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Abstract
A normal form transformation is carried out on one-dimensional quantum
Hamiltonians that transforms them into functions of the quantum harmonic
oscillator. The method works with the Weyl transform (or ‘symbol’) of the
Hamiltonian. The Moyal star product is used to carry out the normal form
transformation at the level of symbols. Diagrammatic techniques are developed
for handling the expressions that result from higher order terms in the Moyal
series. Once the normal form is achieved, the Bohr–Sommerfeld formula for
the eigenvalues, including higher order corrections, follows easily.

PACS numbers: 03.65.Sq, 02.40.Gh, 03.65.Vf, 02.20.Sv

1. Introduction

In this paper we carry out a normal form transformation for one-dimensional, quantum
systems that transforms an original Hamiltonian by unitary conjugation into a function of
the quantum harmonic oscillator. Operators are mapped by the Wigner–Weyl transform
into their corresponding ‘symbols’, functions on phase space that can be thought of as the
classical counterparts of the operators, and the Moyal star product is used to represent operator
multiplication at the level of symbols. The h̄ expansion of the Moyal star product provides a
means of generating power series representations for the generators of the unitary operators
that bring about the normal form transformation and for the normal form itself (the transformed
Hamiltonian). The symbol of the original Hamiltonian (the classical Hamiltonian) is assumed
to have a generic, stable fixed point in phase space, corresponding to bound states. The
normal form transformation takes place in a neighbourhood of this fixed point, and produces
a new Hamiltonian whose symbol is a function of the classical harmonic oscillator in this
neighbourhood. This implies formally that the new quantum Hamiltonian is a function of the
quantum harmonic oscillator.
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Since the spectrum of an operator does not change under unitary conjugation, and since the
eigenvalues of the harmonic oscillator are trivial, the normal form transformation also provides
a power series in h̄ for the eigenvalues of the original Hamiltonian. This series consists of the
usual Bohr–Sommerfeld formula at lowest order plus higher order corrections. In this paper
we use our normal form transformation to compute the first correction term (at order h̄2), a
known result. In a subsequent paper we shall describe a similar normal form transformation
for the multidimensional case of integrable quantum systems, including corrections to the
torus or EBK quantization rule, where the corrections are apparently unknown.

One of our main accomplishments in this paper is the development of diagrammatic and
other techniques for representing and manipulating expressions that result from the higher
order terms in the Moyal star product. The expressions in question, which we represent as
diagrams, are scalars under linear canonical transformations, constructed out of contractions
of derivatives of functions on phase space, typically the symbols of operators, with the Poisson
tensor. These can be thought of as generalizations of the Poisson bracket to objects with higher
derivatives and any number of operands (not just two). The normal form transformation and
the normal form itself are presented in terms of these diagrams. The diagrammatic notation
is especially useful for representing higher order terms in various power series in h̄, in which
the leading term is some usual classical or semiclassical result.

Part of our motivation in this work was to develop (hopefully clean and elegant) methods
for calculating higher order terms in h̄ in semiclassical expansions. In this we were stimulated
by several factors. One was the literature on deformation quantization, which reveals an
interesting geometrical structure in higher order terms in generalizations of the Moyal star
product to nontrivial phase spaces (symplectic or Poisson manifolds). The general idea
is to deform the commutative algebra of multiplication of functions on the phase space
into a noncommutative but associative algebra, where h̄ is the deformation parameter and
where the new multiplication rule is the generalized star product. It is also required that the
order h̄ term in the symbol representation of the commutator be proportional to the Poisson
bracket. The new algebra is then interpreted as an algebra of operators on a quantum system,
the ‘quantized’ version of the classical phase space. In one approach, the star product is
represented as a formal power series in h̄, a generalization of the Moyal formula, and one must
work out the terms of the series subject to the constraint of associativity and the appearance
of the Poisson bracket at first order. Basic references in this area include Bayen et al (1978),
Fedosov (1994) and Kontsevich (2003). Although the phase space used in this paper, R

2,
upon which the Weyl symbol correspondence is based, is considered trivial, nevertheless
throughout this work we have been thinking of generalizations to other (nonflat) phase
spaces.

The Moyal star product is an attractive place to start looking for clean and efficient
ways of generating quantum corrections to classical or semiclassical results, since it has
an expansion in powers of h̄ with a simple and explicit expression for the nth order term.
Moreover, it represents the fundamental operation of operator multiplication, out of which
other operations such as exponentiation, conjugation, etc, can be constructed. We have
previously used the Moyal star product for normal form transformations in the theory of mode
conversion (Littlejohn and Flynn 1991, 1992, 1993), and used it for developing perturbation
expansions in quantum adiabatic theory (Littlejohn and Weigert 1993). Related work includes
Braam and Duistermaat (1995), Emmrich and Weinstein (1996), Emmrich and Römer (1998),
Colin de Verdière et al (1999) and Colin de Verdière and Parisse (1999). Our work on
mode conversion only required near-identity transformations, that is, transformations that
could be expanded in power series about the identity. In this paper, however, we must use
transformations that are not near identity, a significantly complicating factor.
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A practical motivation for looking at higher order terms derives from some recent
work in the propagation of wave fields in optics (Forbes and Alonso 1998a, 1998b, 2001a,
2001b, 2001c, 2001d). Traditional WKB theory gives solutions for the problem of wave
propagation, including prescriptions for what to do at caustics and for diffraction around
obstacles (Maslov and Fedoriuk 1981, Keller 1962). But these prescriptions are awkward to
implement in practice. It is possible to uniformize the approximate wave field by representing
it as a linear combination of wave packets distributed along or near Lagrangian manifolds,
but the simplest ways of doing this give results that in practice have poor accuracy compared
to standard WKB methods, in spite of their formal equivalence at lowest order in the inverse
wavelength. These circumstances limited our own ambitions along these lines some years ago
(Littlejohn 1986). Forbes and Alonso, however, have developed variations on this idea that
apparently are accurate numerically and reasonably simple algorithmically. A key element in
their approach is a practical method of including higher order terms in the inverse wavelength.
In other words, it may be that the problem of finding practical methods for dealing with
caustics and diffraction and that of computing higher order terms go together. The method
of Forbes and Alonso does not have any obvious invariance properties in phase space, but
we wonder whether an approach based on the Moyal star product could simplify or perhaps
improve on their ideas.

The quantum normal form transformation discussed in this paper, involving stable fixed
points of the symbol of the Hamiltonian, is one of the simplest we could think of (hence one
to be studied first), but there are a variety of other normal form problems, both classical and
quantum, that occur in physical applications. For example, normal forms play an important role
in transition state theory, where the real physical problems are usually quantum mechanical,
but where often a classical model is adopted for simplicity. Then the transition state theory
becomes related to problems of transport in classical Hamiltonian systems (Wiggins 1992,
Uzer et al 2002, Mitchell et al 2003a, 2003b, 2004a, 2004b), in which classical normal form
theory plays a part. Classical results produced in this way can be quantized to lowest order in
h̄ by semiclassical techniques (Creagh 2004), providing an account of quantum phenomena
such as interference and tunnelling. It may be that quantum normal form methods such as
those we develop in this paper could produce similar results in a more direct manner, including
higher order corrections in h̄.

Concerning the Bohr–Sommerfeld quantization rule and its higher order corrections,
many methods for deriving these have been proposed over the years (Maslov and Fedoriuk
1981, Voros 1977, 1989, Kurchan et al 1989, to mention a few). There has also been some
recent interest in generalizing these rules to nonflat phase spaces (Garg and Stone 2004),
which however will not concern us in this paper. We distinguish between methods based on
the WKB theory, applied to the Schrödinger equation (or other differential equations) and
those that work with a symbols, such as the Weyl symbol. In the former class, we mention
Heading (1962), Fröman and Fröman (1965, 1996, 2002) and Bender and Orszag (1978),
the last of which presents higher order corrections to the Bohr–Sommerfeld rule for the one-
dimensional Schrödinger equation. In this paper we are interested in methods that work with
a symbol correspondence, which are more general in the class of operators they are capable
of handling, and which lead to phase space geometry in a more direct manner. These are
important in applications such as plasma physics where the WKB theory is applied to integral
(as well as differential) equations (Berk and Pfirsch 1980). They also seem nearly essential in
multidimensional problems.

In the framework of the Weyl symbol, references we are aware of that work out the one-
dimensional Bohr–Sommerfeld rule and its corrections include Argyres (1965), Voros (1977)
and Colin de Verdière (2004). Of these, the methods of Argyres and Colin de Verdière are
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similar, in that they work with traces of functions of the Hamiltonian, computed in symbol
form by integrating over all of phase space. These methods work strictly with the spectrum
of the operator, and do not attempt to find the eigenfunctions. These methods provide the
simplest algorithms we are aware of for computing corrections to the one-dimensional Bohr–
Sommerfeld rule, but as far as we can see they cannot be generalized to many dimensions.
Voros has a more complicated formalism that in principle does produce eigenfunctions. In all
three of these references, the corrections to the Bohr–Sommerfeld rule are presented in implicit
form. The correction term of Argyres is equivalent to the sum of two diagrams, which can be
combined into one as explained by Colin de Verdière (2004). The correction term presented
by Voros is rather more complicated, and we have not attempted to show its equivalence to the
others. Our method is more complicated than some of the others, but it does produce explicit
representations of the transformations needed to find eigenfunctions and it can be generalized
to the multidimensional case.

