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Abstract. In [23] a nice looking formula is conjectured for a deformed product of functions on
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derive such a formula for simply connected symmetric symplectic spaces using ideas from geomet-
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Introduction

In [23] Weinstein discusses the quantization by groupoids program as a way to obtain
an integral product which would deform the multiplication of the Poisson algebra of
functions on a symplectic manifold. Such a product would have the general form

(9@ = [ 109gK(xy.2dxdy.

with a kernelKg, depending on the deformation paraméteof the kindKg(x,y,z) =

A~ dmM . exp(iS(x,y, z) /A), eventually multiplied by an “amplitudeA(x,y,z). It is ar-

gued in [23] that for hermitian symmetric spaces the functxy,z) should be the
symplectic area of a surface whose boundary is the geodesic triangle for which the points
X, ¥, andz are the midpoints of its sides, generalizing what is knowrRgt.

In this paper we will derive such a formula (formula (6) below) for simply connected
symmetric symplectic spacé&s by means of geometric quantization of the symplectic
groupoidM x M and its prequantization as described in [24]. Our approach is inspired
by the center-chord representation on euclidean spaces as described in [13]. We then
apply this procedure to three simple 2-dimensional examples: the euclideaiRgldhe
hyperbolic planéd? ¢ R3 and the 2-spher®” c R3. The first example, already worked
out similarly in [6], gives us the well known integral product formula of Groenewold and
Von Neumann for the Moyal-Weyl quantization of observables. In the hyperbolic plane
we see that we have to interpret the amplitude function in a rather large sense: the phase
function Sis defined only on a proper subsettdf x H2 x H2, forcing the amplitude
function to be zero outside this (open) domain, &ldows up at the boundary of this



domain. In the 2-sphere there is the additional complication that midpoints do not always
determine a unique triangle (see also [15]).

Preliminaries

Let (M, w) be a symplectic manifold and late R* be a parameter. L&Y, 6) be a
prequantization ofM, w/R), meaning that : Y — M is a principalS*-bundle equipped
with a connection formd whose curvature iso/h (which implies that the group of
periods ofw is a discrete subgroup d®). Using the identity representation of the
circle St ¢ C onC, we letL — M be the associated complex line bundle avewith
connectior] and compatible hermitian structure. It follows that we can idenifyith
the subset oL of points of length 1 (with respect to the hermitian structure). We now
assume that the curvature @falso equalso/h, which implies thatw /h represents an
integral cohomology class. This imposes a quantization conditidniortasew is not
exact.

Our purpose is to construct a map(M) x .7 (M) — .# (M) by means of geometric
quantization oM x M as a symplectic groupoid, whe# (M) stands for some space
of functions onM. We will usually think of.# (M) as the set of smooth functions on
M, but analytical consideration (which will not be pursued in this paper) might decide
otherwise. Our strategy will be to use a polarization such that the polarized sections
of geometric quantization can be identified with functiondwifusually these sections
form the Hilbert space, but here we will interpret them as observables). Using a groupoid
structure on the prequantization, we construct the looked-for product. To make this
work, we will have to restrict our attention to symplectic spaces with a complete affine
connection for which geodesic inversion with respect to a point is a symplectomorphism,
and whose first homology group is zero, bringing us in the category of simply connected
symmetric symplectic spaces, which includes all simply connected hermitian symmetric
spaces [3].

In our construction we will use extensively the results of [24], as well as its notation,
but we will restrict to the barest minimum of terminology. For more of that, the interested
reader is referred to [24] and the references therein (see also [17]).

