well defined(clean products)[10,14,42,43]. Thus, for simplicity, we shall not pursue on
this broader context here, focusing instead on the compositions of central actions properly,
from now on.

But we emphasize that, whenever well defined, the following rules of composition apply
for central relations as well.

Illustrations: The simplest examples of central actions are those which generate uniform
translations on flat space. Letα ≡ T�ξ : R2 → R2, by �x �→ �x + �ξ, which corresponds to

the lagrangian plane�v = �ξ/2, a constant, inTR2. From(4.5) one has�ξ = −J(∂fα/∂�x),
integrated asfα(�x) = (J ·�ξ)·�xmodulo constants, rewritten as a skew-productfα(�x) = �ξ∧�x.



P. de M. Rios, A.O. de Almeida / Journal of Geometry and Physics 51 (2004) 404–441 421

In particular (when�ξ = 0) the null action (or any constant) generates the identity. And this
is true for every symmetric symplectic spaceM.

The next simplest examples, still on flat spaces, are the homogeneous quadratic func-
tions fα(�x) = �xTB�x, whereB is a symmetric matrix, or equivalentlyfα(�x) = βp2 +
β′q2 + 2γpq, whereβ, β′, γ ∈ R. When γ = 0, β = β′ = − tan(λ/2), fα gener-
ates a rotation by an angleλ through the origin. Notice thatfα, as well as(5.1), di-
verges everywhere whenλ = ±π. This is a reflection at the origin,R0, and the cor-
responding lagrangian submanifold inTR2 is ΛR0 ≡ T0R2 which is not a graph over
T 0R2 anywhere. Whenβ = β′ = 0, γ = − tanh(λ/2), fα generates a pure hyper-
bolic transformation with stable/unstable submanifold coinciding with thep/q axis. Now
(5.1) is always satisfied, but(5.2) fails asymptotically as|λ| → ∞. It is not hard to see
that every quadratic central action generates an element of the homogeneous symplec-
tic group onR2 and, conversely, every such element which can be centrally generated,
is done by a quadratic central action (Cayley transform). This is not a property of the
more familiar generating functions of mechanics onR2, e.g.f(q−, q+), for which generic
translations onM are also generated by quadratic functions. Adding the former two ex-
amples,fα(�x) = �ξ ∧ �x + �xTB�x generate elements of the inhomogeneous symplectic
group.

On S2, the simplest examples are the central actions for rotations. Here, standard case
only. Letα ≡ α(p,2γ) be an element of the group of rotations SO(3) acting onS2, whose
pole (fixed point) isp and whose angle of rotation is 2γ. Taking local polar coordinates for
m ≡ (θ, ϕ) andp ≡ (χ, ε), andγ ∈ [−π/2, π/2], the central action is written as

fα(m) = −2S−1{Sγ [CχCθ + SχSθC(ϕ−ε)]}. (5.3)

Although it looks complicated in local coordinates,f ≡ (1/2)fα has the simple geo-
metrical interpretation shown inFig. 1(a). If we notice thatCχCθ + SχSθC(ϕ−ε) = Cy,

Fig. 1. Full lines represent geodesics.
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y = distance(m, p), the mapFα : S2 → (TS2)0 is given by(4.7)as

v = C−1

 Cγ√
1− (SγCy)2

 ≡ C−1
{
Cγ

Cf

}
,

β = T−1
{
SχCθC(ϕ−ε) − CχSθ

SχS(ϕ−ε)

}
+ (1− Sign(ϕ − ε))π

2
(5.4)

and the implicit transformationm+(m−) generated byfα is given by(4.9)as

θ± = C−1

CγCθ ± SγSθSχS(ϕ−ε)√
1− (SγCy)2

 ,
ϕ± = ϕ ± T−1

{
Sγ [CχSθ − SχCθC(ϕ−ε)]

λ±

}
+ (1− Sign(λ±))

π

2
, (5.5)

whereλ± = CγSθ±SγCθSχS(ϕ−ε). Notice that whenm→ p or p̄, v→ 0 andm is a fixed
point of the transformation(5.5), as expected,∀γ ∈ [0, π/2). However, whenγ = π/2 the
transformation(5.5) is not well defined. Again, in this caseα(p,2γ) = α(p, π) = Rp :
S2 → S2, and the corresponding lagrangian submanifold in(TS2)0 is ΛRp ≡ (TpS

2)0,
which is not a graph overT 0S2 anywhere. We can also see this singularity using(5.1),
whenγ = π/2. To see thatm → p is not a caustic singularity, forγ )= π/2, one can
check directly in(5.1). Similarly, expandingf aroundm in linear coordinates(p, q), gives
fα(m) = constant+ (Tγ)y2 + o(y4) � (Tγ)y2, with y2 = p2 + q2, which is the central
action for rotations on the plane.

OnH2, we now consider the central actions for some elementsα ∈ SO(2,1). A subclass
of such elements is characterized by thoseα = α(p,2γ), which are real rotations onH2

around the real polep ∈ H2, through an angle 2γ, γ ∈ [−π/2, π/2]. The corresponding
central actions and canonical transformations are analogous to the spherical ones.

However, in opposition to the real hyperbolic rotations, stand the ideal hyperbolic ro-
tations. These can be characterized in two ways. We may considerα = α(p̃,2γ), γ ∈
[−π/2, π/2], p̃ an ideal fixed point (a point inR3 satisfyingx2+ y2− z2 = 1, while a real
point inH2 ⊂ R3 satisfiesz2− (x2+y2) = 1). Alternatively, we takeα = α̃(ν, ε, z)where
ν ∈ [0,∞), z ∈ (−∞,∞), ε ∈ [0,2π]; (ν, ε) being the coordinates of a real axis inH2, i.e.
a geodesic inH2 s.t.ν is its distance to the origin andε is the angle this minimal geodesic
arc makes at the origin, as shown inFig. 1(b). We interpret|z| <∞ as a geodesic segment
along this axis, its sign determining a particular orientation for it[35]. The corresponding
central action is given by

fα̃(m) = 2S−1{S̃z[C̃νS̃ρC(ϕ−ε) − S̃νC̃ρ]}, (5.6)

whereC̃νS̃ρC(ϕ−ε) − S̃νC̃ρ = S̃x, x = distance(m,axis). From(5.6)fα̃ exists only when

|S̃zS̃x| ≤ 1⇔ 0 ≤ x ≤ S̃−1
(

1

|S̃z|

)
, (5.7)
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but in this neighborhood of the axis, it is a well-defined real function whose simple geometric
interpretation is shown inFig. 1(b). From(4.10), the mapFα̃ : H2 → TH2 is given by

µ = C̃−1

 C̃z√
1− (S̃zS̃x)2

 ≡ C̃−1

{
C̃z

Cf

}
,

β = T−1

{
C̃νC̃ρC(ϕ−ε) − S̃νS̃ρ

C̃νS(ϕ−ε)

}
+ (1+ Sign(ϕ − ε))π

2
(5.8)

and thefα̃-generated intrinsic transformationm+(m−) is given by(4.11)as

ρ± = C̃−1

 C̃zC̃ρ ± S̃zS̃ρC̃νS(ϕ−ε)√
1− (S̃zS̃x)2

 ,
ϕ± = ϕ ± T−1

{
S̃z[C̃νC̃ρC(ϕ−ε) − S̃νS̃ρ]

ξ±

}
+ (1+ Sign(ξ±))

π

2
, (5.9)

whereξ± = C̃zS̃ρ± S̃zC̃ρC̃νS(ϕ−ε). The transformation(5.9)describes finite motions along
lines equidistant to the axis(ν, ε), as shown inFig. 1(b). We see that(5.9)has no real fixed
point and is also free of central caustics, i.e. it is well defined everywhere on the same
neighborhood of the axis(ν, ε) on whichfα̃ is well defined. In other words, the lagrangian
submanifoldΛα̃ ⊂ TH2 is a graph over this neighborhood; one can check explicitly that
(5.1)does not diverge anywhere. Notice that, asx→ 0,m,m+ andm− all lie on the axis,
with z = distance(m,m+). However, as|z| → ∞, (5.2) fails asymptotically, in agreement
with (5.7), which impliesx = 0, when|z| = ∞.

