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Abstract

For Fermat curves F : aXn
+ bY n

= Zn
defined over Fq, we establish necessary and su�cient

conditions for F to be Fq-Frobenius nonclassical with respect to the linear system of plane cubics. In

the new Fq-Frobenius nonclassical cases, we determine explicit formulas for the number Nq(F) of Fq-

rational points on F . For the remaining Fermat curves, nice upper bounds for Nq(F) are immediately

given by the St

¨

ohr-Voloch Theory.

1 Introduction

Let F
q

be the finite field with q = ph elements. For an irreducible Fermat curve

F : aXn + bY n = Zn (1.1)

defined over F
q

, let N
q

(F) denote its number of F
q

-rational points. The celebrated Hasse-Weil Theorem

gives

|N
q

(F)� (q + 1)|  (n� 1)(n� 2)
p
q. (1.2)

Estimating the number N
q

(F) is a classical problem of broad interest, with well-known applications in a

range of di↵erent areas, such as coding theory, finite geometry, additive combinatorics, Waring’s problem

over finite fields and exponential sums, see e.g. [2], [3], [5], [9], [10], [13].

In 1986, Stöhr and Voloch introduced a new technique to bound the number of rational points on

curves over finite fields [14] . Their method uses some data collected from embeddings of the curve in

projective spaces, and in many circumstances it gives improvements upon the Hasse-Weil bound.

For example, let F be a Fermat curve as given in (1.1). For s 2 {1, . . . , n � 1}, consider the linear

system ⌃
s

of all curves in P2(F
q

) of degree s. Associated to ⌃
s

, there exists a sequence of M =
�
s+2
2

�
� 1

integers 0 = ⌫0 < · · · < ⌫
M�1, depending on F , q and s, called the F

q

-Frobenius order-sequence of F
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(see Section 2). If ⌫
i

= i for all i = 0, . . . ,M � 1, then the curve F is called F
q

-Frobenius classical with

respect to ⌃
s

. Otherwise, F is called F
q

-Frobenius nonclassical. Together with [14, Proposition 2.4] and

some remarks in Section 3 of [14], the Stöhr-Voloch Theorem [14, Theorem 2.13] applied to ⌃
s

gives

N
q

(F)  n(n� 3)(⌫1 + · · ·+ ⌫
M�1) + sn(q +M)

M
�

X

P2F

A(P )

M
, (1.3)

where

A(P ) =

8
><

>:

P
M

l=1(jl � ⌫
l�1)�M, if P is an F

q

-rational point

P
M�1
l=1 (j

l

� ⌫
l

), otherwise ,

and 0 = j0 < j1 < · · · < j
M

are the (⌃
s

, P )-orders (see Section 2).

If F is F
q

-Frobenius classical with respect to ⌃
s

, then bound (1.3) reads (cf. [5, Theorem 1])

N
q

(F)  n(n� 3)(M � 1)

2
+

sn(q +M)

M
� 3nA+ dB

M
, (1.4)

where B = sn�M ,

A =
1

6

✓
(n� s� 1)s(s� 1)(s+ 4) +

s(s� 1)(s� 2)(s+ 5)

4

◆
,

and d is the number of F
q

-rational points P = (u : v : w) 2 F for which uvw = 0. For instance, with the

usual assumption that n|q � 1, we have N
q

(F) ⌘ d mod n2, and then for n � 3 bound (1.4) when s = 1

and s = 2 yields

N
q

(F) 
�
n+ q � d� 1

2n

⌫
n2 + d 

�
1 + t

2

⌫
n2, (1.5)

and

N
q

(F) 
�
2(2n+ q � d� 1)

5n

⌫
n2 + d 

�
4 + 2t

5

⌫
n2, (1.6)

respectively, where bec denotes the integer part of e, and t = (q � 1)/n.

The F
q

-Frobenius nonclassical Fermat curves with respect to ⌃
s

were completely characterized by

Garcia and Voloch for the cases s = 1 and s = 2 (see Theorems 2.7 and 2.8). Later on, other authors

obtained results that rely on these characterizations to some extent, see e.g. [2],[6] and [8]. It should be

observed, for instance, that bound (1.6) was fundamental to prove the main result of [2, Section 2], which

answers a question (raised by Voloch) regarding the arc property of certain curves. This latter subject,

in turn, has a well-known close connection with 3-dimensional linear codes.