Prequantization of the pair groupoid

The construction starts by giving the manifoM x M the symplectic structure
(w,—wm). More precisely, ifo andf denote the canonical projectiofsx M — M onto
the first and second factor, then the symplectic forrvionM is o* @ — B* . The mani-
fold Y x Y is in a natural way a princip&! x St-bundle oveM x M. Taking the quotient
of the diagonal action o onY x Y, €9 - (y1,y2) = (€% -y1,€? - y»), we obtain a prin-
cipal St-bundle[Y] =Y x Y /St — M x M. We will denote points irfY] as [yl,yg(l with
yi € Y. The inducedS!-action is taken to be'®- [y1,yo] = [€9 -y1,¥2] = [y1,€7'? -ya].
Moreover, the 1-forn(6,—6) induces a connection forfi®] = [0, —6] on [Y], whose
curvature i @ /h, —w/h). We thus obtain a (particular) prequantizationvbi M. We



let L] — M x M be the associated complex line bundle with connection and compatible
hermitian structure. And as before we identj&| with the subset ofL| of points of
length 1.

We define the diagonal secti@g : M — [Y] as&y(m) = [y,y] with y € Y such that
n(y) = m. This section is horizontal for the connectifdi. It then follows from [24,
theorem 3.1, proposition 3.2] that there exists a unique groupoid structyhg arith
given properties. In our case this means that there exists a smootf mdbp values in
[Y] and defined on pair, y1], [y2, 2] € [Y] such thatr(y;) = 7(y2). Using thatS! acts
transitively on the fibres of — M, and the diagona$' action onY x Y, this condition
means that there existszac Y such thaty,, ] = [y1,Z]. With such a representation of
the points, this “multiplication™ is given by

xyloly,4=[x2. (1)

The central polarization

The next step in the geometric quantization procedure is the choice of a polarization
on M x M. We want a polarization that “mixes” both factors Mf, but for genericM
we know of no natural choice for such a polarization. We thus seek symplectic spaces
for which we can define a rather natural mixing polarization. Here is the idea. For any
complete affine connectidd on M we can define a smooth map:

F:TM—MxM ; F(mV) = (expy(—V),expn(V)) ,

where exp,: TnM — M denotes the geodesic flow at time- 1, starting am < M and

in the direction of the tangent vectere TyM. Since exp, is a diffeomorphism in a
neighborhood of & T,,M, F is a diffeomorphism in a neighborhood of the zero section

of TM. We defineU C TM, as a maximal connected and symmetric (with respect to
inversion in the fibres of the tangent bundle) open neighborhood of the zero section on
whichF is a diffeomorphism, and its imagé=F (U) C M x M. If the (complete) affine
connection] has no closed geodesics, thén=TM andV =M x M.

OnTM we have a natural foliatior¥,, whose leaves are just the fibr&gM of the
tangent bundle. Our idea is that its imagé = F..%#, should be a polarization for the
restriction of the symplectic forrfw, — ) toV. An elementary computation shows that
Z is a polarization oWV if and only if for eachm € M the map exp(v) — expy,(—V) is
a symplectomorphism on exfJ N T,M) C M. We thus require that the symplectic
manifold M admits a complete affine connection for which geodesic inversion is a
symplectomorphism. In this way, we arrive in the category of symmetric symplectic
spaces [3], [17], which includes the category of hermitian symmetric spaces because the
connection associated to the natural (complete) metric on a hermitian symmetric space
satisfies this condition. When this condition is satisfied, we obtain a (real) polarization
Z onV C M x M, which we will call thecentral polarization Moreover, as is obvious
from the definition of# via .%,, the space of leavas/ 7 is naturally isomorphic ti,
seen either as the diagonalvhx M or as the zero section ihM.



Central polarized sections

We now claim that there exists a sectigf: V — [Y] which is horizontal in the
direction of & and which coincides witlgg on its domain of definition. The easiest
way to construct this section is by pulling back all structuresfon M to T M by means
of the mapF. More precisely, we defin@ as the closed 2-forid* (@, —w) onTM and
(B,0) as the principab!-bundle with connection oveF M obtained by pulling back
the bundle([Y], 6). Obviously the curvature form d® is Q/h. As argued aboveQ is
identically zero on the fibres of M, i.e., on the leaves of?,. The sectioneg of [Y]
gets transformed to a sectief of B aboveM seen as the zero section BM. Since
the fibres ofT M are simply connected and since the curvatur®as$ identically zero
on these fibres, we can extend the sectto a global sectiors : TM — B which is
horizontal when restricted to a leaf &4,. Restricting this section td we obtaincy and
then pushing it t&/ by means of we obtain our sectiog, as claimed.