6. Composition of central actions

Having explored the symplectic structure on central groupoids, we now add their algebraic
structure in order to answer the following question: Letfα1, fα2 ∈ CkR(M) locally be the
central actions for two canonical transformations, respectively,α1, α2 : M → M,m �→
αi(m). Sinceα = α2(α1) is another canonical transformations onM, what is, locally, its
central action? In other words, How do central actions compose? We start by considering
the following definition.

Definition 6.1. Let ζ be a (local) symplectic potential forω onUζ ⊂ M. Then, onDUζ ⊂
DM, δζ := P∗+(ζ)−P∗−(ζ) is a local symplectic potential forδω andZζ := Φ∗0(δζ) is locally
a symplectic potential forΩ0 onWζ ⊂ (TM)0, Φ0(Wζ) ⊂ DUζ, to be called anadditive
potential.

The reason for this name is obvious once we realize that

Zζ(τ1 � τ2) ≈ Zζ(τ1)+ Zζ(τ2). (6.1)
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Here, as inDefinition 3.2, this is a shorthand notation for the fact that the local 1-form
Zζ ⊕ Zζ � Zζ vanishes on the graph of the groupoid composition.

Such additive potentials do not coincide with the central potentials, i.e.Zζ does not satisfy
property(4.1), even locally, and we cannot use it to define central generating functions
directly. On the other hand, the central potentials are not additive, as in(6.1), but in order
to compose central actions, we now realize that, onWζ,

Zζ = Z0 + dQζ, Qζ ≡ Q0
ζ ∈ CkR(Wζ). (6.2)

Therefore, ifτi ∈ Λαi , with P0(τi) = mi ∈ U, is locally generated by the standard central
actionfαi ∈ CkR(M), then on(TU)0 ∩Wζ : Zζ(τi) = dfαi(mi)+ dQζ(τi), combining(4.3)
and (6.2). Hence, ifΛα satisfies(4.2) on (TU)0, for α = α2(α1), andτ = τ1 � τ2 ∈ Λα,
with P0(τ) = m ∈ U, is locally generated by the standard central actionfα ∈ CkR(M), then,
onWζ ∩ (TU)0, from (6.1),

dfα(m) ≈ dfα1(m1)+ dfα2(m2)+ dχζ(τ1, τ2), (6.3)

where we define the standard phase functionχζ ≡ χ0
ζ : (TU)20 → R, locally by

χζ(τ1, τ2) = Qζ(τ1)+Qζ(τ2)−Qζ(τ1 � τ2). (6.4)

Now we apply the crucial result stated in the following proposition.

Proposition 6.1. The functionχζ defined above(6.4) is well defined on the whole(TM)20
and independs on choices of local symplectic potentials onM. Actually it coincides, modulo
constants, with the symplectic area of a standard geodesic triangle onM, i.e. which can be
defined by elements in(TM)20, determined by its midpointsm,m1 andm2. This area shall
be denoted by�0(m,m1,m2).

Proof. Here we rely on a mathematical construction[1,3] which consists of building an
S1-principal fiber bundle over a symplectic manifold(M,ω) with connectionα whose
curvature isω/λ. We denote this asS1 → (SM, α) −→π (M,ω/λ), dα = π∗(ω/λ). Such
bundle is well defined only if(1/2πλ)

∮
B ω = p ∈ Z, whereB is any oriented, closed

two-surface without boundary onM. Here,λ is an auxiliary constant which can be set to
zero in the end.

To extend this construction to the double phase space[48], we identifySDM≡ (SM− ×
SM+)/S1, (SM±,∓α) being the same principal bundles overM, but for opposite con-
nections, and the quotient is taken with respect to the diagonal action ofS1 ⊂ T 2 on
SM− × SM+. Actually, we have chosen the connection whose curvature is−δω/λ, so we
should perhaps denote this bundle bySDM, but to simplify the notation we keep toSDM.
Thus,S1 → (SDM, [−δα]) −→[π] (DM,−δω/λ), d[−δα] = [π]∗(−δω/λ), whose elements
are denoted by [σ, σ′], where(σ, σ′) ∈ SM− × SM+.

Choosing identity elements of the form [σ, σ], we extend [51] the groupoid composition
from DM to SDM by [σ, σ′] � [σ′, σ′′] = [σ, σ′′]. Pulling backSDM by the (restricted)
symmetric exponential map, we get a (trivial) bundle over(TM)0, denoted(STM)0 ≡
Φ∗0(SDM) −→π0×ρ0 (TM)0 × SDM.

Next, consider sectionsε0 : (TM)0 → (STM)0 which are obtained via the parallel
transport along theP0-fibers of identity elements in(STM)0, the latter being fixed by the
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above choice onSDM. These polarized sections are such thatρ0(ε0(τ)) = [σ′, σ′′], where
(σ′, σ′′) are the endpoints of a horizontal lift inSMof the short geodesic fromm′ to m′′,
centered onm = P0(τ), forΦ0(τ) = (m′,m′′).

Hence, if(τ1, τ2) ∈ (TM)20, thenε0(τ1) � ε0(τ2) = ε0(τ1 � τ2)K0(τ1, τ2), whereK0 :
(TM)20 → S1 is the holonomy inSM over the triangle of composition onM. That is,
K0(τ1, τ2) = exp{(√−1/λ)A0(τ1, τ2)}, where the standard triangular area functionA0 is
well defined and continuous on(TM)20. This means thatK0(τ1, τ2) is well defined on the
whole(TM)20, as well as being independent of local expressions for the connection [−δα]
and its pull-back̄α0.

But the pull-back connection̄α0 can locally be written as̄α0 � dθ− (1/λ)Zζ, whereθ is
the fiber coordinate, for a local choice of symplectic potentialω � dζ. Over theP0-fibers,
these can locally be rewritten asᾱ0|m � (dθ− (1/λ)(Zζ −Z0))|m � (dθ− (1/λ)dQζ)|m,
thus, providedQζ|T 0M ≡ 0 and for a local representation of identity elements as(m, �0;0),
the trivializing sectionsε0 can locally be written asε0(τ) � (τ;exp{(√−1/λ)Qζ(τ)}) and
therefore the holonomy phaseA0(τ1, τ2) is locally identified asχζ(τ1, τ2) = Qζ(τ1) +
Qζ(τ2)−Qζ(τ1 � τ2).

On the other hand, denoting a point in(TM)20 by (m1, v1;m2, v2), with τ1 � τ2 =
τ3 = (m3, v3), we can almost everywhere eliminate the three vectors by expm1

(−v1) =
expm3

(−v3) = a, expm1
(v1) = expm2

(−v2) = b, expm2
(v2) = expm3

(v3) = c, and
Φ0(m1, v1) = (a,Rm2Rm3(a) = b), Φ0(m2, v2) = (b,Rm3Rm1(b) = c), Φ0(m3, v3) =
(a,Rm2Rm1(a) = c), the exception being those midpoint tripletsµ123= (m1,m2,m3) for
which the fixed point set ofRm1Rm2Rm3 has nontrivial dimension. But we can assume,
based on the lower dimensional examples, that the set of such singular midpoint triplets
has codimension always greater than 1. In other words, the mapΨ0 : (TM)20 → (M ×
M ×M)midpoints is invertible on its image set, except for a subset of codimension greater
than 1.

Hence, ifµ123 is a regular midpoint triplet,�0(µ123) = �0(m1,m2,m3) = A0(Ψ
−1
0

(µ123)). Otherwise, ifµ123 is a singular midpoint triplet, consider any continuous family
of regular midpoint tripletsµ′123(ε), ε > 0 s.t.µ′123(0) = µ123. These families always exist
and, for anyε )= 0,Ψ−1

0 is well defined and continuous, so that�0(µ
′
123(ε)) is a continuous

function of ε. It follows that�0(µ123) = �0(m1,m2,m3) = limε→0{�0(µ
′
123(ε))}, for

any familyµ′123(ε)→ µ123.
Therefore, the holonomy can be identified with exp{(√−1/λ)�0(m,m1,m2)}, formi =

P0(τi), m = P0(τ1 � τ2), where�0(m,m1,m2) stands for the symplectic area, modulo
2πλ, of a standard geodesic triangle with given midpoints, for whichχζ(τ1, τ2) is thus a
local expression. �

Let us remark that in the simplest case ofR2n, the midpoint triangular area� is a unique
well-defined function on the wholeR2n × R2n × R2n. Generically, however,�0 is well
defined only on a subsetU ⊂ M ×M ×M, as exemplified below for the torus, the sphere
and the hyperbolic plane.