Our formula for the eigenvalues is an explicit one containing a single diagram in the order
h̄2 correction. It is

En =
[
H(A) +

h̄2

48

d

dA

(
1

ω(A)
〈{H,H }2〉φ

)
+ O(h̄4)

]∣∣∣∣
A=(n+1/2)h̄

, (1)

which uses the following notation. En for n = 0, 1, . . . is the nth eigenvalue of the quantum
Hamiltonian Ĥ , which has Weyl symbol H. The latter is treated as a classical Hamiltonian with
action-angle variables (A, φ), and is regarded as a function of the action A. The frequency of
the classical motion is ω(A) = dH/dA, and the notation {H,H }2 refers to the second Moyal
bracket, defined in (A.4c). This Moyal bracket is otherwise twice the Hessian determinant of
the Hamiltonian,

{H,H }2 = 2[H,xxH,pp − (H,xp)2)]. (2)

The angle brackets 〈· · ·〉φ represent an average over the angle φ. This result is discussed
further in subsection 5.1.

This paper assumes some background in the Wigner–Weyl formalism and the Moyal
star product. A sampling of references in this area includes Weyl (1927), Wigner (1932),
Groenewold (1946), Moyal (1949), Voros (1977), Berry (1977), Balazs and Jennings (1984),
Hillery et al (1984), Littlejohn (1986), McDonald (1988), Estrada et al (1989), Gracia-
Bondı́a and Várilly (1995) and Ozorio de Almeida (1998). General physical references on
semiclassical theory include Berry and Mount (1972), Guzwiller (1990) and Brack and Bhaduri
(1997). Mathematical literature relevant to this paper includes Guillemin and Sternberg (1977),
Leray (1981), Helffer and Robert (1981), Helffer and Sjöstrand (1983), Robert (1987) and
Martinez (2002).

The basic idea of this paper can be motivated by starting with the usual, lowest order Bohr–
Sommerfeld formula. This states that the eigenvalues of a quantum Hamiltonian are given
approximately by setting A = (n + 1/2)h̄ in the classical formula expressing the classical
Hamiltonian H as a function of its action A,H = f (A). This formula suggests that the
quantum Hamiltonian is a function of a quantum ‘action operator’, something like Ĥ = f (Â),
of which the classical formula is a lowest order representation by means of symbols, and that
the eigenvalues of the action operator are (n + 1/2)h̄. Since these are also the eigenvalues
of the harmonic oscillator (of unit frequency), the suggestion is that the action operator is
unitarily equivalent to the harmonic oscillator Hamiltonian. If this is so, then the quantum
Hamiltonian is unitarily equivalent to a function of the harmonic oscillator. In this paper we
find that these suggestions are borne out. We only require that the quantum Hamiltonian has
a ‘slowly varying’ (defined in (5) Weyl symbol, and that the symbol has a generic extremum
(fixed point) at some point in phase space. The classical analogue of the unitary transformation
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we construct is a canonical transformation that maps the level sets of the classical Hamiltonian
around the extremum (which are topological circles) into exact circles about the origin. The
latter, of course, are the level sets of the harmonic oscillator.

This paper is organized as follows. Section 2 explains the two stages of transformations
that are applied to the original Hamiltonian Ĥ , the first transforming it into a new Hamiltonian
K̂ whose symbol is a function of the harmonic oscillator at lowest order in h̄, and the second
transforming K̂ to another new Hamiltonian M̂ whose symbol is a function of the harmonic
oscillator at all higher orders of h̄. The first (or preparatory) transformation is explained in
more detail in section 3. It is a quantized version of a classical normal form transformation, the
latter being specified by a certain canonical transformation that maps the classical Hamiltonian
into a function of the harmonic oscillator. The second transformation is further explained in
section 4. It is based on Lie algebraic methods, like those used in classical perturbation
theory. Then section 5 uses the normal form transformation plus some facts about symbols of
functions of operators to compute the Bohr–Sommerfeld rule, including first corrections to the
usual result. Finally, section 6 presents some conclusions and comments about the calculation.
It should be possible to read the main body of this paper, skipping the appendices, to obtain an
overview of our calculation. The appendices, however, are needed for the details, including
notational conventions.

2. The setup

Let Ĥ be a Hermitian operator (the ‘Hamiltonian’) in a one-dimensional quantum system, that
is, Ĥ acts on wavefunctions ψ(x), x ∈ R (the Hilbert space is L2(R)). We uniformly use
hats ( ˆ ) over a letter to denote operators, whereas a letter without a hat represents the Weyl
transform or symbol of the operator. For example,

H(x, p) =
∫

ds e−ips/h̄〈x + s/2|Ĥ |x − s/2〉 (3)

and

Ĥ =
∫

dx dx ′ dp

2πh̄
eip(x−x ′)/h̄H

(
x + x ′

2
, p

)
|x〉〈x ′| (4)

illustrate the Weyl transform and its inverse in the case of the Hamiltonian. We regard H as the
‘classical Hamiltonian’, defined on the phase space R

2, with coordinates (x, p). We denote
these coordinates collectively by zµ = (x, p), µ = 1, 2.

We assume that the symbol H has an expansion in h̄ beginning with the power h̄0,

H = H0 + h̄H1 + h̄2H2 + · · · , (5)

where each Hn is independent of h̄. An operator whose symbol possesses this type of expansion
will be called ‘slowly varying’ (also called àdmissible’ or ‘h-admissible’ (Voros 1977, Hellfer
and Robert 1981)). Not all operators are slowly varying; for example, the unitary operator
exp(−iĤ t/h̄) is not. The leading term (H0 in the example above) of the symbol of a slowly
varying operator will be called the ‘principal symbol’.

We assume H is smooth and has a generic extremum (a fixed point) at some point of
phase space. The fixed point need not be at p = 0, nor does H need to be invariant under
time-reversal (p → −p). An extremum is considered generic if the Hessian matrix H,µν of
the Hamiltonian is nonsingular at the extremum. Here and below we use comma notation for
derivatives, for example,

H,µν = ∂2H

∂zµ∂zν
. (6)
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For example, the fixed point (x, p) = (0, 0) of the quartic oscillator (V (x) = x4) is not
generic, because the Hessian matrix has rank 1 at the fixed point.

It is convenient in what follows to assume that the extremum is a minimum (always the
case for kinetic-plus-potential Hamiltonians). If not, we replace Ĥ by −Ĥ at the beginning
of the calculation.

Radial equations (on which x is the radial variable r � 0) are excluded from our formalism,
because the Weyl symbol correspondence is not defined in the usual way on the half line, and
because the centrifugal potential is singular. We believe the best way to handle such problems
within a formalism like that presented in this paper is by reduction from a problem on a higher
dimensional configuration space R

n under some symmetry, typically SO(n). Nor are singular
potentials such as the Coulomb potential covered by this formalism, because singularities
generally invalidate the Moyal star product expansion in h̄, itself an asymptotic expansion.
The usual lowest order Bohr–Sommerfeld formula usually does give correct answers for
singular potentials, at least to leading order in h̄, but the structure of the higher order terms
(in which powers of h̄ occur, whether the corrections can be represented by powers of h̄ at all,
etc) presumably depends on the nature of the singularity.

In view of our assumptions, the classical Hamiltonian H has level sets in some
neighbourhood of the fixed point that are topological circles. We concentrate on this region
of phase space, and ignore any separatrices and changes in the topology of the level sets of H
which may be encountered further away from the fixed point.

For convenience we perform a canonical scaling on the coordinates (x, p) (or operators
(x̂, p̂)) to cause them both to have units of action1/2. For example, in the case of the ordinary
harmonic oscillator, we would write x ′ = √

mωx, p′ = p/
√

mω, and then drop the primes.
We shall perform a sequence of unitary operations that transform the original Hamiltonian

Ĥ into a new Hamiltonian that is a function of the harmonic oscillator Hamiltonian, at least
in the ‘microlocal’ sense of the symbols in the neighbourhood of the fixed point. The
transformations will proceed in two stages. In the first stage, we perform a ‘preparatory’
transformation that maps Ĥ into a new Hamiltonian K̂ that is a function of the harmonic
oscillator Hamiltonian at lowest order in h̄. We follow this by a sequence of near-identity
unitary transformations that transform K̂ into a new Hamiltonian M̂ that is a function of
the harmonic oscillator Hamiltonian to all higher orders in h̄, at least formally. Thus, the
stages are

Ĥ → K̂ → M̂. (7)

What we mean by the harmonic oscillator Hamiltonian is really the action of the harmonic
oscillator, given in operator and symbol form by

Î = 1
2 (x̂2 + p̂2), I = 1

2 (x2 + p2). (8)

It turns out that an operator is a function Î if and only if its symbol is a function of I, as is
discussed more fully in appendix I, although the two functions are not the same beyond lowest
order in h̄. Thus, to ensure that the transformed Hamiltonian is a function of Î , we require
that its symbol be a function of I.

3. The preparatory transformation

The preparatory transformation (the first arrow in (7)) is the most difficult, because it is not a
near-identity transformation and cannot be handled by Lie algebraic (power series) methods.
This transformation will transform Ĥ into another Hamiltonian K̂ whose symbol is a function
of I plus terms of order h̄2 and higher. Thus, the principal symbol of K̂ will be a function
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Table 1. Notation for operators, symbols and functions depending on ε.

ε = 0 1̂ K Kn Idµ θ I
any ε Û ε Hε Hnε Z

µ
ε φε Aε

ε = 1 Û H δn0H Zµ φ A

of I. The preparatory transformation only makes the leading order term in the symbol of K̂ a
function of I, not the higher order terms.