More explicitly, let (my,mp) € V. C M x M be arbitrary. We can define the curve
y:10,1] =V C M x M by y(t) = F(m,tv), with TM DU > (m,v) = F~1(mg, mp). More
or less by constructiorsy(my, ny) is the end point of the horizontal lift of starting at
g(m). But the two componentg (t) = exp,(—tv) andy,(t) = expy(tv) of the curvey
form together the geodesic fromy to mp with m as midpoint. Choosing € 7—1(m)
arbitrary, we thus can defingt) as the horizontal lift of (t) in Y starting ai. Together
they form a horizontal lift inY above the geodesic between andm,. By definition of
the connection form ofY], the curvey(t) = [y1(t), %2(t)] € [Y] is the horizontal lift ofy
starting ateg(m) = [u, u]. It follows thatsy(my, mp) = [X,y] in which x andy are the end
points of a horizontal curve above the geodesic (uniqué) inetweenm; andms.

Definition 1 We will call the sections df| above V that are covariantly constant in the
direction of & central polarized sections a#?-constant sections.

Viewing [Y] as a subset ofL], the sectionsy constructed above ig”-constant.
Moreover, it is a smooth nowhere vanishing section. It follows that central polarized
sectionss: V — [L] are in 1-1 correspondence with functiohshat are constant on the
leaves ofZ, i.e., with functions oM =V /Z2. The identification is given bg= f - s,
or, more precisely, bg(my, mp) = f(my2) - So(my, M), wheremyz is the midpoint of the
geodesic betweem; andm,.

The product of sections

We now stop the geometric quantization program and we turn our attention to the
groupoid structure offiY]. We extend formula (1) tL] by the following prescription.
Any p € [L] can be written in a unique way gs= A[x,y] with A € [0,00) and|x,y] €
[Y] C [L]. Now, for p; = Ai[X;,¥i] such thatt(y;) = w(x2) we define

P1O P2 = A1A2[X1, Y1] © [X2,Y2] .

With this extended quasi-groupoid structure (quasi because now not every element has
an inverse), we construct a product on section pfif s ands? are two sections dt |



(not necessarily abowé, not necessarily?-constant), we define a new sectighe s
of [L] by

(s'© %) (my, mg) = /M sH(my,mp) © $3(Mp, mg) drmp

In this formula the measur@ny, is the Liouville measure oM associated to the sym-
plectic form. The integration makes sense because all groupoid proshiois my)

s?(mp, mg) lie in the same fibre ofL] : the one abovémy, mg). Of course there is no
guarantee that this integral converges, but we will not deal with these delicate analytical
issues here.

A particular case

We now, for the moment, restrict our attention to the case in which the nggigs no
closed geodesics, i.e., the case in wiitcis a diffeomorphism fronT M ontoM x M. In
that case-constant sections gE| are globally defined sections. For tw#-constant
sectionss' = fj- 59, i = 1,2 with fj € Cg(M) we thus get the formula

(st©s?)(my, mg) = /M f1(my2) f2(Mp3)so(mMy, M) © so(Mp, mg) dmp 2)

in which m;, denotes the midpoint of the geodesic betwegnand my. Sincesy is
nowhere vanishing, there must be a constarguch thatsy(my,mp) @ sp(Mp, M) =
Aso(m, mg). In order to determine this constant we argue as follows. We chqoseg,