In every case, though, for any triplet of points for which�0 is well defined, modulo
constants, we get fromPropositions 4.1 and 6.1, via (6.3), the main result. We now have
the following theorem.



426 P. de M. Rios, A.O. de Almeida / Journal of Geometry and Physics 51 (2004) 404–441

Theorem 6.1. Let fα1, fα2 locally be standard central actions forα1, α2 : M → M,
respectively. If fα is locally the standard central action forα = α2(α1), then

fα(m) ≡ fα1 � fα2(m) = Stat(m1,m2){fα1(m1)+ fα2(m2)+�0(m,m1,m2)} (6.5)

defining the standard composition of central actions onM, if�0(m,m1,m2) is well defined,
up to constants, i.e. if (m,m1,m2) stand as midpoints of a standard geodesic triangle.

As a product onA0
c(U), fα1 � fα2 may not exist or if so, it may not be unique, for

Λα ⊂ (TM)0 may not satisfy(4.2)overU ⊂ M, or it may be composed of many sheets in
(TU)0.

Furthermore, the composition rule(6.5) is not unique when considering nonstandard
central actions as well, ifM has closed geodesics. In this case, repeating the steps that led
to (6.3), for reducible triples(i, j; k), using(4.3’) we get the generalized version:

df kα (m) ≈ df iα1
(m1)+ df jα2(m2)+ d[χζ]

k
ij (τ̃1, τ̃2), (6.3′)

where [χζ]kij is a local representation for a general phase function(T̃M)2ij → R, given by

[χζ]
k
ij (τ̃1, τ̃2) = Qiζ(τ̃1)+Qjζ(τ̃2)−Qkζ(ckij (τ̃1, τ̃2)), (6.4′)

with eachQiζ being a function defined as dQiζ = Ziζ − Zi, on appropriate subsetsWiζ ⊂
(T̃M)i. As in the standard case, we identify this function by the following proposition.

Proposition 6.1’. For (i, j; k) reducible, and for appropriate choices ofZi, Zj, andZk,
the function[χζ]kij is well defined on the whole(T̃M)2ij , independs on local choices ofζ and
coincides, modulo constants, with the symplectic area of a reducible geodesic triangles on
M which can be defined by elements in(T̃M)2ij × (T̃M)k and determined by its midpoints
(m1,m2;m), in other words, geodesic triangles with given midpoints and sides which are
(i, j; k)-fold geodesics. Such area shall be denoted by�kij (m;m1,m2) or generically by
�(m,m1,m2).

Proof. This is an elaboration on the proof ofProposition 6.1. Here, we must argue that
there is a consistent choice for theZj ’s, such that eachQjζ|T̃ jM ≡ γj : M → R is given by

exp{(√−1/λ)γj(m)} = η′j(m), whereη′j(m) is the horizontal transport overM � T̃ jM of
theLj(m0) loop holonomy, given a reference pointm0.

Explicitly, if exp{√−1βj} denotes theLj(m0) holonomy inSM (its homology class, if
irreducible), thenγj(m) = ∫

ΣL′j(m)
w, modulo 2πλ and the constantβj, where∂ΣL′j(m) =

L′j(m) = Lj(m0,m) is the reducible loop inM given as(m0 → m) ◦ Lj(m) ◦ (m →
m0) ◦ L−1

j (m0), with Lj(m) denoting thej-fold geodesic loop based atm.

EachΦ̃j : (T̃M)j → DM provides a pull-back (trivial) bundle(ST̃M)j −→ρj SDM. Taking

local trivializing sections̃εj : T̃ jM → (ST̃M)j of the formε̃j = ρ−1
i ([σ, σ

′
j]), whereσ′j =

σ · η′j(m), for π(σ) = π(σ′) = m, locally represented as̃εj(τ̃j) � (m, [�vj];exp{(√−1/λ)

γj(m)}), then, from a similar analysis to the standard case, the trivializing sectionsεj :
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(T̃M)j → (ST̃M)j which are obtained from̃εj via parallel transport along thePj-fibers are
such thatρj(εj(τ̃)) = [σ′, σ′′], where(σ′, σ′′) are the endpoints of a horizontal lift inSM
of thej-fold geodesic fromm′ tom′′, centered onm = Pj(τ̃), for Φ̃j(τ̃) = (m′,m′′).

Hence, if(τ̃1, τ̃2) ∈ (T̃M)2ij , thenCkij (εi(τ̃1), εj(τ̃2)) = εk(ckij (τ̃1, τ̃2)) ·Kkij (τ̃1, τ̃2), where

Ckij : (ST̃M)2ij → (ST̃M)k is the “extension” of the mixed compositionckij , defined as

Ckij (z1, z2) := ρ−1
k (ρi(z1)�ρj(z2)), zi ∈ (ST̃M)i, etc. andKkij (τ̃1, τ̃2) ∈ S1 is the holonomy

in SMover the (i, j; k)-triangle of composition, which, if (i, j; k) is reducible, corresponds
to the exponential of its symplectic area.

Furthermore, since any reducible (i, j; k)-geodesic triangle stands in a bijective corre-
spondence with a standard one, it follows that the (i, j; k)-triangular area is a well-defined
function�kij of the midpoints.

Therefore, the holonomy can be identified as exp{(√−1/λ)�kij (m;m1,m2)}, for m1 =
Pi(τ̃1), m2 = Pj(τ̃2) andm = Pk(ckij (τ̃1, τ̃2)), where�kij (m;m1,m2) stands for the sym-
plectic area, modulo 2πλ, of the reducible geodesic triangle with given midpoints and sides
which are (k; i, j)-fold geodesics. This also means thatKkij (τ̃1, τ̃2) = exp{(√−1/λ)�kij
(m;m1,m2)} is well defined on the whole(T̃M)2ij and independs on local expressions for
the connection [−δα] and its pull-backs̄αj.

But, from the form of such pull-back connections and forQjζ|T̃ jM ≡ γj andεj|
T̃ jM

≡
ε̃j, as above, it follows that the trivializing sectionsεj can locally be written asεj(τ̃) �
(τ̃;exp{(√−1/λ)Qjζ(τ̃)}) and therefore [χζ]kij is a local representation for�kij (m;m1,m2),
modulo 2πλ. �

The appropriate choices of central potentials referred to in the statement are explained
in its proof. Loosely speaking, eachZj is chosen as the pull-back of a single 1-formZ on
TM, for each immersion(T̃M)j → TM . Using(6.3’) we get the following theorem.

Theorem 6.1’. Let f iα1
, f jα2 locally be central actions forα1, α2 : M → M, respec-

tively. If (i, j; k) is reducible andf kα is locally a central action forα = α2(α1), then it is
given by

f kα (m) ≡ f iα1
�k f jα2 = Stat(m1,m2){f iα1

(m1)+ f jα2(m2)+�kij (m;m1,m2)} (6.5′)

defining the(i, j; k) composition of local central actions onM, provided(m1,m2;m) can
stand as midpoints for a reducible(i, j; k)-geodesic triangle and each action is defined with
respect to the choices of central potentials referred to and explained above.

Clearly, (6.5) is a particular case of(6.5’), with �0
00 ≡ �0. However, by restricting to

the standard composition we have obtained a uniquely defined rule. In extending to generic
central actions this rule ceased to be unique, even though each instance is well defined.
Thus, for simplicity, when considering multiple compositions, inSection 7, we keep to the
standard case.