Th following is another important result obtained by Garcia and Voloch after a suitable choice of s

for the bound (1.4), see [5, Section 3].
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Lemma 1.1. Let p be a prime and a 2 F⇤
p

. If n � 4
p
p� 1 + 1

2 is a proper divisor of p � 1, then the

number of solutions (x, y) 2 F
p

⇥ F
p

of xn + yn = a is at most 4t2/3n2, where t = (p� 1)/n.

The above lemma, improved by Mattarei by bringing the constant 4 down to 3 · 2�2/3 [10], has been

used to refine results on some problems, such as Waring’s problem over finite fields and Exponential

sums, see e.g. [3], [13]. Naturally, any improvement/extension of Lemma 1.1 will be of interest. One

way to achieve this is by explicitly characterizing the curves which are F
q

-Frobenius nonclassical w.r.t.

curves of higher degree s. For instance, thanks to Theorem 2.8, we know exactly which Fermat curves

are F
q

-Frobenius nonclassical when s = 2, and then bound (1.6) may be used for all remaining Fermat

curves. It turns out that for such remaining curves, at least in a set of small values t = p�1
n

, bound (1.6)

may be better than that of Lemma 1.1, besides holding for nonprime fields as well. As a illustration,

let N be the number of solutions (x, y) 2 F71 ⇥ F71 of x7 + y7 = 1. From Theorem 2.8 , this curve is

F71-Frobenius classical for s = 2, and then bound (1.6) (in the weaker version) yields N  196, whereas

Lemma 1.1 (Mattarei’s version) gives N  429.

In general, for large values of q�1
n

, bound (1.6) will become stronger as s approaches, roughly, ( q�1
n

)1/3

(see e.g. proof of Lemma 1.1 in [5]). Note that the bound for the case s = 3, namely

N
q

(F) 
�
5n+ q � d� 1

3n

⌫
n2 + d 

�
5 + t

3

⌫
n2, (1.7)

is better than that of s = 2 when, roughly, t = q�1
n

> 13. However, to make use of it, one must make

sure that the target Fermat curve is F
q

-Frobenius classical w.r.t. ⌃3.

With regard to N
q

(F) when F is F
q

-Frobenius nonclassical, note that in (1.3) we will have

⌫1 + · · ·+ ⌫
M�1 > M(M � 1)/2,

and then bound (1.4) may not hold. This suggests that such curves are likely to have many F
q

-rational

points. For instance, the Hermitian curve

H : xq+1 + yq+1 = zq+1,

which is the most famous F
q

2 -maximal curve, turns out to be F
q

2 -Frobenius nonclassical w.r.t. ⌃1. Note

that since N
q

2(H) = 1+q3, bound (1.5) fails for H. This example should reminds us to consider Frobenius

noncassical curves when searching for curves with many rational points.

The characterization of F
q

-Frobenius nonclassical curves may o↵er a two-fold benefit. If we can

identify the F
q

-Frobenius nonclassical curves, then we are left with a class of curves for which a better

upper bound (inequality (1.4)) for the number of F
q

-rational points holds. At the same time, the F
q

-

Frobenius nonclassical curves provide a potential source of curves with many such points. In a nutshell,

the characterization of F
q

-Frobenius nonclassical curves for larger values of s 2 {1, 2, · · · , n� 1} is highly
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desirable.

In this manuscript, we establish the result for s = 3. That is, we characterize the F
q

-Frobenius

nonclassical Fermat curves with respect to the linear systems of plane cubics. Our main result is the

following:

Theorem 1.2. Let F : aXn + bY n = Zn be an irreducible Fermat curve defined over F
q

, where q = ph,

p > 11, and n > 3. Suppose that F is classical with respect to ⌃2. Then the curve F is F
q

-Frobenius

nonclassical with respect to ⌃3 if and only if one of the following holds:

(i) p|n� 3 and n = 3(ph�1)
p

r�1 for some r < h such that r|h and a, b 2 F
p

r .

(ii) p|3n� 1 and n = p

h�1
3(pr�1) for some r < h such that r|h and a3, b3 2 F

p

r .

The exact number of F
q

-rational points on the curves given by the previous theorem will be presented

later in section 5. Now, given Theorem 1.2, one can apply bound (1.7) for all remaining Fermat curves.