X3, andxj such thaty(my, mp) = [Xq,X2], So(Mp, M) = [X2, X3], andsg(my, mg) = X1, X5].
Note that we may take the samgandx, beacuse of the equivalence relation defining the
points in[Y]. It follows from formula (1) thasy(m, M) ® so(Mp, M) equalsxy, x3]. But

we know thatx; andx, are the endpoints of a horizontal lift above the geodesic between
my andmmy, and similarly for the pairs,, x3 andxy, x5. We thus have a geodesic triangle
mgmymy and a horizontal lift starting ats abovemg, passing througk, andx; and
coming toxj, again abovens. It follows thatx; = Ax3 with 2 € St the holonomy (with
respect to the principad-bundle[Y]) of the geodesic trianglewmymy. In particular
we have[xy, x3] = A[x1,X5]. Now if A(mgrmpmy) is any 2-chain whose boundary is the
geodesic trianglensmpmy, thend = expli [a(mgm,my) @/h). The result does not depend
upon the choice foh because the curvature fory h represents an integral cohomology
class.

We are thus led to introduce the phase functBomg, My, M) = [ (mym,m,) @ repre-
senting the symplectic area of the surfagensm,m;) whose boundary is the geodesic
triangle with corners atg, mp, andmy. Actually Sis in general multiple valued because
there is (in dimensions higher than 2) no unique such 2-chabut this indeterminacy
disappears when taking the exponential. On the other hand, in order to be sure that such
a 2-chain exists for all geodesic triangles, we further restrict our attention to sigaces
without homology in dimension 1. This excludes for instance the 2-torus, but all simply
connected hermitian symmetric spaces satisfy this condition, and thus in particular the
hermitian symmetric spaces of compact and non-compact type.



Substituting these results in formula (2) we obtdify-sp© fo-S) (Mg, mg) =
g(my, mg) - so(my, mg), whereg is given by

g(my, mg) = /M f1(m2) fz(nbs)eig(ms’mz’ml)/ﬁdﬁh- ©))

If we forget the trivializing sectiorsy, we thus have associated to two functidas f;
on M a new functiong on M x M. In general, the product ® s? of two Z-constant
sections will not beZ?-constant. In terms of the functianthis means that, in general,
the functiong: M x M — C is not constant on the leaves &%, i.e., of the form
g(mg, mg) = g(my3) for some functiorg: M — C with my3 the midpoint of the geodesic
betweernm andm.

The skewed product of functions onvi

In order to get a central polarized section, i.e., in order to associate to two funttions
and f, onM a new functionf, x f, onM (not onM x M), we integrate (average) formula
(3) over the leaves of”. This is easily done in terms of the fibresToM and we get

(f1x fa)(m) — /TMdvg(ml,mg):/T _dvgF(my)
= / dV/ dl’nz f]_(mlz) fz(ﬁ]g3)ei§(m3’m2’ml)/ﬁ, (4)
TmM M

with (my, mg) = F(m,v) andmj, the midpoint on the geodesic betwempandmy.

It remains to be decided what measdrgo use onl,M for our averaging procedure,
but there exists a rather canonical way to obtain one. Usind~tima global diffeomor-
phism (we are still in that casd},*(w, — ) is a symplectic form o M, and thus we
have its Liouville volume forndurm(m,v) on T M. On the other hand, the zero section
of TM is diffeomorphic to the symplectic manifo[l, @), and thus on the zero section
of TM we have its Liouville volume fornauy (m). It follows that there exists a unique
volume formdvin(v) = dvon each fibrd,M such thatuy (m) A dvin(v) = durm(m,v).

In the sequel it will be this choice for the measure M that we will use in our
averaging procedure

Definition 2 The skewed product of two functionsahd £ on M is given by (4).

Definition 3 The composition of central polarized sectioass! ® s> > corresponds
to the skewed product of functions via the identification of central polarized sections
with functions on M: if 5= fj -5, i = 1,2 are two central polarized sections, then

<sted > def (fy = f2) - 5o is the product central polarized section; it is an averaged
version of the productlss 2.