3.1. Imbedding Ĥ and Û in a family

Let Ĥ be given. Ultimately, we shall seek a unitary transformation Û such that the new
Hamiltonian K̂ , defined by

K̂ = ÛĤ Û
†
, Ĥ = Û

†
K̂Û , (9)

has a symbol K that is a function of I plus terms of order h̄2 and higher.
For the moment, however, it is conceptually simpler to imagine that Ĥ and Û are given,

and to seek a means based on Weyl symbols of computing K̂ , without regard to the functional
form of K. We do this by imbedding Û in a family, 0 � ε � 1, that is by assuming that there
exists a smooth family of unitary operators Û ε , such that

Û ε =
{

1 if ε = 0,

Û if ε = 1.
(10)

The family Û ε can be seen as a path in the group of unitary transformations that act on Hilbert
space, connecting the identity and the final Û . We do not assume ε is small, and do not carry
out any power series expansion in ε. We imbed Ĥ in a similar family, defining

Ĥ ε = Û
†
εK̂Û ε, (11)

so that

Ĥ ε =
{
K̂ if ε = 0,

Ĥ if ε = 1.
(12)

One might say that the ε-evolution runs backwards, since K̂ evolves into Ĥ as ε goes from
0 to 1. As always, Weyl symbols of the operators above are denoted without the hat, for
example, U,K,Uε,Hε . There are several operators, symbols and functions in this paper
that depend on ε, the notation for which is summarized in table 1. We shall be interested in
calculating Ĥ ε , from which K̂ follows by setting ε = 0.

We obtain a differential equation for Ĥ ε by differentiating (11), which gives

dĤ ε

dε
= i

h̄
[Ĝε, Ĥ ε], (13)

where the Hermitian operator Ĝε (the ‘generator’) is defined by

Ĝε = ih̄Û
†
ε

dÛ ε

dε
= −ih̄

dÛ
†
ε

dε
Û ε = Ĝ†

ε . (14)

We assume that Ĝε is slowly varying. We shall solve (13) by converting operators to symbols
and using the Moyal product formula. See appendix A for the Moyal star product and the
diagrammatic notation we shall use for the functions and operations that arise from it.
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3.2. Differential equations for Hε and Hnε

We now transcribe (13) to symbols and substitute (A.6). This gives a differential equation for
the symbol Hε ,

dHε

dε
= −{Gε,Hε} +

h̄2

24
{Gε,Hε}3 − h̄4

1920
{Gε,Hε}5 + · · · , (15)

which is subject to the boundary condition Hε = H at ε = 1. We express the solution of this
equation in terms of a set of new functions or symbols, H0ε, H2ε , etc, which are required to
satisfy the differential equations,

dH0ε

dε
− {H0ε,Gε} = 0, (16a)

dH2ε

dε
− {H2ε,Gε} = 1

24
{Gε,H0ε}3, (16b)

dH4ε

dε
− {H4ε,Gε} = 1

24
{Gε,H2ε}3 − 1

1920
{Gε,H0ε}5, (16c)

etc, and the boundary condition Hnε = δn0 H at ε = 1. Then we have

Hε = H0ε + h̄2H2ε + h̄4H4ε + · · · . (17)

This is not an expansion of Hε in powers of h̄ as in (5), because the functions Hnε are themselves
allowed to have a dependence on h̄. But each of these is slowly varying, so that if the series
(17) is truncated, the order of the omitted term is given by the h̄ coefficient. Finally, we define
Kn = Hnε evaluated at ε = 0 (see table 1), so that we have an expansion of the symbol
K of K̂ ,

K = K0 + h̄2K2 + h̄4K4 + · · · . (18)

The solutions of (16a)–(16c) can be expressed in terms of a certain ε-dependent, classical
canonical transformation, z′µ(ε) = Zµ

ε (z), where z and z′ are the old and new variables, and
Zµ

ε is the transformation function. The family of canonical transformations Zµ
ε reduces to the

identity at ε = 0, while at ε = 1 we shall denote the transformation simply by Zµ (without
the ε). See table 1. The transformation Zµ

ε will be defined in subsection 3.3, but it turns
out that the left-hand sides of (16a)–(16c) are convective derivatives along the associated
Hamiltonian flow. Equation (16a) is a homogeneous equation for the unknown H0ε , and the
others are inhomogeneous equations with driving terms determined by lower order solutions.
The structure of the system is that of a Dyson expansion, in which the canonical transformation
Zµ

ε specifies a kind of interaction representation. The definition of Zµ
ε requires some notational

understandings that are presented in appendix B.

3.3. The canonical transformations Z and Zε

The canonical transformation Zµ
ε is defined as the solution of the functional differential

equation,

dZµ
ε

dε
= {

Zµ
ε ,Gε

}
, (19)

subject to the initial conditions, Zµ
ε = Idµ at ε = 0, and we define Zµ = Zµ

ε at ε = 1 (see
table 1). The functions Zµ

ε so defined constitute a canonical transformation, for if we compute
the ε-derivative of their Poisson brackets among themselves, we find

d

dε

{
Zµ

ε , Zν
ε

} = {{
Zµ

ε ,Gε

}
, Zν

ε

}
+

{
Zµ

ε ,
{
Zν

ε ,Gε

}} = −{
Gε,

{
Zµ

ε , Zν
ε

}}
, (20)
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where we have used the Jacobi identity. These are subject to the initial conditions{
Zµ

ε , Zν
ε

} = Jµν at ε = 0. But since Jµν = const, the initial conditions are the solution for
all ε, as shown by direct substitution.

The canonical transformation Zµ
ε is not generated by Gε regarded as an ε-dependent

Hamiltonian function, but rather by G′
ε = Gε ◦ Z−1

ε . That is, if we write zµ(ε) = Zµ
ε (z0) for

the solution of Hamilton’s equations,

dzµ

dε
= JµνG′

ε,ν(z), (21)

then the functions Zµ
ε satisfy

dZµ
ε

dε
= JµνG′

ε,ν ◦ Zε = {Idµ,G′
ε} ◦ Zε = {

Zµ
ε ,Gε

}
, (22)

which agrees with (19). In the final step we have used an important property of the Poisson
bracket, namely, that if A and B are any two functions and Z is a canonical transformation
(symplectic map), then

{A,B} ◦ Z = {A ◦ Z,B ◦ Z}. (23)

3.4. Notation for ε-derivatives

The following notation will be useful for carrying out differentiations and integrations in the
interaction representation, specified by composing a function with Z−1

ε .
For any function Fε on phase space, possibly ε-dependent, we define

DFε

Dε
=

[
d

dε

(
Fε ◦ Z−1

ε

)] ◦ Zε, (24)

for a kind of derivative operator in the interaction representation. This can be written in an
alternative form,

DFε

Dε
= dFε

dε
− {Fε,Gε}. (25)

The proof of (25) is obtained by setting F ′
ε = Fε ◦ Z−1

ε , so that

dFε

dε
= d

dε
(F ′

ε ◦ Zε) = dF ′
ε

dε
◦ Zε + (F ′

ε,µ ◦ Zε)
dZµ

ε

dε
. (26)

But by (19) and the chain rule for the Poisson bracket, the final term can be written as

(F ′
ε,µ ◦ Zε)

{
Zµ

ε ,Gε

} = {F ′
ε ◦ Zε,Gε} = {Fε,Gε}. (27)

Rearranging the result gives (25).

3.5. Solutions for Hnε and Kn

In view of (25), the left-hand sides of (16a)–(16c) can now be written DHnε/Dε. In particular,
(16a) is simply DH0ε/Dε = 0, which immediately gives H0ε = C ◦ Zε , where C is a function
independent of ε. Substituting ε = 1 and the boundary condition shown in table 1, we find
H = C ◦ Z. Then substituting ε = 0, we find C = K0. In summary,

H0ε = K0 ◦ Zε. (28)

In particular, substituting ε = 1 we obtain

H = K0 ◦ Z, K0 = H ◦ Z−1. (29)

This completes the solution of Hε and K to lowest order.
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The second-order equation (16b) can now be written as

DH2ε

Dε
= 1

24
{Gε,H0ε}3. (30)

We use (24) in this, compose both sides with Z−1
ε , integrate between ε and 1 and use the

boundary condition H2ε = 0 at ε = 1. The result is

H2ε = − 1

24

∫ 1

ε

dε′{Gε′,H0ε′ }3 ◦ Z−1
ε′ ◦ Zε. (31)

Finally, setting ε = 0, we have

K2 = − 1

24

∫ 1

0
dε{Gε,H0ε}3 ◦ Z−1

ε . (32)

Similarly, we solve the fourth-order equation (16c), finding

K4 = − 1

24

∫ 1

0
dε{Gε,H2ε}3 ◦ Z−1

ε +
1

1920

∫ 1

0
dε{Gε,H0ε}5 ◦ Z−1

ε . (33)

Clearly the solutions for Hnε and Kn at any order n can be written in terms of integrals over
lower order solutions.

Let us now choose Û so that K will be a function of I at lowest order in h̄. We shall work
backwards, first finding a canonical transformation Z such that K0 = H ◦ Z−1 is a function
of I. We then imbed this in a one-parameter family Zε , from which we compute Gε, Ĝε, Û ε

and finally Û .

3.6. Construction of Z via action-angle variables

The desired canonical transformation Z can be specified in terms of the action-angle variables
for the Hamiltonian H and those of the harmonic oscillator, denoted by (A, φ) and (I, θ),
respectively. All four of these variables are regarded as functions : R

2 → R.
The action A of the Hamiltonian H is defined as a function of the energy by

A(E) = 1

2π

∫
H<E

dp dx. (34)

The integral is taken over the interior of the closed curve H = E (a level set of H). The action
vanishes at the fixed point, and is an increasing function of energy as we move away from it.
Equation (34) is the standard way to write the definition of the action, but, keeping in mind
the warnings of appendix B, if we wish to think of A as a mapping : R

2 → R, then we should
not write A(E) or E(A), but rather

H = f0 ◦ A, (35)

where f0 : R → R is the function of a single variable expressing the relationship between
energy and action. (The 0 subscript will be explained below.) The function f0 is invertible in
the region of interest, so A = f −1

0 ◦ H . Then (34) can be written more properly by picking a
point z in the region of interest, writing E = H(z), and then writing

A(z) = (
f −1

0 ◦ H
)
(z) = f −1

0 (E), (36)

instead of the left-hand side of (34).
The easiest way to explain the canonical transformation Z is to write down the equations,

A = I ◦ Z, φ = θ ◦ Z, (37)

which presumes that some definition of the angles θ and φ, conjugate to I and A, respectively,
has been made. (Angles θ and φ are defined relative to an arbitrary origin on each level set of
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I and H, respectively.) Then Z maps the point with action-angle coordinates (A, φ) = (a, b)

to the point with action-angle coordinates (I, θ) = (a, b) (the same coordinate values in
two coordinate systems). Z is canonical because it is the composition of one canonical
transformation with the inverse of another (the transformations from z = (x, p) to (A, φ) or
(I, θ)). This way of defining Z makes it clear that Z is defined over a domain that contains the
fixed point and extends out to the first separatrix (but does not include it), otherwise what we
are calling the ‘region of interest’.