Finally we remind that,whenever meaningful(clean product[43]), (6.5’) applies for the
composition of central relations onM.
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Examples: Standard cases, only. In the simplest spaces, we provide the expressions
for � and analyse the specific nontrivial restrictions which apply, in each case. First, on
R2:

�(�x, �x1, �x2) = 2{�x ∧ �x1 + �x1 ∧ �x2 + �x2 ∧ �x} (6.6)

is the midpoint triangular area, defining via(6.5)the composition of central actions onR2.
OnT 2, we add the restriction on the lengths of the triangles, in terms of midpoints:

|qi − q|, |pi − p|, |q1 − q2|, |p1 − p2| < π
2
, i = 1,2. (6.7)

On the 2-sphere, the midpoint triangular area is given by (seeAppendix A):

� = 2 Arg
{
σ
√

1−D2 + iD
}
, (6.8)

whereσ ≡ σ(m,m1,m2) ∈ {−1,0,1} has the same sign as any of the scalar prod-
ucts (m̂ · m̂1), (m̂ · m̂2), (m̂1 · m̂2), andD ≡ D(m,m1,m2) = det[m̂, m̂1, m̂2]. Here,
m̂ ∈ S2 ⊂ R3. For small triangles, i.e.|�| < π, (6.8) simplifies to�(m,m1,m2) =
2S−1(det[m̂, m̂1, m̂2]).

This explicit form for� must be placed in(6.5), provided the triplet(m,m1,m2) stand
as midpoints of a spherical triangle with all sides shorter thanπ. This nontrivial restriction:

sign(m̂ · m̂1) = sign(m̂1 · m̂2) = sign(m̂2 · m̂) (6.9)

is the constraint that must be imposed on(6.5) and (6.8)to define the standard composition
of two central actions on the sphere. Constraints analogous to(6.9)or (6.7)apply to each
mixed composition, for every space with closed geodesics.

The hyperbolic plane presents one subtle distinction. Here, form � �m ∈ H2 ⊂ R3,

�(m,m1,m2) = 2S−1(det[�m, �m1, �m2]). (6.10)

But now we notice that(6.10)only makes sense on the subset ofH2×H2×H2 determined
by:

|det[�m, �m1, �m2]| < 1. (6.11)

The composition of two central actions onH2 is given by(6.5) and (6.10), subject to
constraint(6.11). Actually, (6.11) is a necessary and sufficient condition any triplet of
points onH2 must satisfy in order to be the set of midpoints of a hyperbolic triangle.

As in the case of the sphere, there is a nontrivial constraint in the composition of two
central actions, but in the hyperbolic case,(6.11)comes naturally from the definition of
the area function(6.10), being intrinsic to the hyperbolic geometry. Its interpretation is that
the three midpoints can never be too far apart, as can be pictured by drawing a geodesic
triangle on the Poincaré disc. For the sphere, on the other hand,(6.9) is a consequence
of the restricted groupoid(TS2)0. In other words, there do exist spherical triangles whose
midpoints do not satisfy(6.9), but they cannot be used in the definition of the standard
composition of central actions (they can be used for mixed compositions), contrary to the
hyperbolic case where, for every triangle,(6.11)holds.

Also note that, when defining triangles by their triplets of vertices, instead of midpoints,
no nontrivial restriction exists (except for sets of measure zero), which is a consequence
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of the fact that the map{vertices} → {midpoints} is generally less trivial than one would
guess by looking only at the euclidean plane. See alsoAppendix Aand[31,33,38,47].

7. Multiple compositions

So far we have seen how two central actions may compose into a new one via(6.5’).
Now, we want to generalize it for the composition of an arbitrary number of standard central
actions, whenever possible. This should be done with some care, so we first get the following
lemma.

Lemma 7.1. Let fαi locally be standard central actions forΛαi ⊂ (TU)0. If fα1 � fα2

andfα2 � fα3 are unique standard central actions onU, as well as(fα1 � fα2)� fα3 and
fα1 � (fα2 � fα3), then(fα1 � fα2)� fα3 = fα1 � (fα2 � fα3) is given by

fα1 � fα2 � fα3(m) = Stat(m1,m2,m3)

{∑
i

fαi(mi)+ P4(m,m1,m2,m3)

}
, (7.1)

P4 being the smallest symplectic area of any(oriented) quadrilateral decomposable in tri-
angles defined by elements in(TM)20 only and determined by the midpoints(m,m1,m2,m3),
up to constants.

Proof. Supposefα1 � fα2, given by(6.5), is a unique standard central action onU ⊂ M,
just asfα3. Applying (6.5)again:

(fα1 � fα2)� fα3(m)=Stat(m′,m3){fα1 � fα2(m
′)+ fα3(m3)+�(m,m′,m3)}

=Stat(m′,m3){Stat(m1,m2){fα1(m1)+ fα2(m2)

+�(m′,m1,m2)} + fα3(m3)+�(m′,m3,m)}.
If a unique solution exists, this rewrites as:

Stat(m1,m2,m3){fα1(m1)+ fα2(m2)+ fα3(m3)

+Stat(m′){�(m′,m1,m2)�(m
′,m3,m)}}.

But, with {mi} constrained by the overall stationary condition then, via the centralequation
(4.3), �(m′,m1,m2) =: g1(m

′) and�(m′,m3,m) =: g2(m
′) provide well-defined maps

�G1, �G2 : m′ �→ �v1, �v2 ∈ (Tm′M)0, supposing that bothg1 andg2 , as well asfα1 � fα2

and(fα1�fα2)�fα3 are well defined unique central actions, i.e. both partial and complete
unique solutions to the stationary conditions exist.

From the form of the central equation and the involutive character of the central potential:
Z0(τ) = −Z0(τ̄), them′ stationary condition implies�G1(m

′) = −�G2(m
′).

Using the symmetric exponential map, we see that the two triangles composed form a
single quadrilateral, i.e. their sides centered atm′ are precisely opposite to each other. That
is,

Stat(m′){�(m′,m1,m2)+�(m′,m3,m)} ≡ P4(m1,m2,m3,m), (7.2)
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whereP4(m1,m2,m3,m) is the symplectic area of a standard quadrilateral with these
midpoints.

Generically, the four midpoints do not determine the quadrilateral uniquely. But if all
triangular decompositions yield triangles which are defined by elements in(TM)20 only,
then byProposition 6.1and(7.2), P4 is the symplectic area of any such quadrilateral, up to
constants: any degeneracy in its specific geometry, which is a continuous function ofm′,
does not alter the symplectic area, and any other “(TM)0-quadrilateral”, in the above sense,
has the same symplectic area up to constants. �

The existence and uniqueness requirements are quite difficult to assure beforehand, in
general. Of course, if anyfαi or intermediary composition is not a central action, the triple
composition is void. On the other hand, if an intermediary composition is not unique, say
fα1 � fα2 = {g1, g2}, then we could proceed to{g1 � fα3, g2 � fα3} in just the same
manner, but the final composition(fα1 � fα2) � fα3 is not guaranteed to be associative,
in principle. However, if allΛαi,Λαiαj , . . . are composed of sheets whose one of them
can be consistently singled out, for some particular reason, as well as their corresponding
central actions, then we can applyLemma 7.1exclusively to this particular set. Carefully
reiterating all steps to(7.1)gives the following corollary.

Corollary 7.1. Letfαi locally be standard central actions forΛαi ⊂ (TU)0. If all interme-
diary, ordered compositionsfαi�fαi+1,fαi�(fαi+1�fαi+2), ((fαi�fαi+1)�fαi+2)�fαi+3,
etc. are unique standard central actions onU, then anyn-string of ordered compositions
which is a unique standard central action equals any other suchn-string and is given by:

fα1 � fα2 � · · · � fαn(m) = Stat({mi})

{∑
i

fαi(mi)+ Pn+1(m, {mi})
}
, (7.3)

Pn+1(m, {mi}) being the smallest symplectic area of any(oriented) (n+ 1)-polygon which
can be triangulated by elements defined in(TM)20 only and determined by the midpoints
(m, {mi}).

Again, if uniqueness fails, but a unique set of central actions can be consistently singled
out, then we can useCorollary 7.1for these particular standard central actions exclusively
(seeSection 8). We should note that, with greater care, the above rules can be generalized to
multiple mixed compositions of central actions and, even more generally, central relations
whenever meaningful.

Corollary 7.1generalizes a previous result onR2n [27]. We remark that some of this
discussion on composition of midpoint triangles, in general symmetric symplectic spaces,
has been approached independently from the point of view of associativity for star products
[31].