We call this product thekewed produdio emphasize the distinction of its construc-
tion to some more well known noncommutative products of functions on symplectic
manifolds, thestar productdefined in the context of deformation quantization (see [1])



and thetwisted productefined via symbol mapping homomorphism (see [22], for in-
stance), although the latter is often also called star product and these two are often con-
fused as if the same.

In order to write the skewed product in a nicer way, we look at the tigp:
(V,mp) — (M2, mp3) from TyM x M to M x M. We conjecture that this map is injective;
it certainly needs not be surjective as can be seen in the case of the hyperbolic plane.
If we denote bydmy» the Liouville measure on the first factor bf x M and bydnps
the Liouville measure on the second factor, then there exists a positive fuAgtion
Win = Wm(TmM x M) € M x M such that¥},,(Amdmi2dmps) = dvindmp. Associated to
Wi, we define the setV ¢ M3 asW = {(myo,mp3,m) € M3 | (Mg, mp3) € Wiy }. We
then can interpret the family of functions, as a single functioA : W — [0,) by
A(My2,Mp3, M) = Am(My2,Mp3).

In order to better understand the amplitude funcéigmve define the maf : M3 —
W c M2 by the following sequence of maps:

(Mg, mp, M) — (F~1(my,mg),mp) = (M,v,mp) — (Wn(v,mp), m) = (Mo, Mp3, m) .

If we interpretM? as the description of the space of all geodesic triangles by their
three cornergmg,mp, my), the mapG can be seen as the “coordinate change” to the
description of these triangles by the midpoints of their siges, mp3,m= my3). The
assumption that the majd4,, are injective translates as the statement@iata bijection
from M3 to W. The mapG and the functiorA are then related by

(G™Y)*(dmydmpdmg) = A- dmyodnpsdmys . (5)

Still under the assumption th&: M3 — W is bijective, we define the functiocBonW

by S= SoG™1. The functionS can thus be described as the symplectic area of a surface
A whose boundary is the geodesic triangle with given midpoints for its sides.

Theorem 1 Let M be a symmetric symplectic space without closed geodesics and denote
by A the symplectic jacobian (5) of the map’G W — M3, which relates the three
vertices(mg,my,my) of a triangle to the three midpoints of its sideés/,m’ m). Let
S(m',m’,;m) be the symplectic area of a geodesic triangle determined by its midpoints
and denote by Wthe slice Wn (M x M x {m}). Then the skewed product of functions
on M associated to the composition of central polarized sectionsM/i— [L] is given
by:

(F1xf2)(m / f1(ml) fo (") ST M FA ' mydnddnd’ . (6)

Except for the important restriction of the integrationNg instead oM x M, this is
the kind of product as conjectured in [23].
The general case

We have derived formula (6) under the assumption Ehista global diffeomorphism
fromTMtoM x M. If this is not the case, we were led to introduce the sul$etsT M



andV =F(U) Cc M x M, and the sectiors, defined only abov#. It follows that the
integration procedure which led us to formula (3) can only be performed for those values
of mp such thatmy, my) and(mp, mg) both lie inV.

The next step of averaging over the leavesg®thould also be done with care. These
leaves are only defined W (elsewhereZ is not defined), which means in termsToM
that we have to integrate, not over the whole tangent spabk but only over the part
inU, i.e., overT,MNU. On the other hand, the argument which led to the meabure
remains valid: the pull-back by of the Liouville measure oW toU gives us a measure
onU. The zero section still carries its natural Liouville measure, and thus there exists a
natural measurdvy, on T,M NU such that it completes the natural Liouville measure
on the zero section to the pull back of the Liouville measur® oWe conclude that in
the general case, formula (4) can still present an integral product of functions, provided
we restrict integration to the appropriate subsef gl x M.