For instance, for the curve

F : X8 + Y 8 + 1 = 0

over F132 , bound (1.7) gives N132(F)  512, and one can easily check that the bound is sharp for this

particular case, i.e., 512 is the actual value of N132(F). Note that since the field is not prime, Lemma

1.1 cannot be applied to this case.

It is worth mentioning that some techniques applied here can be carried over to larger values of s, and

thereby shed some light on the solution of this problem for the general linear system ⌃
s

(see Section 6).

The paper is organized as follows. Section 2 sets some notation and recalls results from the Stöhr-

Voloch Theory. Section 3 provides necessary and su�cient conditions for the curve F to be nonclassical

with respect to ⌃3. In particular, it answers a question raised by Garcia and Voloch in [5]. Section 4

presents a sequence of additional results culminating in the proof of Theorem 1.2. Section 5 determines

the number of F
q

-rational points on curves given by Theorem 1.2 and provides some examples. Finally,

Section 6 briefly discuss how the current approach can help investigating the problem for larger values

of s. In the paper’s appendix, we prove the irreducibility of some low-degree curves, and include a proof

for a case of Frobenius nonclassicality with respect to ⌃2 which was apparently overlooked in [5]. An

unpublished but very useful result, due to M. Homma and S. J. Kim, is also included in the appendix.

Notation

Hereafter, we use the following notation:

• F
q

is the finite field with q = ph elements, with h � 1, for a prime integer p.

• F
q

is the algebraic closure of F
q

.
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• Given an irreducible curve C over F
q

and an algebraic extension H of F
q

, the function field of C over

H is denoted by H(C).

• For a curve C and r > 0, the set of its F
q

r -rational points is denoted by C(F
q

r ).

• N
q

r (C) is the number of F
q

r -rational points of the curve C.

• For a nonsingular point P 2 C, the discrete valuation at P is denoted by v
P

.

• For two plane curves C1 and C2 , the intersection multiplicity of C1 and C2 at the point P is denoted

by I(P, C1 \ C2).

• Given g 2 F
q

(C), t a separating variable of F
q

(C), and r � 0, the r-th Hasse derivative of g with

respect to t is denoted by D
(r)
t

g.

2 Preliminaries

Let us start by recalling the main results of [5] and [14]. For n > 3, consider an irreducible Fermat

curve

F : aXn + bY n = Zn (2.1)

defined over F
q

. For each s 2 {1, . . . , n� 1}, denote by ⌃
s

the linear system of all projective plane curves

of degree s. For any point P 2 F , an integer j := j(P ) is called a (⌃
s

, P )-order if there exists a plane

curve of degree s, say C
P

, such that I(P,F \ C
P

) = j. From the discussion in [14, Section 1], it follows

that there exist exactly M + 1 (⌃
s

, P )-orders

j0(P ) < j1(P ) < · · · < j
M

(P ),

where M =
�
s+2
2

�
� 1. The sequence (j0(P ), j1(P ), . . . , j

M

(P )) is called (⌃
s

, P )-order sequence. Note

that j0(P ) = 0 and j1(P ) = 1 for all P 2 F . Moreover, there exists a unique curve H
P

of degree s,

called s-osculating curve of F at P , such that I(P,F \H
P

) = j
M

(P ) [14, Theorem 1.1]. All but finitely

many points of F have the same order sequence, denoted by ("0, . . . , "M ). This sequence is called order

sequence of F w.r.t. ⌃
s

, and the integers "
i

are called ⌃
s

-orders.

Let F
q

(F) = F
q

(x, y) be the function field of F , defined by axn + byn = 1. To each linear series ⌃
s

,

there corresponds a morphism

�
s

= (. . . : xiyj : . . .) : F �! PM (F
q

), (2.2)

where i + j  s, called the s-Veronese morphism. Let t be a separating variable of F
q

(F) and D
(i)
t

denote the i-th Hasse derivative with respect to t. The ⌃
s

-orders of F can also be defined as the minimal
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sequence with respect to the lexicographic order, for which the function

det
⇣
D

("k)
t

(xiyj)
⌘

0  k  M,

0  i + j  s

is nonvanishing. Moreover, this minimality implies that "
i

 j
i

(P ) for all i 2 {0, . . . ,M} and P 2 F .