Examples: For the composition of three actions, the euclidean plane presents an interesting
feature. From(6.6) and (7.2), we getP4/2= Stat(�x′){�x1∧�x2+�x3∧�x+�x′∧(�x1−�x2+�x3−�x)},
which implies:�x1 − �x2 + �x3 − �x = 0 . This means that(�x, {�xi}) are the vertices of a
parallelogram with diagonals�x3 − �x1, �x − �x2. But this is true for any quadrilateral inR2,
i.e. their midpoints are vertices of a parallelogram. Conversely, given any parallelogram on
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R2, there exists a continuous family of circumscribed quadrilaterals whose midpoints are
the vertices of the given parallelogram.

Such a family can be parameterized by one of the vertices of each circumscribed quadri-
lateral or, equivalently, by the midpoint of one of its diagonals, as�x′ above. In accordance
with (7.2), the symplectic area independs on�x′, being uniquely given as twice the area of
the inscribed parallelogram:P4(�x, �x1, �x2, �x3) = 2(�x1 ∧ �x2 + �x3 ∧ �x = �x ∧ �x1 + �x2 ∧ �x3),
which, inserted in(7.1), defines the composition of three central actions onR2, with (�x, {�xi})
subject to the parallelogram relation, and under the conditions ofLemma 7.1.

On the torus, the same analysis and results apply, but now subject to the extra (standard
groupoid) constraint:|q− qi|, |qi − qj|, |p− pi|, |pi − pj| < π/2, i, j = 1,2,3.

On S2, however, the above quadrilateral ambiguity is an exception, when considering
only those quadrilaterals defined by composing elements in(TS2)0. Then, as with spherical
triangles, a near-bijection between the sets of vertices and midpoints allows for a unique
definition of the quadrilateral geometry either way, i.e. each quadrilateral is uniquely de-
termined by its vertices or its midpoints (with a few exceptions) and the only restrictions
derive from the restricted groupoid(TS2)0.

DenotingCij = m̂i · m̂j ≡ cosine(distance(mi,mj)), we can write the midpoint area
of convex quadrilaterals which are decomposable in small triangles, i.e.|�| < π, as
P4(m1,m2,m3,m4) = 2σ1234 · C−1{C12C34 + C23C41 − C13C24}, whereσ1234 = ±1
is the orientation of(m1,m2,m3,m4) and the standard groupoid restrictions on the mid-
points of these simplest quadrilaterals now become:D123,D234,D341,D412 > 0, where
Dijk ≡ det[m̂i, m̂j, m̂k], which, together with(7.1), define this simplest composition of
three central actions onS2, under the existence and uniqueness assumptions as required in
Lemma 7.1.

On H2, the midpoint area function for a convex quadrilateral is given similarly by
P4(m1,m2,m3,m4) = 2σ1234 · C−1{C̃12C̃34 + C̃23C̃41 − C̃13C̃24}, whereC̃ij = cosh
(distance(mi,mj)). Again, the restrictions are intrinsic to the hyperbolic geometry and can
be obtained directly from the area function, i.e. the convex set(m1,m2,m3,m4) must sat-
isfy |C̃12C̃34 + C̃23C̃41 − C̃13C̃24| < 1 and each quadruplet of midpoints satisfying this
constraint determines a unique convex hyperbolic quadrilateral and vice versa (with a few
exceptions, see below). UsingLemma 7.1, we obtain this simplest composition of three
central actions onH2.

SeeAppendix Afor a more detailed analysis on these quadrilateral geometries.
Besides providing explicit equations for compositions of three central actions, the previ-

ous discussions further illustrate some kinds of constraints which the midpoints, or centers
(the arguments of the composing actions) are subject to.

In this respect, the euclidean plane presents the feature that, when the number of compos-
ing actions is even, no restrictions apply, but when the number is odd, there is a degeneracy in
the determination of the 2Q-polygon from its midpoints, corresponding to a linear functional
restrictiong(�x, �x1, . . . , �x2Q−1) = 0 on the arguments of the composing central actions. For
the torus, one must further add the groupoid restrictions.

On the other hand, in the nonflat cases studied, such a degeneracy is an exception and
its corresponding extra constraint is not present. When considering only those polygons
which can be obtained by iterated (standard) central groupoid compositions, there is a
near-bijection between the sets of midpoints and vertices. OnH2, intrinsic restrictions on
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the midpoints exist, though, which show explicitly in the midpoint area function, whatever
the number of composing actions. OnS2, only the (standard) central groupoid restrictions
apply.

Another way to view degeneracies and extra constraints is the following: Let(m, {mi}n)
be a candidate for the set of midpoints for an(n+ 1)-polygon onM. Also, for eachmi, let
Rmi : M → M be the corresponding involution whose fixed point ismi. Then, the existence
of a circumscribed(n+1)-polygon to the midpoints(m, {mi}n) is equivalent to the existence
of a fixed point for the symplectomorphismPn+1 ≡ Rm1 ·Rm2 · · ·Rmn ·Rm : M → M.

On R2, whenn is oddPn+1 is a translation, see(2.1). Fixed points exist only when this
translation is the identity, in which case every point is fixed. For the sphere, on the other
hand,Pn+1 ∈ SO(3), ∀n ∈ N, and there is always a fixed point (actually two). However,
for H2, Pn+1 ∈ SO(2,1) and there may or may not exist a fixed point onH2, ∀n ≥ 2, but
when there exists, it is unique. The exception, in both cases, is whenPn+1 ≡ 1 and for
these sets of points the corresponding circumscribed polygon is not uniquely defined, but
so is its area.

We shall not present here an explicit characterization of multiple compositions, for generic
n, in every example. The reader is referred to[25], for the euclidean case. Instead, in the
next paragraph we study a particular limit for(7.3), asn→∞.

8. The central variational principle

We now focus on the relationship between finite and infinitesimal canonical transforma-
tions in the central description, i.e., on the relation between finite and infinitesimal central
actions.

To this end, consider(α)T ≡ {α(x)y }T , a continuous sequence of canonical transformations

onM for which the following properties hold:∀x, y, z, t ∈ [0, T ] s.t.x+ y + z = t, α(x)y :

M → M satisfies(α(x)y )∗ω = ω, αt ≡ α
(0)
t = α

(x+y)
z (α

(x)
y · α(0)x ) = α

(x+y)
z · α(0)x+y =

(α
(x+y)
z · α(x)y ) · α(0)x = α(x)y+z · α(0)x and alsoαt+ε = α(t)ε · αt = αt + o(ε), asε → 0, with

α
(t)
ε → id : M → M, whereα(t)ε is the infinitesimal canonical transformation defined by

the hamiltonian functionh(t), via Hamilton’s equation or, equivalently, by the infinitesimal
central actionf

α
(t)
ε
= −εh(t), via the centralequation (4.3). We assume thath(t) is a

continuous function oft, buth(t) )= h(t′), in general. In other words,h is a nonautonomous
hamiltonian, i.e. a continuous function onM × [0, T ]. Accordingly, we denoteh(0) ≡ h
and, ifh(t) = h, ∀t ∈ [0, T ], we say thath is autonomous. In this particular case,h(t) ≡ h,
we have that, fort ∈ [−T, T ], (αt)−1 ≡ α−t . But generally, i.e.h(t) )= h(t′), such simplest
inversibility relation only applies for very short intervals of time, i.e.(α(t)ε )−1 = α(t)−ε only
in the limit ε→ 0. In other words, the flow of{αt}T is locally hamiltonian (autonomous),
but not globally.

Now, we will seek local central actions forαt given in terms ofh(t). To achieve this
goal we shall use the results from the previous paragraph, but, in doing so, we should
certify thatfαt exists and is unique,∀t′ ∈ [0, t), in principle. Actually, both conditions
can be relaxed in this particular case, as is shown below. Then, we obtain the following
theorem.
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Theorem 8.1. Let (α)T be a continuous sequence of canonical transformations onM, as
above, where asε→ 0,α(t)ε is the infinitesimal canonical transformation generated by the
hamiltonianh(t) ≡ h(m, t) continuous int. Then, wherever the central action forαt ≡ α(0)t
exists, fαt (m) ≡ Ψth(m) ≡ Ψh(m, t), it satisfies the Central Variational Principle:

Ψh(m, t) = Stat(ν)

{
−
∫
ν

h(m′(t′), t′)dt′ + ω

}
(m, t) (8.1)

for a family of continuous pathsν : [0, t] → M geodesically centered onm, where, by
definition { ω}(m, t) ≡ [ ω]t(m) is the symplectic area between the curveν and the
geodesic fromν(t) to ν(0) centered onm (seeFig. 2). This area function is well defined,
up to constants, provided the geodesic is such that the full closed circuit is reducible.
Furthermore, the stationary pathsν solving(8.1) coincide with the classical trajectories
on phase space describing the continuous evolution fromν(0) to ν(t).