In the general case, the mify, need not be injective, not even on the relevant subset
(TwM NU) x M as described above, as can be seen in the example of the 2-sphere.
However, inspired by the example of the 2-sphere, we conjecture that there still exists
a positive functiorAy, on Wiy = Wi((TmM NU) x M) such that¥;,(Amdm2dnps) =
dvmdmp. We also conjecture th&ft, is injective outside a closed subset of measure zero
in (ThMNU) x M (see further in [17] proposition 6.1). This means that we can copy the
arguments leading to formula (6), and that this formula is also valid in the general case,
but with the new subsé&f,.

Example I: The Euclidean plane R

Let M = R? be the Euclidean plane with the symplectic fomm= dpAdg=d(pdq).
The (unique) prequantization is the bunie= M x St with connection formh@ =
pdg+de. The mapF, a global diffeomorphism, is given &s(p,q;Vp,Vq) = (P —
Vp,d — Vg, P+ Vp,q+ Vq). A horizontal lift of the curve(p+tvp, q+tvg) is given by
(q+tvg, p+tvp,expg(pt+ %tzvp)vq)). A simple calculation yieldsy(p1,d1; p2,02) =

[(P1,01; 1), (P2, d2; €Xp(55( P+ P2) (A2 — a1))] , where we used the equivalence relation
on|[, | to put the first phase equal to 1. From this and formula (1) the phase faator

So(My, Mp) © So(Mp, M) = ASo(My, M) s given by
A = exp(a={(p1+ P2) (01— d2) + (P2 + P3) (G2 — G3) + (Ps + P1) (G — a1 }) -

A trivial calculation shows that this is indeed Qj&pg,qg; P2,02; P1,q1)/h) with
S the symplectic area (oriented with respect to the volume fdpm da) of the tri-
angle with corners atps,gs), (pP2,02), and (p1,q1). In this example, the change of
coordinategv,my) — (My2,Mp3) is a linear bijection with Jacobiaﬁn, which implies
that the amplitude functiod = % is constant. Moreover, in the Euclidean plane, the
area§(p3,q3; P2,0d2; P1,01) is four times the area of the triangle determined by its mid-

points, i.e.S(p, q; P12, 012 P23, Go3) = 43P, 0 P12, Gaz; P23, 023)- In this way we obtain
the usual formula of Von Neumann and Groenewold that defines the Moyal-Weyl quan-
tization of the Euclidean plane (see [6]).



Example 2: The hyperbolic plane H

Our next example is the hyperbolic plake which we interpret as one sheet of
the 2-sheeted hyperboloid iR® determined by the equatior® — x? —y? = 1 and
z> 0. We introduce the Lorentzian metr{d ), by the formula{(x,y,2)|(X,Y,Z)), =
27 —xX —vyy.

This metric induces a surface element, which we take as symplectic form. An ele-
mentary but tedious calculation shows that the oriented hyperbolic area of a triangle
determined by its three corneash, c € H2 C R3 is given by the formula

§(a, b,c) = 2Arg<1+ (alb), + (b|c), + (cla), + iDet(abc)) ,

where Arg denotes the argument of a complex number; it lies in the intervalr).

This formula is derived in [9] and [20] in the context of relativistic addition of velocities.
The next steps are to express the area of a hyperbolic triangle as a function of its

midpoints and to determine the change of coordinatesy) — (M2, Mp3). A straight-

forward calculation shows thatd b, c € H2 ¢ R3 are the corners of a hyperbolic trian-

gle, and ifer, B,y € H?  R3 denote the midpoints of the three sides, then the area of the

triangle is given by the simple formula (see [17] or [19] for two independent derivations)

S(a,B.y) = 2Arg(\/ 1 Det(aBy)2+iDetafy) ) = 2arcsiriDet@By)) . (7)

The same analysis shows that the nfajb, c) — («, 8, 7y) is injective onto the triples
(a, B,7) satisfying Detoy)? < 1, justifying the formula foiS. It follows immediately
that the subsetd/, are given as

Wo = {(B,7) € H* x H? | Det(ay)® <1} . (8)
A lengthier straightforward computation shows that the amplitude function is given by

—5/2

A(0,B,7) = 16(a|B), - (BI7), - (rla), - (1-Dett@pp?) . ()

The fact that this amplitude function diverges on the boundaywgfshows that we
correctly restricted integration to this subset and that it is optimal.