The curve F is called classical w.r.t. ⌃
s

(or �
s

) if the sequence ("0, . . . , "M ) is (0, . . . ,M). Otherwise, it

is called nonclassical.

The following result concerning ⌃
s

-orders is proved in [14, Corollary 1.9].

Theorem 2.1. Let " be a ⌃
s

-order. Then every integer µ such that

✓
"

µ

◆
6⌘ 0 mod p

is also a ⌃
s

-order. In particular, if " < p, then 0, 1, . . . , "� 1 are ⌃
s

-orders.

The following is a significant criterion for determining whether F is classical (see [14, Proposition

1.7]).

Proposition 2.2. Let P 2 F be a point with order sequence (j0(P ), . . . , j
M

(P )). If the integer

Y

i>r

j
i

(P )� j
r

(P )

i� r

is not divisible by p, then F is classical w.r.t. ⌃
s

.

The following result, concerning the elements of the order sequences, is given in [4, Proposition 2].

Proposition 2.3. Let "0 < "1 < · · · < "
M

be the orders of F w.r.t. ⌃
s

. Suppose p � M and "
i

= i for

i = 0, 1, . . . ,M � 1. If "
M

> M , then "
M

is a power of p.

From a Pardini’s result [12], we know that the Fermat curve F is nonclassical w.r.t. ⌃1 if and only

if p divides n � 1, provided that p > 2. In [4, Theorem 3], Garcia and Voloch gave a similar complete

characterization of the nonclassical Fermat curves w.r.t. conics:

Theorem 2.4. Suppose p > 5. The Fermat curve F is nonclassical w.r.t. ⌃2 if and only if

p divides (n� 2)(n� 1)(n+ 1)(2n� 1).

Let us recall that there exists a sequence of non-negative integers (⌫0, . . . , ⌫M�1), chosen minimally
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in the lexicographic order, such that

������������

1 xq yq . . . (xiyj)q . . . (ys)q

D
(⌫0)
t

1 D
(⌫0)
t

x D
(⌫0)
t

y . . . D
(⌫0)
t

xiyj . . . D
(⌫0)
t

ys

...
...

... · · ·
... · · ·

...

D
(⌫M�1)
t

1 D
(⌫M�1)
t

x D
(⌫M�1)
t

y · · · D
(⌫M�1)
t

xiyj . . . D
(⌫M�1)
t

ys

������������

6= 0, (2.3)

where t is a separating variable of F
q

(F) [14, Proposition 2.1]. This sequence is called the F
q

-Frobenius

order sequence of F w.r.t. ⌃
s

. It turns out that {⌫0, . . . , ⌫M�1} = {"0, . . . , "M}\{"
I

} for some I 2
{1, . . . ,M} [14, Proposition 2.1]. If (⌫0, . . . , ⌫M�1) = (0, . . . ,M � 1), then the curve F is called F

q

-

Frobenius classical w.r.t. ⌃
s

. Otherwise, it is called F
q

-Frobenius nonclassical.

The following result establishes a close relation between classicality and F
q

-Frobenius classicality, see

[7, Remark 8.52].

Proposition 2.5. Assume p > M . If F is F
q

-Frobenius nonclassical w.r.t. ⌃
s

, then F is nonclassical

w.r.t. ⌃
s

.

The F
q

-Frobenius map �
q

is defined on F by

�
q

: F �! F
(a0 : a1 : a2) 7�! (aq0 : aq1 : aq2).

Note that by (2.3) and [14, Corollary 1.3], we have that F is F
q

-Frobenius nonclassical w.r.t. ⌃1 if and

only if �
q

(P ) lies on the tangent line of F at P for all P 2 F . More generally, (2.3) and [14, Corollary

1.3] give the following:

Proposition 2.6. Suppose the order sequence ("0, . . . , "M ) of F w.r.t. ⌃
s

is such that "
i

= i for

i = 0, 1, . . . ,M � 1. Let �
q

: F ! F be the F
q

-Frobenius map, and for any point P 2 F , let H
P

be the

s-osculating curve to F at P . Then F is F
q

-Frobenius nonclassical w.r.t. ⌃
s

if and only if �
q

(P ) 2 H
P

for infinitely many points P 2 F .