Unfortunately, this approach does not make it clear that Z is smooth at the fixed point itself.
This is important, because the series (A.1) employs derivatives of its operands of arbitrarily
high order, and because the smoothness of functions is closely related to the form of asymptotic
series involving them. In fact, for some problems, Z and hence A = I ◦ Z are not smooth at
the fixed point; the example of the quartic oscillator is discussed in appendix C. If, however,
H is smooth and its fixed point is generic, then it can be shown that there exists a smooth
canonical transformation Z, defined over the region of interest, such that A = I ◦ Z. Since I
is a smooth function on phase space, this implies that A is smooth, too. The construction of Z
is discussed in appendix C, in which it is also shown that f0 exists, is smooth and monotonic.
This takes care of the first half of (37). As for the second half of (37), we define the harmonic
oscillator angle θ by

x =
√

2I sin θ, p =
√

2I cos θ, (38)

so the origin of θ is on the positive p-axis, and then we define φ = θ ◦ Z, so that the origin of
φ lies on the image of the positive p-axis under Z−1.

Now using (37) and definition (29) of K0, we have

K0 = H ◦ Z−1 = f0 ◦ A ◦ Z−1 = f0 ◦ I, (39)

that is, K0 is the same function of the harmonic oscillator action I as H is of its own action A.
For reference we make some further remarks about the transformation Z. First, (38) was

written without regard to the warnings of appendix B, but if we think of zµ = (x, p) as values
(∈ R) and θ and I as functions, then the equation is put into proper notation by writing the
left-hand side as Idµ(z) and θ and I on the right-hand side as θ(z) and I (z). Thus, (38)
expresses the relation between the functions Idµ and functions (θ, I ). Now composing this
with Z and using (37) gives

Zµ =
(√

2A sin φ√
2A cos φ

)
(40)

which gives an explicit representation of functions Zµ in terms of functions A and φ.
The inverse transformation can be handled in a similar way. Let the transformation from

zµ = (x, p) to (φ,A) be expanded in a Fourier series in φ,

zµ =
∑

n

zµ
n (A) einφ, (41)

where z
µ
n : R → C are the expansion coefficients. This is subject to the same warnings about

abuse of notation as (38). When these are straightened out and the result is composed with
Z−1, we obtain

(Z−1)µ =
∑

n

(
zµ
n ◦ I

)
einθ , (42)

an explicit representation of Z−1.
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3.7. Finding Zε,Gε and Û ε

Now that we have Z, we imbed it in a smooth family Zε with the boundary values shown in
table 1. Sjöstrand and Zworski (2002) show that this can be done in a neighbourhood of the
fixed point, and Evans and Zworski (2004) give another proof that applies in the full domain.
For later reference, we also define ε-dependent versions of the action-angle variables,

Aε = I ◦ Zε, (43a)

φε = θ ◦ Zε, (43b)

with boundary values shown in table 1. Then we have

H0ε = f0 ◦ Aε. (44)

All three Hamiltonians, H,H0ε and K are the same function (f0) of their own actions (A,Aε

and I, respectively).
Next we wish to find a function Gε such that (19) is satisfied for the given Zε . This can

always be done, since that equation can be solved for the derivatives Gε,µ, the components of
a closed 1-form (hence exact, since the region is contractible). This is a standard result
in classical mechanics (Arnold 1989), which is summarized in component language in
appendix E. The function Gε is determined to within an ε-dependent, additive constant.
In the following we drop this constant, since its only effect is to introduce an ε-dependent
phase into Û ε , which has no effect on the transformed Hamiltonian.

Finally, given Gε , we transform it into the operator Ĝε , and then define Û ε as the solution
of

dÛ ε

dε
= − i

h̄
Û εĜε, (45)

subject to the initial condition Û ε = 1 at ε = 0. Then we set Û = Û ε at ε = 1. This
completes the preparatory transformation (the construction of Û such that K̂ has a symbol
that is a function of I at lowest order). We do not need to solve (45) explicitly, since for the
purposes of this paper we only need to calculate the effect on the symbol of a slowly varying
operator when it is conjugated by Û . But it is important to know that Û exists, as we have
shown.

The preparatory transformation might have been carried out with oscillatory integrals
coming from the integral representation of the Moyal star product, rather than in terms of
a path Zε through the group of canonical transformations. Indeed, we tried this approach
initially, but found that it led to complicated algebra beyond lowest order that we were not
able to organize to our satisfaction. Perhaps with more effort that approach could be cast into
suitable form.

The formalism we have presented is slightly simpler if we assume that the path through
the group of canonical transformations, Zε, 0 � ε � 1, is a one-parameter subgroup, that is,
that Gε is independent of ε. This, however, is a special assumption that we did not want to
make. Moreover, the use of an arbitrary path allows us to study what happens when we vary
the path, which leads to interesting conclusions (see appendix H).

4. Second stage transformations

In the second stage (the second arrow in (7)) we transform K̂ into a new Hamiltonian M̂ ,
such that the symbol M is formally a function of I to all orders in h̄. We do this by Lie
algebraic (power series) techniques that are similar to those used in classical perturbation
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theory (Dragt and Finn 1976, Cary 1981, Eckhardt 1986), although here there are higher order
Moyal brackets appearing as well as Poisson brackets. See also Littlejohn and Weigert (1993)
for an example of a Moyal-based perturbation calculation applied to an adiabatic problem in
quantum mechanics.

4.1. The higher order transformations

We apply a sequence of near-identity unitary transformations, each of which is responsible
for making the symbol of the Hamiltonian a function of I at two successive orders of h̄. Only
even powers of h̄ occur in this process. The sequence is defined by

M̂(0) = K̂, M̂(2) = Û 2M̂
(0)Û

†
2, M̂(4) = Û 4M̂

(2)Û
†
4, (46)

etc, where

Ûn = exp(−ih̄n−1Ĝn), (47)

and where Ĝn is the nth order generator, assumed to have a symbol Gn that is slowly varying.
Then, for example, the expression for M̂(2) can be written as a series in h̄ involving iterated
commutators,

M̂(2) = K̂ − ih̄[Ĝ2, K̂] − h̄2

2
[Ĝ2, [Ĝ2, K̂]] + · · · , (48)

and similarly for M̂(4) etc. Transcribing (48) to symbols and using (A.6), we have

M(2) = K + h̄2{G2,K} + h̄4
(− 1

24 {G2,K}3 + 1
2 {G2, {G2,K}}) + · · · . (49)

In a similar manner we write out commutator expansions for the higher order transformations
in (46), transcribe them into symbols, compose the transformations together and substitute the
expansion (18). We write the result in the form,

M = M0 + h̄2M2 + h̄4M4 + · · · , (50)

where M = M(∞), the symbol of the final Hamiltonian after all the second stage unitary
transformations have been carried out, and where

M0 = K0, (51a)

M2 = K2 + {G2,K0}, (51b)

M4 = K4 + {G2,K2} − 1
24 {G2,K0}3 + 1

2 {G2, {G2,K0}} + {G4,K0}, (51c)

etc. Each Mn is slowly varying.
We want M to be a function only of I. At lowest order we have this already,

M0 = K0 = f0 ◦ I = H ◦ Z−1. (52)

At second order, we wish to choose G2 in (51b) so that M2 will be a function only of
I, that is, independent of θ . In the next few steps it is convenient to bring back the abuse
of notation rejected in appendix B, and to think of functions like K2,M2, etc as functions of
either z = (x, p) or of the action-angle coordinates (θ, I ), as convenient. Then the Poisson
bracket in (51b) can be computed in action-angle variables, whereupon we have

M2 = K2 +
∂G2

∂θ
ω(I), (53)

where ω(I) = dK0/dI . Note that as a function, ω = f ′
0, since K0 = f0 ◦ I , so ω(A) =

dH/dA = f ′
0(A). Thus, ω(A) is the frequency of the classical oscillator with Hamiltonian H.

If we now average both sides of (53) over the angle θ , we obtain

M2 = K̄2, (54)
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where the overbar represents the θ average. The simple result is that M2 is just the average of
K2, given by (32).

Then subtracting (54) from (53) and rearranging, we obtain
∂G2

∂θ
= − 1

ω(I)
K̃2, (55)

where the tilde represents the oscillatory part in θ of a function. Equation (55) always has a
solution G2 that is a periodic function of θ , that is, it is a single-valued function of (x, p),
since K̃2 has a Fourier series in θ without the constant term. Thus we have shown that it is
possible to choose G2 in (51b) such that M2 is independent of θ .

The same structure persists at all higher orders. For example, taking the averaged
and oscillatory parts of the fourth-order equation (51c) yields an expression for M4 that
is independent of θ and a solvable equation for G4. This shows that it is possible to transform
the original Hamiltonian Ĥ into a function of the harmonic oscillator Î to all orders in h̄, at
least in the sense of a formal power series for the symbol.