Corollary 1 The skewed product of two functions on the hyperbolic pHhat a point
a € H? is given by integration over propersubset Yy ¢ H? x H? determined by (8).

Example 3: The sphere 3

In the last example we consider the compact hermitian symmetric §aseen as
the unit sphere ifR3, i.e., determined by the equati@i+ x2 + y2 = 1. We equipR3
with the Euclidean metri¢| ). given by((x,y,2)|(X,Y,Z))s = zZ +xX + VY.



As for the hyperbolic plane, we take the induced surface element as symplectic form.
And again, an elementary but tedious calculation shows that the oriented spherical area
of a triangle determined by its three cornarb, c € S* ¢ R3 is given by the formula

S(a,b,c) = 2Arg<1+ (alb). + (blc)e + (cla)s + iDet(abc)) , (10)

l.e., by exactly the same formula as in the hyperbolic case, except that we use the

Euclidean metric instead of the Lorentzian one. However, this formula needs more

explanation than its hyperbolic counter part, becaus&there are several triangles

with the same three corners. The area given by formula (10) is the area of the triangle

whose three corners asgeb, andc and whose three sides all have length less than
Elementary geometry shows that the subbset TS? is given by those tangent vectors

that have length less tham/2. In fact, if v € T,S? has lengthr/2, the two points

expy(—V) and exp,(v) are antipodal, and thus there is a circle of pdirsv) having

these antipodal points as image unéeit follows that the imag& = F(U) is the set

of pairs (my,mp) such thatmy # —mp. And indeed for any two non-antipodal points

there is a unique geodesic with length less thajoining them. The integration over

mp in formula (3) has to be done over all thase such that the two pair@mn;,nm,) and

(mp, mg) belong toV. Since in the definition o/ we only exclude antipodal points,

this means that we have to leave out a set of measure zero in the integratianyover

In other words, we can maintain formula (3) as it stands. The fa¢tdfe&2m™)/N jn
the integration ovem, in (3) is defined except on a set of measure zero (whgis
antipodal to eithem or ng).

The integration ovev € T,,M should not be done over the whole®fM but only over
TnMNU, i.e., over tangent vectors of length less tisf2. This corresponds exactly
to integrating over the leaves o because two (pairs of) points Wi ¢ $? x S lie
on the same leaf of” if and only if they have the same midpoint on the geodesic
segment joining them. Since we avoid antipodal pairs, there exists a unique geodesic
segment of length less tham joining (m,my), on which the midpoint is given by
the normalized averag@m + mp) - ({My + mp|my + ) )~Y/2 € S2. Thus, the space
of leaves is characterized 187, which is the space of midpoints, and the distance
of such a midpoint to one of its endpoints is less th&li2, justifying the restriction
to integrate only over tangent vectors of length less tha®. It means that we only
consider triangles whose sides are all shorter than

It remains to express the phase functi®m terms of midpoints and to compute the
amplitude functionA. Contrary to the hyperbolic case, there always exists a geodesic
triangle with given midpoints, 8,y € S°. More precisely, ifa,b,c € S* ¢ R® are the
corners of a spherical triangle, andif3, y € S> ¢ R3 denote the midpoints of the three
sides, then the oriented arBaf the triangle is given as (see [17], [19])

Sa,B,y) = 2Arg<n\/1—Det(ocﬁy)2+iDet(o¢By)) , (11)

wheren is a sign: the same as the majority of signs among the three scalar products
(a|B)e, (BlY)e, and(y|a) (provided they are all non zero). We see that it is (up to the
factorn) the same formula as in the hyperbolic case. Unlike the hyperbolic case, we do



not have a restriction on the midpoints, a fact which is corroborated by the fact that for

points on the unit sphere, the determinant(ogdty)? is always less than or equal to 1.
However, the calculations leading to the formula $show that, if all three sides

of a triangle have length less thamthen all three scalar producta|B)., (B]7):, and