Proof. We start by considering those central actions which are continuously deformed from
the hamiltonian, i.e.fαt →−εh, ast � ε→ 0, continuously onU ⊂ M.

Thus, let{Λαt } be a continuous set of lagrangian submanifolds in((TM)0,Ω0), evolving
from the zero sectionT 0M ≡ Λα0 � M, s.t. ∀τ ∈ Λαt , Φ(τ) = (m−,m+) satisfies
m+ = αt(m−).

Suppose that over̄U ⊂ M there areQ branches ofΛn ≡ Λαn , whereαn ≡ αt for
t = tn ∈ (0, T ], generated byQ central actionsf jαn, j = 1, . . . , Q. Generically,Ū is an open
neighborhood bounded by the sets of central caustics{mn}j, j = 1, . . . , Q− 1. Further, let
tk ∈ (0, tn) be the time when a central catastrophe first appear for{Λαt }, i.e.Λαt satisfies
(4.2)everywhere onM, for t < tk.

Denoting{mk} the set of central caustics forΛk, then we can find neighborhoods inM
divided by{mk}. This is not so clear when codim({mk}) > 1, but following the evolution of
these caustics we can find appropriate subdivisions inM. Let us denote byU1

k one of such
neighborhoods, containinḡU. ThenA0

c(Ū) ⊃ A0
c(U

1
k ). Let f 1

αk
∈ A0

c(Ū) be the central
action forαk on Ū ⊂ U1

k ⊂ M.

Fig. 2. Central symplectic area of a curve.
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Now, of all the branches ofΛn, overŪ, only one is a continuous deformation fromΛk,
overŪ, therefore, of all the central actions forαn onŪ, only one is a continuous deformation
from f 1

αk
on Ū. And sincef 1

αk
is continuously deformed from−εh, even though there are

more than one central actions forαn on Ū, there is a unique central action forαn on Ū,
denotedf 1

αn
, which is continuously deformed fromfαε = −εh, t � ε→ 0.

This result clearly independs on the number of subsets ofΛn over Ū, or equivalently,
on the number of central actions forαn on Ū. Also, the other sets of central catastrophes
for Λn, {τn}j, j = 2, . . . , Q− 1, are not connected toΛ1

n, sof 1
αn

is actually a continuously
deformed central action on the larger neighborhoodU1

n ⊃ Ū,U1
n ⊂ U1

k ⊂ M being limited
only by the set of central caustics{mt′ }1, ∀t′ ∈ (0, tn). This also means that, for such values
of t′, f 1

αt′ exists, besides being continuously deformed from the hamiltonian, onU1
n ⊂ M.

We are now ready to applyCorollary 7.1tof 1
αt
= f 1

α
(r−1)
t/r

�f 1
α
(r−2)
t/r

· · ·�f 1
α
(1)
t/r

�f 1
α
(0)
t/r

,r times.

That is, the continuity off 1
αt

has substituted for uniqueness. From the involutive character of
the central potentialZ0, via the central equation we have thatf(αε)−1 = fα−ε = −fαε , which
implies thatfα−ε = +εh+ o(ε3). Also forf

α
(t′)
ε
= −εh(t′)+ o(ε3). Then, lettingr→∞,

we can safely make the approximationf 1
α
(i)
t/r

= −(t/r)h(t′i)+ o((t/r)3) −→∼ − (t/r)h(t′i), to

get onU1
t ⊂ M:

f 1
αt
(m) = lim

r→∞

[
Stat({m′i}r)

{
r∑
i=1

(−t
r

)
h(m′i, t

′
i)+ Pr+1(m, {m′i}r)

}]
, (8.2)

wherem′i = m′(t′i), t′i < t′i+1 ∈ [0, t]. Now we realize that(8.2) takes on the form(8.1)as
we identifyν ≡ limr→∞({m′(t′i)}r) : [0, t] → U1

t ⊂ M as a continuous curve satisfying
P0(Φ

−1
0 (ν(0), ν(t))) = m.

In passing from(8.2) to (8.1), this area is integrated via a limit(r → ∞) of the area
of (r + 1)-polygons whose midpoints are(m, {m′i}r), asr of the sides tend to length zero
while the other tends to the geodesic fromm′r tom′1 centered onm. In order to see that the
stationary path is the classical trajectory with endpoints geodesically centered onm, we
notice that each small side of the(r + 1)-polygon is a geodesic which, in the limit of very
short time intervals, i.e. of very small sides, coincides with the local hamiltonian flow of
h(m′i, t

′
i), which is centered onm′i, as discussed inSection 4. Thus, taking the limitr→∞

of {m′(t′i)}r, we obtain a path that is everywhere tangent to the locally hamiltonian flow, in
other words, that converges onto the classical trajectory.

At first, (8.1) and (8.2)would apply only to those central actions that can be continuously
deformed from the hamiltonianh, onU1

t ⊂ M. However, iffαt is not of this type, it is
always possible to decompose it asfαt = f 1

α
(t′)
t−t′

� f 1
α
(0)
t′

orf 1

α
(t′+t′′)
t−t′−t′′

�j (f 1

α
(t′)
t′′
� f 1

α
(0)
t′
), etc.

where each “smaller” component is continuously deformed from the appropriateh(t′), on
each appropriate neighborhood. Thus, they can be written as solutions to(8.1), with each
ν′ : [t′, t − t′] → M, etc.

However, the laws for compositions of central actions(6.5’), plus the fact that we are
composing central actions for the continuous sequence(α)T , imply that the trajectories
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ν′, ν′′ compose into a single continuous trajectoryν = ν′′ ◦ ν′, for appropriate choices of
f 1
αt′ , f

1

α
(t′)
t′′

, with the corresponding areasw and w summing up to w.

To see this, we notice that the stationary condition onm′ in (6.5’) implies, via cen-
tral equation, that [w]t

′
(m′) and�(m′,m′′,m) provide maps fromm′ into reciprocally

inverse elements inTm′M, which, via the symmetric exponential map, tells us that they
compose into a single geometric figure. Repeating the analysis withm′′, we have that
[ w]t

′
(m′), [ w]t

′′
(m′′) and�(m,m′,m′′) compose into [w]t(m) ≡ { w}(m, t), for

t = t′ + t′′, using the fact thatν = ν′′ ◦ ν′, provided the composition is reducible, i.e.
provided the triangle of composition� ≡ �kij is a reducible circuit, which means that
the geodesic fromν(t) to ν(0) centered onm is such that it closes the trajectoryν into a
reducible circuit. And so on, it follows thatfαt can also be written as a solution to(8.1),
even when it is not continuously deformed from the hamiltonian, meaning that, for some
(m′, t′) ∈ M× [0, t), fαt′ (m

′) does not exist, i.e.m′ is a central caustic singularity forΛαt′ ,
t′ < t.

So, even though genericallyfαt′ does not exist everywhere onM, for t′ < t, andfαt is not
everywhere deformed from the hamiltonian functionh continuously, whereverfαt exists it
can be written as a solution to(8.1), with ν being a continuous trajectory,ν : [0, t] → M,
andm being the center of the (short or long) geodesic fromν(t) toν(0) closing the trajectory
into a reducible circuit. �

Theorem 8.1generalizes to nonflat symmetric symplectic spaces the previous result
on euclidean space[25]. It is a real variational principle which is invariant at least un-
der general transformations onM preserving the affine connection and the symplectic
form.

Besides, it does not require any local decomposition of the phase spaceM into lagrangian
subsets. In other words, it is fully adapted to the nontrivial geometry ofM.

Furthermore, in opposition to the complex counterparts, this real variational principle
has only real classical trajectories as stationary solutions.

The novel feature is that the trajectories are constrained on their geodesic centers instead
of the more familiar (local) lagrangian coordinates of their endpoints. Therefore, in solving
for the pathsν which are stationary in(8.1), only the timet and the centerm are held fixed.