4.2. Doing the ε-integral

The following steps require some notation and an important theorem regarding averaging
operators that are explained in appendix D. The theorem in question is (D.8), which we apply
to (54), using (32), to obtain a useful form of the expression for M2:

M2 = − 1

24

∫ 1

0
dε

〈
(Gε H0ε) ◦ Z−1

ε

〉
θ

= − 1

24

∫ 1

0
dε〈Gε H0ε〉φε

◦ Z−1
ε , (56)

where the diagrammatic notation is explained in appendix A. The ε-integration in (56) can be
done, yielding an expression independent of ε, that is, independent of the path taken through
the group of unitary or canonical transformations used in the preparatory transformation.

First we transform the integrand of (56) as described in appendix F, to obtain

M2 = 1

24

∫ 1

0
dε

[
d

dAε

(
1

ω ◦ Aε

〈H0ε Gε H0ε〉φε

)]
◦ Z−1

ε

= 1

24

d

dI

(
1

ω ◦ I

∫ 1

0
dε〈H0ε Gε H0ε〉φε

◦ Z−1
ε

)

= 1

24

d

dI

(
1

ω ◦ I

〈∫ 1

0
dε(H0ε Gε H0ε) ◦ Z−1

ε

〉
θ

)
, (57)

where once we have transformed Aε into I by composing with Z−1
ε we can pull the factors

depending on it out of the integral, since they are no longer ε-dependent. Next we use the
methods described in appendix G to guess and prove that

1

2

D

Dε
(H0ε H0ε) = (H0ε Gε H0ε). (58)

This makes the integral (57) easy to do, yielding,

M2 = 1

48

d

dI

(
1

ω ◦ I

〈
(H H) ◦ Z−1 − (K0 K0)

〉
θ

)
. (59)

Let us call the two terms on the right-hand side of (59) the ‘H-term’ and the ‘K0-term’.
Since K0 = f0 ◦ I , the Moyal bracket in the K0-term can be expanded out by the chain rule in
terms of derivatives of f0 and diagrams involving I. We find

(K0 K0) = 2f ′
0f

′′
0 (I I I ) + f ′ 2

0 (I I ), (60)
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where f ′
0 means f ′

0 ◦ I , etc, and where some diagrams have vanished since (I → I ) =
{I, I } = 0. The nonvanishing diagrams can be calculated using (8), which gives

(I I I ) = 2I, (I I ) = 2, (61)

so the K0-term is a function only of I and the angle average in (59) does nothing to this term.
Finally we take the I-derivative and compute the K0-term explicitly, finding,

K0-term = −f ′′
0

8
− f ′′′

0

12
I. (62)

The intermediate Hamiltonian K is not unique, because of the choice of the path Zε

through the group of canonical transformations that connects the identity at ε = 0 and the
given transformation Z at ε = 1. More precisely, K0 = H ◦ Z−1 is unique because it is
expressed purely in terms of Z, but K2 and all higher order terms depend on Zε at intermediate
values of ε. Nevertheless, by (54), if we vary the path Zε while keeping the endpoints fixed,
K2 can change by at most a function whose θ -average is zero, so that M2 remains invariant.
Such a function can be written as the θ -derivative of some other function. These facts are
proven in appendix H.

5. The eigenvalues

We have shown how to transform the original Hamiltonian Ĥ into a new Hamiltonian M̂

whose symbol M is a function of I to any desired order in h̄, and we have explicitly evaluated
the first two terms M0 and M2 of the series for M. Let us write Mn = gn ◦ I , thereby defining
the functions gn, so that = g ◦ I , where g = g0 + h̄2g2 + h̄4g4 + · · ·. In view of (52) we have
g0 = f0, and g2 is given implicitly by (59).

As mentioned above, an operator is a function of Î if and only if its symbol is a function
of I. The two functions are the same at lowest order in h̄, but it turns out that they differ
at higher order. These facts are proved in appendix I. Thus, if we define a function f by
M̂ = f (Î ) and expand it according to f = f0 + h̄2f2 + h̄4f4 + · · ·, then we will have f0 = g0

but f2 	= g2. Thus f0 defined this way is the same function introduced above in (35), and
we have M̂ = f0(Î ) at lowest order. This is just what we guessed in the introduction, and it
implies the usual Bohr–Sommerfeld formula, since the eigenvalues of Î are (n + 1/2)h̄.

5.1. The Bohr–Sommerfeld rule to higher order

To carry the Bohr–Sommerfeld rule to higher order, it is necessary to find the relation between
the symbol of an operator and the symbol of a function of that operator. This topic is discussed
in appendix I. In the following we are interested in the case M̂ = f (Î ) and M = g ◦ I , so we
will identify M̂ and Î with operators B̂ and Â of appendix I, respectively. Then (I.4) gives the
relation between functions f and g. Expanding f and g in even h̄ series as above and using
Mn = gn ◦ I , we can write (I.4) in the form,

M0 + h̄2M2 + · · ·
= f0 + h̄2

[
f2 − f ′′

0

16
(I I ) − f ′′′

0

24
(I I I )

]
+ · · ·

= f0 + h̄2

(
f2 − f ′′

0

8
− f ′′′

0

12
I

)
+ · · · , (63)

where f0 means f0 ◦ I , etc, and where we use (61). This implies M0 = f0 ◦ I , which we knew
already, and allows us to solve for f2 by equating the final quantity in the parentheses with M2
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in (59). We see that the second-order correction terms coming from (I.4) exactly cancel the
K0-term (62), so that f2 ◦ I is just the H-term of (59),

f2 ◦ I = 1

48

d

dI

(
1

ω ◦ I
〈H H 〉φ ◦ Z−1

)
, (64)

where we use (D.9).
The eigenvalues of Ĥ are the same as the eigenvalues of M̂ , which are given by f ◦ I

evaluated at I = (n+1/2)h̄, or as we shall prefer to write it, f ◦ A evaluated at A = (n+1/2)h̄

(in this final step we are starting to confuse the functions I, A, with the values I, A). We
compose f ◦ I = f0 ◦ I + h̄2f2 ◦ I + · · · with Z and use (37), (52) and (64) to obtain (1), which
is the Bohr–Sommerfeld formula including O(h̄2) corrections.

Equation (1) is manifestly invariant under linear canonical transformations, since the
matrix Jµν is invariant under conjugation by a symplectic matrix. Therefore, although this
equation was derived in coordinates (x, p) with balanced units of action1/2, the original units
may be restored by a canonical scaling transformation, and the answer remains the same.

Equation (1) agrees with the result of Argyres (1965) and Colin de Verdière (2004),
although their expressions for En are expressed in implicit form. In the case H =
p2/2m + V (x), we have {H,H }2 = 2V ′′(x)/m, and (1) agrees with the second-order results
of Bender and Orszag (1978), although we omit the details of the comparison.

5.2. Action operators

The formalism presented naturally suggests a definition of an ‘action operator’. Let V̂ be the
overall unitary transformation resulting from the composition of the preparatory and second
stage transformations,

V̂ = . . . Û 4Û 2Û , (65)

so that

M̂ = V̂ Ĥ V̂ † = f (Î ). (66)

We then define an action operator B̂ by

B̂ = V̂ †Î V̂ , (67)

so that

Ĥ = V̂ †f (Î )V̂ = f (B̂). (68)

This is the relation whose expression in terms of symbols is the Bohr–Sommerfeld formula.
It is straightforward to write out the symbol B of B̂ in a power series in h̄. Our analysis of
the multidimensional Bohr–Sommerfeld formula involves action operators in a more intimate
way than the one-dimensional case.

One can also transform creation and annihilation operators. Let â = (x̂ + ip̂)/(
√

2h̄),

â† = (x̂ − ip̂)/(
√

2h̄), so that Î = (â†â + 1/2)h̄, and define the unitarily equivalent operators
b̂ = V̂ †âV̂ , b̂† = V̂ †â†V̂ . In this way many of the algebraic relations involving creation
and annihilation operators for the harmonic oscillator go over to more general oscillators, for
example, B̂ = (b†b + 1/2)h̄.

6. Conclusions

We conclude by presenting some comments on the present calculation.
We could have expanded H in a power series in h̄, as in (5), and used the boundary

conditions Hnε = Hn at ε = 1, which would have made all the symbols of this paper,
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Hnε,Kn,Mn, etc, independent of h̄. We did not do this because the odd powers of h̄ in the
expansion of H would complicate all subsequent formulae without otherwise raising any new,
essential issues to be dealt with. The essence of the procedure we have given is one that
operates only with even powers of h̄.

In the calculation above there was a ‘miraculous’ cancellation of the K0-term (62), where
in one instance it arose as a consequence of doing the ε-integral for K2, and in the second as
a consequence of working out the symbol of a function of an operator. One suspects that this
cannot be accidental. We will provide a deeper insight into this cancellation in our subsequent
work on the multidimensional problem.

One can imagine other normal form problems. The simplest is a quantized version of the
classical transformation that maps the Hamiltonian in a simply connected region of phase space
where dH 	= 0 into the normal form H = p. This would provide a Moyal approach to ordinary
WKB theory for wavefunctions. A more complicated example might be a transformation to
a normal form with a separatrix, for example, a standard double well oscillator. A question
would be what class of quantum operators whose principal symbols possess such a separatrix
could be mapped into the standard normal form. Certainly the areas inside the separatrix
would have to be the same for the classical transformation to exist, but whether this would
be enough to guarantee the existence of the quantum normal form transformation is an open
question, as far as we know.