With regard to the F
q

-Frobenius classicality of F in the cases s = 1 and s = 2, the following results

were proved [5].

Theorem 2.7 (Garcia-Voloch). Suppose that p > 2 and let q = ph. Then F is F
q

-Frobenius nonclassical

w.r.t. ⌃1 if and only if n = (q � 1)/(pr � 1) for some integer r < h with r|h and a, b 2 F
p

r .

Theorem 2.8 (Garcia-Voloch). Suppose that p > 5 and let q = ph. Then F is F
q

-Frobenius nonclassical

w.r.t. ⌃2 if and only if one of the following holds.

(i) p|(n� 1).

(ii) p|(n� 2) and n = 2(q�1)
p

r�1 with r < h such that r|h and a, b 2 F
p

r .
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(iii) p|(2n� 1) and n = q�1
2(pr�1) with r < h such that r|h and a2, b2 2 F

p

r .

(iv) q = n+ 1 and a+ b = 1.

Remark 2.9. Item (iv) of Theorem 2.8 is a minor case that was apparently overlooked in [5]. A proof

of it is included in the appendix.

The following result (see [9, Theorem 1.1] or [7, Remark 8.109]) will be used to compute the number

of F
q

-rational points of certain Fermat curves in Section 5.

Theorem 2.10 (Korchmáros-Szönyi). Let F : Xn + Y n + Zn = 0 and q = pr. Suppose that n divides

q

m�1
q�1 , where m > 1. Let t be defined by q ⌘ t mod q

m�1
n(q�1) and 0 < t < q

m�1
n(q�1) . If l = gcd

⇣
q

m�1
n(q�1) , t+ 1

⌘
,

then

N
q

m(F) = 3n+ n2(q � 2) + n2(l � 1)(l � 2)

provided that

p >

0

BB@
2

t+1

r
sin

⇣
n(q�1)⇡
2(qm�1)

⌘ + 1

1

CCA

(t�1)
⇣

qm�1
n(q�1)�l

⌘

.

3 Classicality of F with respect to cubics

Let us recall that F : aXn + bY n = Zn is an irreducible curve defined over F
q

. Based on Proposition

2.5, the study of F
q

-Frobenius nonclassicality of F w.r.t. ⌃
s

, can benefit directly from the study of non-

classicality of F . In this section, we establish necessary and su�cient conditions for F to be nonclassical

w.r.t. ⌃3.

Remark 3.1. As mentioned in Section 2, for any point P 2 F , the number of distinct (⌃
s

, P )-orders is
�
s+2
2

�
. In particular, there exist 10 distinct (⌃3, P )-orders.

Note that if p > 3 and the curve F is nonclassical w.r.t. lines, then it is also nonclassical and F
q

-

Frobenius nonclassical w.r.t. conics. Indeed assume that the order sequence of F for ⌃1 is (0, 1, ") with

" > 3. Thus, considering the conics given by the union of two of these lines, we have that 0, 1, 2, ", "+ 1,

and 2" comprise the 6 distinct ⌃2-orders (cf. Remark 3.1). Also, since

{⌫0, ⌫1, ⌫2, ⌫3, ⌫4} ✓ {0, 1, 2, ", "+ 1, 2"},

we have ⌫3 > 3, and then F is F
q

-Frobenius nonclassical. Similarly, one can see that if p > 3 and F is

nonclassical w.r.t. lines, then it is also nonclassical w.r.t. cubics.

Now assume that p > 7 and that F is classical w.r.t. ⌃1 but nonclassical w.r.t. ⌃2. Then, by

Proposition 2.3, the order sequence of F w.r.t. ⌃2 is (0, 1, 2, 3, 4, pr), for some integer r > 0. Con-

sidering all possible unions of a conic and a line, we have that the order sequence of F w.r.t. ⌃3 is

8



(0, 1, 2, 3, 4, 5, 6, pr, pr + 1, pr + 2). Therefore, F is nonclassical w.r.t. ⌃3, and since ⌫7 > 7, F is also

F
q

-Frobenius nonclassical w.r.t. ⌃3. The next lemma summarizes the above discussion.

Lemma 3.2. Suppose p > 7. If F is nonclassical w.r.t. either ⌃1 or ⌃2, then F is nonclassical and

F
q

-Frobenius nonclassical w.r.t. ⌃3.