Finally, the central actionΨh(m, t)provides, via central equation, the finite transformation
ν(0)→ ν(t) and, given its explicit relationship to the infinitesimal generatorsh(m, t), plus
the fact that it is a real function onM × [0, T ], Ψh can be seen as afinite time extension of
the hamiltonian function.

9. Temporal evolution of central actions

We have just seen how the central variational principle provides, not only for the classical
trajectories obtained by the stationary condition, but also for the central actions which
generate finite canonical transformations and can thus be seen as finite time extensions of
the hamiltonian functions. Now, we shall investigate the temporal evolution of such central
actions.
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First, we can examine the temporal evolution ofΨh(m, t), for fixedm. The total variation
of Ψh(m, t) with respect tot depends on the direction of�̇m. We have:

ε · ∇t(Ψh(m, t)) ≡ ε ·
{
∂Ψh(m, t)

∂t
+ �̇m , dΨth(m)

}
, (9.1)

denotingδt = ε. On the other hand, by(8.1),

ε · ∇t(Ψ th(m)) = −ε · h(ν(t), t)+ ε · { �̇m ,d[ w]t(m)} + o(ε2), (9.2)

sinceΨth(m) is stationary inν and only terms in(δν)2 contribute, where o((δν)2) ∼ o
(ε2).

In Eq. (9.2)we are thus approximating the new pathν′t+ε by the old oneνt , i.e. we
consider only infinitesimal variations in the endpointν(t) along the same classical trajectory
ν : (0, t + ε)→ M.

Via central equation, we have dΨth ≡ dfαt : m �→ τ̃αt , while d[ w]t : m �→ τ̃ν. But, by
construction,̃ταt = τ̃ν = Φ̃−1

i (ν(0), ν(t)) and therefore dΨth(m) = d[ w]t(m), where now
we identifyΨth(m) ≡ Ψih(m, t) as a generic central action. From this and(9.1) and (9.2),
we identify:

∂Ψh(m, t)

∂t
= −h(m+, t). (9.3)

Sincem+ = expm(+�Fiαt (m)), where�Fiαt (m) ∈ (T̃mM)i is defined by df iαt ≡ dΨth via the
central equation, then

H[Ψih(m, t)] := h(expm(+�Fiαt (m)), t) (9.4)

defines the functionalH onAc(U). Thus,(9.3)can be rewritten as:

∂Ψh(m, t)

∂t
+H[Ψh(m, t)] = 0, (9.5)

which is the central version of theHamilton–Jacobi equation.
Examples: OnR2 (9.5)becomes∂Ψh(�x, t)/∂t+ h(�x− (1/2)J(∂Ψh(�x, t)/∂�x), t) = 0, see

[21,27].
OnS2 andH2, however, its explicit generic form in local coordinates is quite complicated

and it is rather simpler to use(4.9)or (4.11)to writeH[Ψth(m)], for each specifich.
As simplest example, consider onS2 the hamiltonian functionh = −Cθ, genera-

tor of infinitesimal rotations around the south/north axis, or poles. Using the conven-
tion Ψth ≡ fαt ≡ 2ft , by (4.9) we rewrite the standard version of(9.5) as∂f(θ, t)/∂t −
(1/2)Cθ

√
1− (∂f(θ, t)/∂θ)2 = 0, where we denotedft(θ, ϕ) ≡ f(θ, t), exploiting the

ϕ-invariance of the action; and remembering that, by rescalingΨth ≡ fαt , we must also
rescaleh, and henceH by the same factor. Check that the central action given by(5.3), with
χ = 0 andt = 2γ, satisfies the previous equation.

Finally, we notice that we could rewriteEq. (9.1)as:∇gt (Ψ th(m)) := ∂Ψth(m)/∂t +
�vg ,dΨth(m), for �̇m ≡ �vg defined by�vg ,w = −dg, g ∈ CkR(M). Using(9.5), we get the
following proposition.
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Proposition 9.1. Letg, h ∈ CkR(M × [0, T ]) andΨth ∈ Ac(U),U ⊂ M, whereΨth ≡ Ψh(t)
is related toh via the central variational principle(8.1), for a given timet ∈ [0, T ]. The
time derivative ofΨth “along g”, i.e. in the direction of the local hamiltonian flow ofg,
denoted∇gt (Ψ th), is given by

∇gt (Ψh(t)) = {Ψh(t), g(t)} −H[Ψh(t)], (9.6)

where{ , } is the Poisson bracket and the functionalH is defined by(9.4)via central equation.

Remark that the RHS of(9.6) involves partial derivatives inM only. Particularly inter-
esting is the case whereΨth is known to be invariant in a given direction�vg,

∇gt (Ψh(t)) = 0, giving {Ψh(t), g(t)} = H[Ψh(t)] (9.7)

as a direct relationship between the functionalH and the Poisson bracket withg.
Conversely, any functiong satisfying the second part of(9.7)defines curvesΓg : [0, T ] →

U ⊂ M, along whichΨth is constant. The other particularly interesting case is when
{Ψh(t), g(t)} = 0, for which∇gt (Ψh(m, t)) = ∂Ψh(m, t)/∂t, computable by the Hamilton–
Jacobi equation.

10. Conclusion

We have presented a general formalism for describing hamiltonian systems defined on
symmetric symplectic spaces, where the local generating functions are real functions on
phase space. We have seen how the central actions (relations) are defined, generating finite
canonical transformations (relations) via the central equation and the symmetric exponential
map, and how they compose via a neat formula involving the midpoint triangular (polyg-
onal) area. We have also seen how the “extended hamiltonians” satisfy a geometrically
simple real variational principle, which determines the classical trajectories, and satisfy a
Hamilton–Jacobi equation, mixed with Poisson brackets.

The authors’ main motivation into this central formalism lies in its application to prob-
lems in quantization and semiclassical analysis, more specifically in connection to “Weyl
quantization” and “star products”, which attempt to understand the classical–quantum re-
lationship within the phase space formalism. In this respect, and specially for oscillatory
phenomena, it turns into a definite advantage the definition of real phase space generating
functions, which can be connected to hamiltonians in such geometrical fashion, with their
neat triangular law of composition (see[5,27,31–33,47]).

A possible extra application refers to implementing new symplectic integrators (see[24]
for a review). Here, the polygonal law of composition(7.3) could be applied in the dis-
cretization process, making use of the fact that each local action for a finite small interval
of time is a small, in principle controlled, deformation of the hamiltonian. Also, for au-
tonomous hamiltonians the formalism is symmetric with respect to trajectories in both
temporal directions.

On its own, however, such geometrically simple law of composition presents new routes
of investigation on symplectic dynamical systems. For, as hamiltonian functions correspond
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to generators of infinitesimal canonical transformations, the actions correspond to elements
in the Lie group. Therefore, their homogeneous presentation, which naturally extends to
relations, sheds new light on the canonical formalism on symmetric symplectic spaces.
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Appendix A

A.1. Triangular computations

In the spherical case, recall[35] that if λi are the angles of a geodesic triangle onS2,
whose opposite sides areQi < π, respectively, then the following trigonometric equalities
hold: SQi/Sλi = constant, CQk = CQiCQj + SQiSQjCλk , Cλk = SλiSλjCQk − CλiCλj . Also,
the area of a spherical triangle is its excess angle[35].

Now, for any spherical triangle with sidesQi < π, a simple computation shows that
Tλi = K/(CQi − CQjCQk ) whereλi is the angle opposite toQi andK is a constant for this
triangle,K2 ≡ 1− C2

Q1
− C2

Q2
− C2

Q3
+ 2CQ1CQ2CQ3 ≡ Det2[α̂1, α̂2, α̂3], whereαi are the

vertices of the triangle. By correctly fixing the orientations, we can take the+ sign in the
square root.

Let us denoteQi = 2yi andxi ≡ distance(mj,mk), wheremi is the midpoint of the
Qi side. Thenm̂i = (1/2Cyi)(α̂j + α̂k), from which, sinceCxi = m̂j · m̂k, we get that
Cxi = (1/2Cyk)(Cyj + Czj ) = (1/2Cyi)(Cyk + Czk ), wherezj ≡ distance(mj, αj). From
this we get:Cx1/Cy1 = Cx2/Cy2 = Cx3/Cy3 = Γ , a constant. This is a generalization of
the plane trigonometric relationxi/yi = 1.