The derivation of the multidimensional generalization of the Bohr–Sommerfeld formula
(including order h̄2 corrections), also known as the Einstein–Brillouin–Keller or torus
quantization rule, requires new diagrammatic methods not considered in this paper. The
answer is not an obvious generalization of the one-dimensional formula, and it involves some
new geometrical issues for its interpretation. These topics will be the subject of a companion
paper.
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Appendix A. Notation for Moyal star product

The Moyal star product A ∗B of two symbols A,B is the symbol of the operator product ÂB̂.
We write the h̄ expansion of this product in the following notation:

A ∗ B =
∞∑

n=0

1

n!

(
ih̄

2

)n

{A,B}n. (A.1)

We call the bracket {, }n that occurs in this series the ‘nth order Moyal bracket’ (other authors
use this terminology to mean something else). This bracket is defined as follows. First, we
define the Poisson tensor and its inverse by means of component matrices in the zµ = (x, p)

coordinates,

Jµν =
(

0 −1
1 0

)
, Jµν =

(
0 1

−1 0

)
. (A.2)
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Note that Jµν are the components of the symplectic form. We use Jµν or Jµν to raise and lower
indices. This proceeds much as in metrical geometry, but one should note the sign change in

XµYµ = −XµYµ. (A.3)

(In this paper we sum over repeated indices.) Next, we define

{A,B}0 = AB, (A.4a)

{A,B}1 = A,µJµαB,α, (A.4b)

{A,B}2 = A,µνJ
µαJ νβB,αβ, (A.4c)

{A,B}3 = A,µνσ JµαJ νβJ σγ B,αβγ , (A.4d)

etc, as required for (A.1) to be the standard Moyal series for the star product. Note that {, }1 is
the usual Poisson bracket. In this paper a bracket {, } without a subscript will be assumed to
be a Poisson bracket. Note also that

{A,B}n = (−1)n{B,A}n. (A.5)

Finally, note that if Ĉ = [Â, B̂], then the Moyal series for the symbol of the commutator is

C = [A,B]∗ = 2
∑

n=1,3,5,...

1

n!

(
ih̄

2

)n

{A,B}n

= ih̄

(
{A,B} − h̄2

24
{A,B}3 +

h̄4

1920
{A,B}5 − · · ·

)
, (A.6)

which defines the notation [A,B]∗.
In this paper we make use of an alternative, diagrammatic notation for nth order Moyal

brackets and related expressions. For example, the ordinary Poisson bracket is written as

{A,B} = A → B, (A.7)

where the arrow indicates differentiations applied to the operands A and B, connected by the
Jµν tensor. The base of the arrow is attached to the first index of Jµν and the tip to the second
index. The operands can be placed in any position, as long as the arrow goes in the right
direction

A → B =
A

|↓
B

=
B

↑|
A

= B ← A. (A.8)

But if the direction of the arrow is reversed, then there is a sign change, due to the antisymmetry
of Jµν

A → B = −(A ← B), (A.9)

which is the usual antisymmetry of the Poisson bracket. Similarly, the second Moyal bracket
is given by

{A,B}2 = A →→ B = A ←← B. (A.10)

The two expressions on the right are equal because changing the direction of both arrows
changes the sign twice. In this notation, the Jacobi identity is

[(A → B) → C] + [(B → C) → A] + [(C → A) → B] = 0, (A.11)

where the square brackets are only for clarity. The first term can be expanded out by the chain
rule, which in diagrammatic notation gives

(A → B) → C = (A → B → C) + (C ← A → B). (A.12)

Similarly expanding the other two terms gives the vanishing sum of six diagrams, providing a
diagrammatic proof of the Jacobi identity.
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Appendix B. Notation for functions

In this paper it is convenient to use the (slightly nonstandard) notation f : A → B to mean
that the domain of function f is some suitably chosen subset of set A (in the standard notation,
A itself is the domain).

For the calculations of this paper it is important to avoid the usual abuse of notation
in physics in which a function is confused with the value of a function. (Actually it is
practically impossible to avoid this everywhere, but we shall do so wherever it is likely to
cause confusion.) A ‘function’ means a mapping, for example, H,Hε,Gε, . . . : R

2 → R,
and a canonical transformation is another mapping, Zε,Z, . . . : R

2 → R
2. The components

µ = 1, 2 of Z or Zε will be denoted Zµ or Zµ
ε ; each of these is a function : R

2 → R. Functions
will be denoted by bare symbols, H,Zµ, etc, whereas values of functions will involve the
specification of an argument, H(z), Zµ(z0), etc. It is also important to distinguish the identity
map Id : R

2 → R
2 from its value, which are the coordinates themselves. The identity map is

defined by

Idµ(z) = zµ. (B.1)

One must also be careful about notation for derivatives. We use comma notation for
derivatives since notation such as ∂A/∂zµ prejudices the choice of symbol to be used for the
argument of the function. For example, the notation

∂A

∂zµ
(Z(z)) (B.2)

is ambiguous; do we differentiate first and then substitute Z(z) for the argument, or substitute
first and then differentiate? To avoid this problem, we write A,µ for the derivative of
A,A,µ ◦Z if we wish to differentiate first and then substitute, and (A ◦ Z),µ if we wish
to substitute first and then differentiate, where ◦ represents the composition of two functions.
The latter expression can be expanded by the chain rule,

(A ◦ Z),µ = (A,ν ◦ Z)Zν
,µ. (B.3)

Poisson and Moyal brackets defined in (A.4a)–(A.4d) always denote functions. For
example, the notation {A(z), B(z)} is meaningless, because it is only possible to take the
Poisson bracket of functions, not numbers (the values of functions). On the other hand,
{A,B}(z) is meaningful.

Appendix C. The existence and smoothness of Z

The notation of this appendix deviates somewhat from that of the main text.
In the following we assume that H is smooth in the region of interest and that the fixed

point is generic. We write (q, p) for the coordinates on phase space. The differential dH

vanishes at the fixed point, where the Hessian is positive definite, but nowhere else in the
region of interest. We begin by showing that there exists a smooth canonical transformation
Z that maps the level sets of H into circles about the origin. Since Z is area preserving, this
implies A = I ◦ Z. The construction is based on the Morse lemma (Milnor 1969), a standard
result that applies in this case because the fixed point is a nondegenerate critical point.

The Morse lemma states that there exists a smooth coordinate transformation, say,
(q, p) �→ (x, y), such that

H(x, y) = 1
2 (x2 + y2), (C.1)

exactly. Here we abuse notation, writing H for what is really the composition of H with the
mapping (q, p) �→ (x, y).



1996 M Cargo et al

The mapping (q, p) �→ (x, y), which maps the levels sets of H into circles about the origin
of the (x, y)-plane, is not necessarily canonical, because it does not necessarily preserve area.
But the Jacobian J , defined by

dq dp = J dx dy, (C.2)

is smooth and nonvanishing in the region of interest. We shall take J to be positive. We
introduce polar coordinates (r, θ) in the (x, y)-plane, and write J (x, y) = J (r, θ). This is
an abuse of notation which we shall also use for other functions defined on the (x, y)-plane,
but it will be clear from context which set of coordinates is intended. Our strategy will be to
perform two further smooth coordinate transformations, each of which maps circles about the
origin into circles about the origin, the first of which eliminates the θ -dependence of J , and
the second, the r-dependence. See also Colin de Verdière and Vey (1979) for the first of these.

We write the first transformation in polar form,

r ′ = r, θ ′ = θ + f (r, θ), (C.3)

where we must have ∂f/∂θ > −1 in order for the transformation to be invertible. Then writing
J r dr dθ = J ′r ′ dr ′ dθ ′ to define the new Jacobian J ′, we have

J ′ = J

1 + ∂f/∂θ
. (C.4)

We wish J ′ to be independent of θ . This is only consistent if J ′ = 〈J 〉, where the angle
brackets represent a θ -average. Then we have

∂f

∂θ
= J (r, θ)

〈J 〉(r) − 1 = g(r, θ), (C.5)

which defines the function g. We require a solution f (r, θ) of this equation such that f (x, y)

is smooth. It is convenient to express and solve this equation in (r, θ)-coordinates, but we
require smoothness in (x, y)-coordinates.

The function g has the following properties. First, g(x, y) is smooth, since both J

and 〈J 〉 are smooth and positive. Second, g > −1, so any solution f defines an invertible
transformation. Third, g(0) = 0, where 0 is short for (0, 0). Fourth, 〈g〉 = 0.

We define the desired solution of (C.5) by

h(r, θ) =
∫ θ

0
g(r, α) dα, (C.6)

and

f (r, θ) = h(r, θ) − 〈h〉(r). (C.7)

The first term alone on the right-hand side of (C.7) provides a solution of (C.5), but the second
term is required for f (x, y) to be smooth. In fact, the only question about the smoothness of
f (x, y) is at the origin, where the polar coordinates are singular.