(7)) have the same sign, where the sign should be interpreted as a functi®en on

defined as being-1 for positive values;-1 for negative values, and 0 for zero. Thus,

the seW\, is

W = {(B,7) € S* x S| sign(B|y)e = sign(a|B). =signaly)c} . (12)

Moreover, the calculations also show that if all three inner products are zero, then there is
an infinity of triangles having the given points as midpoints (roughly a set parametrized
by a point onS?). But this set has measure zerdfif and hence can be neglected in the
integration. Note that even though the triangle itself is not uniquely determined by its
midpoints, its area is (see also [17] proposition 6.1).

SinceW, is only a quarter oB? x S? (with respect to the natural measure), we must
treat the restriction of the integration ¥, in formula (6) seriously. If the three inner
products do not all have the same sign, there still exists a triafgl@inique if no inner
product is zero) but at least one of its sides will be longer than or equa{¢onditions
similar to (12) appear in the other cases). Computing the amplitude function, we find

—5/2
A(o,B.7) = 16\(a|B)e - (BI7)e - (Y |- (1-DettaBy)?) . (13)

Summary and comparisons

Formula (6) defines a product of functions on a symplectic manifold, whose form
was conjectured in [23], in the spirit of the central (Weyl) representation of quantum
observables [13] and strict deformation quantization [14]. We have derived this skewed
product for simply connected symplectic spaces which admit a complete affine connec-
tion for which geodesic inversion is a symplectomorphism, using only basic ideas from
geometric quantization and groupoids. The main ingredients of our construction are the
prequantization of the pair groupoid, the central polarization, the product of sections
using the groupoid structure and finally the averaging procedure.

Further investigations on the properties of this product is work in progress (see
also [15]), but we remark that stationary phase evaluation of the skewed product of
two oscillatory functions brings in the composition of central generating functions of
canonical relations, as defined in [17] (see also [10], as well as [18] for an independent
partial proof of Theorem 6.1 in [17]). Also remark that, BA", this connection between
the skewed product of oscillatory functions and the composition of central generating
functions is a very important feature of semiclassical analysis [13].

We end this section by briefly comparing this work with a few others in the literature.

The well known formal deformation quantization [1], as developed by Fedosov [5]
among others (in particular Moreno & Ortega-Navarro [11]), differs from our approach
from the start by considering, not genehidependent functions ddl, but the ring of
polinomials inh with coefficients inC*(M). Important questions of whether or how



such formal products converge are already second to whether or how some important
functions (e.g. oscillatory) can be appropriately treated in this context (see [16], [12]).

In the approach to quantization by means of pseudodifferential operators and symbol
mapping, also not as general in scope (eitdocalized symbols, or finite dimension
functional spaces), the work of Unterberger & Unterberger [21]H&rand the work of
Varilly & Gracia-Bondia [22], forS?, are close to the object of this paper and constitute
excellent treatments of these fundamental examples in a context of Weyl quantization.

For the integral product defined by Karasev [7] based on Berezin's quantization [2],
the functions to be multiplied stand in bijection to (anti)holomorphic functions on a
Kahler manifoldM. In his more recent collaboration with Osborn [8], an approach closer
to this paper was developed for functions on cotangent bundles: the product obtained for
functions onT*H? is defined on a subset 3FH? x T*H? that is the natural extension
of (8).

Finally, the work of Bieliavsky on solvable symmetric symplectic spaces [4] is also
close to the object of this paper, in these more specific cases (solvable), and defines an
integral product (with asymmetric kernel) which is very close to the skewed product. A
comparison between the two approaches shall be reported elsewhere.
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