Now, in order to computeΓ , we substitute the previous equation in the trigonometric
equalities, to obtain:Γ 2 = C2

x1
+ C2

x2
+ C2

x3
− 2Cx1Cx2Cx3 ≡ 1 − Det2[m̂1, m̂2, m̂3].

Using the previous equations forTλi , Γ andΓ 2, we finally getTλi = Γ
√

1− Γ 2/(Γ 2 −
CxjCxk/Cxi)andT(λ1+λ2+λ3) ≡ T� = Γ

√
1− Γ 2/(Γ 2 − 1/2). Identifying Γ ≡ Cγ ,

we haveT� = T2γ , that isC�/2 = ±
√
C2
x1
+ C2

x2
+ C2

x3
− 2Cx1Cx2Cx3 ≡ Γ, S�/2 =

Det[m̂1, m̂2, m̂3].
The sign choice forS�/2 is fixed by the orientation. We still have to determine the sign of

the square root inC�/2. Obviously, if|�| < π, we must choose the+sign. These triangular
areas are continuously deformed from infinitesimal triangles, for whichCxi > 0,∀i. Since
we are considering only short triangles, i.e.yi < π/2,∀i, fromCxi/Cyi = Γ , we getΓ > 0.

On the other hand, let|�| = 2π, i.e. considerm1,m2,m3 to be collinear, same forα1,
α2, α3, such that the “triangle” coincides with a geodesic meridian. Again, ifyi < π/2,∀i,
it is clear that in this caseCxi < 0,∀i, fromCxi/Cyi = Γ , sinceC�/2 ≡ Γ < 0. And so on
for triangular areas continuously deformed from this “big triangle”.
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Finally, when|�| = π, C�/2 = 0 and we have that,∀i, Cxi = 0. In this case,Cyi is
completely undetermined and so is the triangle, although the area of all such triangles is
uniquely given by their common midpoints. It follows that the sign of the square root is the
same as the sign of theCxi , or in other wordsm̂j · m̂k, ∀i, j, k, if all sides are short. Hence,
we have got(6.8).

As for the restrictions on the midpoints, ifCyi > 0,∀i, then eitherCxi > 0,∀i, orCxi = 0,
∀i or elseCxi < 0, ∀i. In all cases, sign(Cxi) = sign(Cxj ), ∀i, j, which is condition(6.9).
With some care, these results can be modified for general spherical triangles.

Again, the previous analysis can be adapted toH2, with some care (refer to[35]). OnH2

we do not have problems of antipodals or sign choices, since|�| < π, always. On the other
hand, the analogous to(6.8), namely(6.10), is well defined only when(6.11)is satisfied.
But onceΓ = C�/2 = C̃x1 + C̃x2 + C̃x3 − 2C̃x1C̃x2C̃x3 is well defined, we go through the
argument backwards from̃Cx1/C̃y1 = Γ , to see that the triangle is also well defined.

See[38] for an alternative discussion on these triangular geometries.

A.2. Quadrilateral computations

Again we proceed in the spherical case and later adapt the hyperbolic formulas. Consider a
short quadrilateral with verticesαi and midpointsmi ≡ mid(αi, αi+1), s.t. distance(αi, αj) <
π,∀i, j ∈ {1, . . . ,4}. This means that not only the sides, but also the diagonals are short.
Now, denote bym0 the midpoint of the diagonal(α1, α3) and byy0 its half length. Simi-
larly, denote byyi = (1/2)distance(αi, αi+1). Then, each of the triangles(α1, α2, α3) and
(α3, α4, α1) are uniquely determined by their midpoints(m0,m1,m2) and(m0,m3,m4),
which shall be denoted by�12 and�34, respectively, with the same notation referring to
their respective areas. Further, we denotexij = distance(mi,mj).

From the triangular analysis, we know thatCx12/Cy0 = C�12/2, Cx34/Cy0 = C�34/2.
Similarly for the other partition,Cx23/Cy′0 = C�23/2, Cx41/Cy′0 = C�41/2, wherey′0 =
(1/2) distance(α2, α4),m′0 being its midpoint, and so on. Therefore,Cx12/Cx34 = C�12/2/

C�34/2, Cx23/Cx41 = C�23/2/C�41/2. These equations generalize the parallelogram relation
on the plane,x12/x34 = 1 = x23/x41, but contrary to the plane, they impose no constraint
on the midpoints.

In compensation, onS2 the four midpoints uniquely determine the area as well as the
specific geometry of the short quadrilateral. That is,m0 = m0({mi}) and similarly form′0.

To see this, let us denoteτ0 = Φ−1
0 (α1, α3), i.e. τ0 = (m0, �v0), |�v0| = y0. Also, we

denote byRm the involution throughm and consider the element of SO(3) defined as
σ2

12 := Rm1Rm2. Similarly, σ2
34 := Rm3Rm4. Now, for any elementσ ∈ SO(3), consider

the vector fieldXσ ⊂ TS2 defined byτ ∈ Xσ iff Φ(τ) = (m−,m+) s.t.m+ = σ2(m−).
The condition which guarantees that triangles�12 and�34 compose into a quadrilateral

�1234can be written asτ0 ∈ Xσ12 ∩Xσ−1
34

. But,τ0 ∈ Xσ12 only if the polep12 of σ12 lies in

the polar line ofτ0, which is defined as the orthogonal geodesic to�v0, atm0. Thus, the first
condition obtained is thatm0, p12 andp34 be collinear. That is, Det[̂m0, p̂12, p̂34] = 0.

In fact, we have more:̂p12 = (1/Sx12)m̂1 × m̂2, p̂34 = (1/Sx34)m̂3 × m̂4. Therefore,
Det[m̂0, m̂1×m̂2, m̂3×m̂4] = 0. We can thus writêm0 = �z/|�z|, where�z = z12(m̂1×m̂2)+
z34(m̂3 × m̂4). Further, denotingµ12 = distance(m0, p12) andµ34 = distance(m0, p34),
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we have|Sµ12Tx12| = |Ty0| = |Sµ34Tx34|, but since|Sµ12Sx12| = |m̂0 × (m̂1 × m̂2)| and
|Sµ34Sx34| = |m̂0×(m̂3×m̂4)|, it follows that|m̂0×(m̂1×m̂2)|·|m̂3·m̂4| = |m̂0×(m̂3×m̂4)|·
|m̂1 · m̂2|. Then, we get̂m0 = �z/|�z|, where�z = αCx12(m̂3× m̂4)+βCx34(m̂1× m̂2), α, β ∈
{−1,1}.

The sign choices must be made with care, but for small convex quadrilaterals we take
the+ choice twice. In this case, withR = Cx12Cx34 + Cx23Cx41 − Cx13Cx24, we have that
|�z|2 ≡ z2 = C2

x12
+ C2

x34
− 2Cx12Cx34R. Analogous equations hold for̂m′0.

We have fixed the geometry of the small convex quadrilateral uniquely from the midpoints
{m1, . . . , m4}, as mentioned earlier. The exception is whenR1R2R3R4 = 1, but now,
contrary to the euclidean plane, this is really the exception, not the rule.

As for the area, from(6.8)we haveS�12/2 = (1/z){Cx34−RCx12}, S�34/2 = (1/z){Cx12−
RCx34}. Then, in this simpler case, denoting the quadrilateral area byP4, we getCP4/2 = R,
P4 = 2σ1234 · C−1{Cx12Cx34 + Cx23Cx41 − Cx13Cx24}.

Here we have restricted to convex quadrilaterals decomposed in small triangles (area
< π). Greater care is needed for the sign choices in the expression ofm̂0, otherwise. As for
the restrictions, in this simpler case, by imposingm̂0 · m̂i > 0, we getD123> 0, and cyclic.

Again, in transposing to the hyperbolic plane, we do not have as many worries about sign
choices, however, in this case the analogous area function,P4 = 2σ1234 · C−1(R̃), where
R̃ = C̃12C̃34+C̃23C̃41−C̃13C̃24, is well defined only when|R̃| < 1 and, as in the triangular
analysis, once this holds the convex quadrilateral exists. And so on for the general case.
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