The continuity of f at the origin can be expressed in polar coordinates by requiring that
the limit

lim
r→0

f (r, θ) (C.8)

exist for all θ and be independent of θ . This holds for solution (C.7), in fact, f (0) = h(0) = 0.
Similarly, the differentiability of f at the origin can be expressed in polar coordinates by

requiring that the limit

∂f

∂r
(0, θ) = lim

r→0

1

r
[f (r, θ) − f (0, θ)] (C.9)
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exist and have a θ -dependence of the form a cos θ +b sin θ , where a, b ∈ R. If this holds, then
a = (∂f/∂x)(0) = fx(0) and b = (∂f/∂y)(0) = fy(0), where we use subscripts to indicate
derivatives. This is because the limit in (C.9) is the directional derivative (n̂ · ∇f )(0), where
n̂ = (cos θ, sin θ). In fact, we have

∂h

∂r
(0, θ) =

∫ θ

0

∂g

∂r
(0, α) dα =

∫ θ

0
[gx(0) cos α + gy(0) sin α] dα

= gx(0) sin θ + gy(0)[1 − cos θ ], (C.10)

since g is smooth at 0. This shows that h is not differentiable at 0, because of the 1 in the
last term on the right-hand side. But subtracting 〈h〉 cancels this term, showing that f is
differentiable at 0, and, in fact,

fx(0) = −gy(0), fy(0) = gx(0). (C.11)

Higher derivatives can be handled similarly. The derivative (∂nf/∂rn)(0, θ) is required
to exist and be a polynomial of degree n in cos θ and sin θ in order that f (x, y) should
possess all partial derivatives of degree n at 0. The analysis is easier in the complex variables
z = x + iy, z̄ = x − iy. Then the condition 〈g〉 = 0 implies

∂2ng

∂nz∂nz̄
(0) = (�ng)(0) = 0, (C.12)

where � = ∂2/∂x2 + ∂2/∂y2 is the Laplacian. This can be used with (C.7) to show that f

possesses all partial derivatives of order n at 0 (that is, f is smooth at 0). Explicitly, we find

∂nf

∂n−mz∂mz̄
(0) = 1

i(n − 2m)

∂ng

∂n−mz∂mz̄
(0), (C.13)

for m = 0, . . . , n, excluding the case n even and m = n/2. In the latter case the
left-hand side of (C.13) vanishes (f satisfies an equation like (C.12), as it must, since
〈f 〉 = 0). For example, at second order (reverting to rectangular coordinates) we find
fxx = −gxy/2, fyy = +gxy/2, fxy = (gxx − gyy)/4 = gxx/2.

Now transformation (C.3) can be written in the form,

x ′ = x cos f − y sin f, y ′ = x sin f + y cos f, (C.14)

which, being the composition of smooth functions, is smooth. This leaves the functional form
of H invariant, that is, H = (1/2)(x ′2 + y ′2).

We now drop the primes and return to (C.2), assuming that J is a function only of r.
For the second transformation the variable w = r2/2 is convenient, so (C.2) can be written
dq dp = J (w) dw dθ , where J is a smooth, positive function of w. Note that w is just another
notation for H or E. Then we perform the coordinate transformation w �→ w′, where

w′ =
∫ w

0
J (u) du, (C.15)

so that w′ is a smooth and monotonic function of w. This implies

x ′ =
√

w′/wx, y ′ =
√

w′/wy, (C.16)

which is smooth since w′(w)/w is smooth and positive (including at w = 0, where w′ = J (0)).
Thus, dq dp = dw′ dθ , so w′ is another notation for the harmonic oscillator action I, and the
function w′(w) is the same as the function f −1

0 (E) defined in (35). Since w′(w) is smooth
and monotonic, it is invertible and f0 exists and is smooth and monotonic. Note also that the
frequency ω = dE/dI in the present notation is dw/dw′ = 1/J .

Finally, the desired canonical transformation Z is the composition of the transformation
of the Morse lemma composed with (C.3) and (C.15).
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We note that if our conditions on H are not met, then Z need not be smooth at the fixed
point. If Z is not smooth, then neither is A = I ◦ Z nor K0 = H ◦ Z−1. For example,
the relation between action and energy for the quartic oscillator (V (x) = x4) is given by
H = cA4/3, so K0 = c′(x2 + p2)4/3, where c and c′ are constants. Thus, K0 is not smooth at
the fixed point, and neither is Z.

Appendix D. Notation for averaging operators

This appendix develops an abuse-free notation for the averaging operator introduced in
subsection 4.1. Let Q : R

2 → R be a function on phase space, treated as a Hamiltonian
with evolution parameter α,

dzµ

dα
= JµνQ,ν(z), (D.1)

where we assume Q is independent of α so the equations are autonomous (unlike the case
of Gε). Let YQ

α : R
2 → R

2 be the associated flow, with components
(
YQ

α

)µ
. The superscript

Q indicates the Hamiltonian function generating the flow. The flow functions satisfy

d
(
YQ

α

)µ

dα
= Jµν

(
Q,ν ◦ YQ

α

) = {(
YQ

α

)µ
,Q

}
. (D.2)

We will be interested in the case that Q is an action variable, I, Aε , or A.
For example, with Q = I , we have an advance map Y I

α that advances the angle θ by α.
That is, if a point z of phase space has action-angle coordinates (θ, I ), then the point Y I

α (z)

has coordinates (θ + α, I). Thus averaging over the angle θ can be written as

F̄ =
∫ 2π

0

dα

2π
F ◦ Y I

α = 〈F 〉θ , (D.3)

which defines the notation 〈F 〉θ . Similarly, we define 〈F 〉φε
and 〈F 〉φ , using the advance maps

YAε
α and YA

α .
The advance maps Zε and Yα are related by the following identity:

Zε ◦ YAε

α = Y I
α ◦ Zε. (D.4)

In other words, angle evolution and ε-evolution commute. We prove this by regarding both
sides as functions of α at fixed ε, and writing Xα and X′

α for the left- and right-hand sides,
respectively. Note that Xα = X′

α at α = 0. The left-hand side satisfies the differential
equation,

dXα

dα
= (

Zε,ν ◦ YAε

α

)d
(
YAε

α

)ν

dα
= (

Zε,ν ◦ YAε

α

){(
YAε

α

)ν
, Aε

}
= {

Zε ◦ YAε

α , Aε

} = {Xα,Aε}, (D.5)

where we have used the chain rule property of the Poisson bracket. The right-hand side
satisfies

dX′
α

dα
= dY I

α

dα
◦ Zε = {

Y I
α , I

} ◦ Zε = {X′
α, Aε}, (D.6)

where we have used (23) and (43a). Since Xα and X′
α satisfy the same differential equation

and the same initial conditions, they are equal, Xα = X′
α , and identity (D.4) is proven. It can

also be written in the form,

YAε

α ◦ Z−1
ε = Z−1

ε ◦ Y I
α . (D.7)
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It follows from this that for any function F on phase space,〈
F ◦ Z−1

ε

〉
θ

= 〈F 〉φε
◦ Z−1

ε . (D.8)

In view of (43b) this is a plausible identity. In particular, at ε = 1 we have

〈F ◦ Z−1〉θ = 〈F 〉φ ◦ Z−1. (D.9)

To prove (D.8), we express the left-hand side as an integral, and then apply (D.7)∫ 2π

0

dα

2π
F ◦ Z−1

ε ◦ Y I
α =

∫ 2π

0

dα

2π
F ◦ YAε

α ◦ Z−1
ε . (D.10)

Appendix E. Function Gε exists

Let Zµ
ε be an ε-dependent canonical transformation, defined on a contractible region. We

wish to show that there exists a function Gε such that (19) is satisfied. Write Sµ
ν = Zµ

ε,ν for
the derivatives of Zε , which form a symplectic matrix. Then

dZµ
ε

dε
= Sµ

αJ αβGε,β, (E.1)

or

Gε,β = Jβα(S−1)αµ

dZµ
ε

dε
= Sα

βJαµ

dZµ
ε

dε
(E.2)

where we use the property of symplectic matrices, StJS = J , where J is the matrix
with components Jµν . We must show that the second derivatives Gε,βγ are symmetric.
Differentiating, we find

Gε,βγ = Sα
β,γ Jαµ

dZµ
ε

dε
+ Sα

βJαµ

dSµ
γ

dε
. (E.3)

The first term on the right-hand side is symmetric in (β, γ ), since

Sα
β,γ = Zα

ε,βγ , (E.4)

and the second term is also, as we see by differentiating StJS = J with respect to ε and
juggling indices. Thus, the function Gε exists.

Appendix F. A transformation of the integrand of (56)

In this appendix to save writing we drop the ε subscripts on H0ε,Gε,Aε and φε , writing
simply H0,G,A and φ. The latter symbols, however, are not to be confused with the notation
indicated in table 1 at ε = 1. We have placed this part of the calculation in an appendix, to
avoid confusion due to the notational change.

Let us pick out the φ-average of the Moyal bracket in the integrand of (56) and write it in
an obvious notation,

〈G H0〉φ =
∫ 2π

0

dφ

2π
(G H0), (F.1)

where the parentheses are only for clarity. We now introduce a technique for ‘breaking a bond’
of an angle-averaged graph that is sometimes useful. The average of course depends only on
A, if we think of it as a function of (φ,A). We imagine evaluating this average at constant
action A = a, which we enforce by inserting a δ-function and integrating over both A and φ.
This transforms (F.1) into∫

dA dφ

2π
δ(A − a)(G H0), (F.2)
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where the integral is taken over a region of phase space that includes the level set A = a

(an orbit of H0). We then transform variables of integration to z = (x, p), we use dA dφ = d2z

(since the transformation is canonical), we write out one of the bonds explicitly, and integrate
by parts in the variable zν :∫

d2z

2π
δ(A − a)(G, µ H0,ν)J

µν = −
∫

d2z

2π
[δ′(A − a)A, ν(G,µ H0)

+ δ(A − a)(G, µν H0)]J
µν. (F.3)

The second term in the final integral vanishes, due to the symmetry of G,µν and the
antisymmetry of Jµν . In the first term we switch variables of integration back to (φ,A)

and do the A-integration, which gives∫
dφ

2π

∂

∂A
(A G H0) = − d

dA

(
1

ω ◦ A
〈H0 G H0〉φ

)
, (F.4)

where we use H0 = f0 ◦ A, that is, (44), and ω = f ′
0, and change the direction of an arrow in

the final form.

Appendix G. An antiderivative for the integral (57)

In this appendix we use the same notational simplifications as in appendix F.
In guessing an antiderivative that will allow us to do the integral (57), we must express

the diagram H0 G H0, which contains one G and three arrows, as D/Dε of some other
diagram. We note by (25) that taking D/Dε of a diagram introduces both G and an extra
arrow. Therefore taking the antiderivative must remove G and one arrow. The only diagram
we can form from two copies of H0 and two arrows is H0 H0, so we compute,

1

2

D

Dε
(H0 H0) =

(
dH0

dε
H0

)
− 1

2
(H0 H0) G. (G.1)

The first term can be written as

(H0 G) H0 = (H0 H0 G) + 2




H 0

H 0 G


+ (H0 G H0)

’
(G.2)

where we use (16a) and the chain rule, while in the second term of (G.1) removing the
parentheses provides a factor of 2, thereby cancelling the first term on the right-hand side of
(G.2). As for the triangle diagram, it vanishes, as we note by writing,


 G

H 0 H 0


 =


 G

H 0 H 0


 = −


 G

H 0 H 0




’
(G.3)

where in the first step we reflect about the vertical line and in the second reverse the directions
of all three arrows. The overall result is (58).

Appendix H. The uniqueness of the intermediate Hamiltonian K

In this appendix we study how the intermediate Hamiltonian K changes when the path Zε

through the space of canonical transformations is varied. To do this we compose Zε with
a near-identity, ε-dependent canonical transformation that becomes the identity at ε = 0, 1.
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This is equivalent to replacing Zµ
ε with Zµ

ε + δZµ
ε , where δZµ

ε = {
Zµ

ε , Fε

}
, where Fε is a

small, ε-dependent function such that Fε = 0 at ε = 0, 1. The corresponding variation in the
inverse function

(
Z−1

ε

)µ
can be found by varying Z−1

ε ◦ Zε = Id, which gives

δ
(
Z−1

ε

)µ = −JµνFε,ν ◦ Z−1
ε . (H.1)

Then we vary (28) to obtain,

δH0ε = {H0ε, Fε}. (H.2)

Finally, to get δGε , we vary (19) to obtain,

d

dε

(
δZµ

ε

) = {
δZµ

ε ,Gε

}
+

{
Zµ

ε , δGε

}
. (H.3)

The first term on the right-hand side is
{{

Zµ
ε , Fε

}
,Gε

}
, while the left-hand side is

d

dε

{
Zµ

ε , Fε

} = {{
Zµ

ε ,Gε

}
, Fε

}
+

{
Zµ

ε ,
dFε

dε

}
. (H.4)

Rearranging this and using the Jacobi identity gives{
Zµ

ε , δGε − DFε

Dε

}
= 0, (H.5)

where we use (25), or,

δGε = DFε

Dε
, (H.6)

where we drop a possible ε-dependent constant.
In the next few steps we adopt the same notational simplification mentioned at the

beginning of appendix F, and in addition we drop the ε subscript on Fε and Zε . Then we
combine (32), (H.1), (H.2) and (H.6) to obtain,

δK2 = − 1

24

∫ 1

0
dε

[ {
dF

dε
,H0

}
3

− {{F,G},H0}3 + {G, {H0, F }}3 − {{G,H0}3, F }
]

◦ Z−1.

(H.7)

In this integral we perform an integration by parts, specified by

D

Dε
{F,H0}3 =

{
dF

dε
,H0

}
3

+ {F, {H0,G}}3 − {{F,H0}3,G}

=
[

d

dε
({F,H0}3 ◦ Z−1)

]
◦ Z, (H.8)

which allows us to replace the first term of (H.7) with an exact ε-derivative plus two more
terms. The exact derivative can be integrated, giving zero because of the boundary conditions
on F. What remains is

δK2 = − 1

24

∫ 1

0
dε [−{F, {H0,G}}3 + {{F,H0}3,G} − {{F,G},H0}3

+ {G, {H0, F }}3 − {{G,H0}3, F }] ◦ Z−1. (H.9)

We now use an identity related to the Jacobi identity for operators, itself a consequence of
the associativity of operator multiplication. Let Â, B̂ and Ĉ be any three operators, and write
out the Jacobi identity [Â, [B̂, Ĉ]] + cyclic = 0 in symbol form, expanding star commutators
according to (A.6). The leading order term is the Jacobi identity for the Poisson bracket, and
the next correction term is

{A, {B,C}3} + {A, {B,C}}3 + cyclic = 0. (H.10)
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Using this in (H.9) allows us to write the integrand as

{H0, {G,F }3} ◦ Z−1 = [(ω ◦ A){A, {G,F }3}] ◦ Z−1

= −(ω ◦ I )
∂

∂θ
({G,F }3 ◦ Z−1), (H.11)

where we have expanded the Poisson bracket with H0 in action-angle variables. Finally, on
restoring the ε we have

δK2 = 1

24
(ω ◦ I )

∂

∂θ

∫ 1

0
dε{Gε, Fε}3 ◦ Z−1

ε . (H.12)

The variation in K2 is an exact θ -derivative, as claimed, and M2 is invariant under variations
in the path Zε .

We do not know whether the space of symplectomorphisms we are considering is simply
connected, but if not there arises the possibility of distinct paths Zε that are not homotopic.
Since M2 is unique, it must be that the difference in K2 along such paths is still an exact
θ -derivative.

Appendix I. Functions of operators versus functions of symbols

In this appendix we calculate the symbol of a function of an operator, in terms of the symbol
of that operator, as a power series in h̄. We briefly describe Green’s function approach to this
problem, which as far as we know was first presented by Voros (1977) and which is discussed
further by Colin de Verdière (2004). In this appendix we adopt a general notation, in which Â

is any Hermitian operator, f is any function : R → R and B̂ = f (Â). The problem will be
to find the symbol B in terms of the symbol A.

Let a ∈ C and let Ĝa = 1/(a − Â) be Green’s operator associated with Â. The symbol
Ga of Ĝa may be computed by demanding Ga ∗ (a − A) = (a − A) ∗ Ga = 1, expanding
Ga = Ga0 + h̄Ga1 + h̄2Ga2 + · · ·, expanding the Moyal star product, and collecting things
by orders in h̄. One finds that only even powers of h̄ occur in the expansion of Ga , and that
otherwise it is easy to solve for the leading terms. Through second order, the results are

Ga0 = 1

a − A
, (I.1a)

Ga2 = −1

8

1

a − A

{
1

a − A
,A

}
2

= −1

8

[
(A A)

(a − A)3
+ 2

(A A A)

(a − A)4

]
. (I.1b)

This is a special case of the symbol of a function of an operator. For the general case, write
B̂ = f (Â) in the form,

B̂ =
∫

�

da

2π i

f (a)

a − Â
, (I.2)

where the contour � runs from −∞ to +∞ just below the real axis, and then returns just above
it. This would appear to require that f be analytic, but see Hellfer and Sjöstrand (1989),
Davies (1995) and Dimasii and Sjötrand (1999) for extensions to smooth functions. (In some
applications even nonsmooth functions f are important, for example, Argyres (1965).) On
taking symbols of both sides, this becomes

B =
∫

�

da

2π i
f (a)Ga, (I.3)
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or, on substituting the expansion for Ga and doing the integrals,

B = f (A) − h̄2

[
f ′′(A)

16
(A A) +

f ′′′(A)

24
(A A A)

]
+ O(h̄4). (I.4)

Green’s function method becomes tedious at higher orders, but recently Gracia-Saz (2004)
has found convenient methods for calculating the higher order terms, including the
multidimensional case. It turns out that the fourth-order term in (I.4) contains 13 diagrams.

It was stated above that an operator is a function of Î if and only if the symbol is a function
of I. We prove this by noting that an operator is a function of Î if and only if it commutes with
the unitary operator Û (t) = exp(−it Î /h̄) for all t. This follows since the spectrum of Î is
nondegenerate. But the unitary operator Û (t) is a metaplectic operator (Littlejohn 1986), so

when we conjugate an operator, Â �→ Û (t)ÂÛ
†
(t), the symbol A is rotated in phase space.

Therefore an operator commutes with all Û if and only if its symbol is rotationally invariant
in phase space, that is, is a function of I.

The same thing can be proven at the level of h̄ expansions. The general term of the series
(I.4) involves diagrams composed of copies of A connected by arrows. But if A = I , then all
diagrams with three or more arrows attached to any I vanish, since I is a quadratic function
of z. Therefore the only nonvanishing diagrams are linear ones and circular ones. A linear
diagram with n I (two on the ends and n − 2 in the middle) vanishes if n is even, and is
2(−1)(n−1)/2I if n is odd. A circular diagram with nI vanishes if n is odd, and is 2(−1)n/2 if
n is even. Equation (61) is a special case of these rules. For now the point is that both these
diagrams are functions of I. Thus the entire series (I.4) is a function of I, for any function f .

References

Argyres P N 1965 Physics 2 131
Arnold V I 1989 Mathematical Methods of Classical Mechanics (New York: Springer) appendix 6
Balazs N L and Jennings B K 1984 Phys. Rep. 104 347
Bayen F, Flato M, Fronsdal C, Lichnerowicz A and Sternheimer D 1978 Ann. Phys. 111 61
Bender C M and Orszag S A 1978 Advanced Mathematical Methods for Scientists and Engineers (New York:

McGraw-Hill)
Berk H L and Pfirsch D 1980 J. Math. Phys. 21 2054
Berry M V 1977 Phil. Trans. R. Soc. 287 237
Berry M V and Mount K E 1972 R. Prog. Phys. 35 315
Braam P J and Duistermaat J J 1995 Panoramas of Mathematics, Banach Center Publications v 34 (Warsaw: Institute

of Mathematics, Polish Academy of Sciences) p 29
Brack Matthias and Bhaduri Rajat K 1997 Semiclassical Physics (Reading, MA: Addison-Wesley)
Cary J R 1981 Phys. Rep. 79 131
Colin de Verdière Y 2004 Bohr–Sommerfeld rules to all orders Preprint http://www-fourier.ujf-grenoble.fr/

ycolver/ebk.ps
Colin de Verdière Y, Lombardi M and Pollet J 1999 Ann. Inst. H Poincaré 71 95
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