The following result, which will be a critical factor in our approach, extends [11, Lemma 1.3.8]. Its

proof, which was provided by M. Homma and S. J. Kim in a private communication, can be found in the

appendix.

Lemma 3.3 (Homma-Kim). Let S be a surface defined over an algebraically closed field K, and let

P 2 S be a nonsingular point. If C, D1 and D2 are e↵ective divisors, of which no two have a common

component, and P is a nonsingular point of C, then

I(D1.D2, P ) � min{I(C.D1, P ), I(C.D2, P )}.

The following sequence of preliminary results will lead us to the characterization of nonclassical Fermat

curves w.r.t. ⌃3. For more generality, we refer to Section 6. Since a curve’s classicality is a geometric

property, for this section it is assumed that a = b = 1.

Lemma 3.4. Assume p > 7. Let F
q

(x, y) be the function field of F , and P = (u : v : 1) 2 F be a

generic point. Suppose that there exists a polynomial G(X,Y ) =
P

a
ij

(x, y)pXiY j 2 F
q

[x, y][X,Y ] of

degree d � 3 such that G(x, y) = 0. For G
P

(X,Y ) :=
P

a
ij

(u, v)pXiY j 2 F
q

[X,Y ], the following holds:

(a) If G
P

(X,Y ) is irreducible of degree d = 3, then F is nonclassical w.r.t. ⌃3 and the curve G
P

:

G
P

(X,Y ) = 0 is the osculating cubic to F at P .

(b) If the curve G
P

: G
P

(X,Y ) = 0 is such that I(P,G
P

\ C) < p for every cubic C, then F is classical

w.r.t. ⌃3.

Proof. Let G
P

be the curve defined by G
P

(X,Y ) = 0. Since

G
P

(x, y) = G
P

(x, y)�G(x, y)

=
X

(a
ij

(u, v)� a
ij

(x, y))pxiyj ,

it follows that v
P

(G
P

(x, y)) � p, that is,

I(P,F \ G
P

) � p. (3.1)

Let H
P

be the osculating cubic to F at P . For assertion (a), note that deg(G
P

) = 3 and inequality

(3.1) imply (P,F \H
P

) � p, and then Lemma 3.3 gives

I(P,H
P

\ G
P

) � p > 9 = deg(H
P

) · deg(G
P

).

9



Thus, by Bézout’s theorem, G
P

and H
P

must be the same curve, and since P is generic the result follows.

Assertion (b) follows directly from Lemma 3.3 and from the fact that the nonclassicality of F w.r.t. ⌃3

implies I(P,F \H
P

) � p (c.f. Theorem 2.1).

Remark 3.5. Note that if G
P

(X,Y ) is irreducible of degree < p/3, then, by Bézout’s theorem, the

conditions on Lemma 3.4(b) are fulfilled, i.e., F is classical w.r.t. ⌃3.

Lemma 3.6. If p > 11 divides (n+ 2)(2n+ 1)(2n� 3)(3n� 2), then F is classical w.r.t. ⌃3.

Proof. We first prove the result for p > 17.

Suppose p|n + 2, and let m, r > 0 be integers such that n = mpr � 2 and p - m. It follows from

xn + yn = 1 that (xn + yn � 1)x2y2 = 0, and then

(xmp

r

)y2 + (ymp

r

)x2 � x2y2 = 0.

Consider P = (u : v : 1) 2 F , with uv 6= 0, and set ↵ = vmp

r

and � = ump

r

. By Lemma A.1, the curve

G1 : ↵X2Z2 + �Y 2Z2 �X2Y 2 = 0 is irreducible. Therefore, Remark 3.5 implies that F is classical w.r.t.

⌃3. To address the cases p|2n+ 1 and p|2n� 3, note that

xn + yn � 1 = 0 =) (xn + yn � 1)(xn + yn + 1)((xn � yn)2 � 1) = 0

=) x4n � 2x2ny2n � 2x2n + y4n � 2y2n + 1 = 0

yields

x2(2n+1)y2 � 2x2n+1y2n+1xy � 2x2n+1xy2 + y2(2n+1)x2 � 2y2n+1x2y + x2y2 = 0 (3.2)

and

x2(2n�3)x6 � 2x2n�3y2n�3x3y3 � 2x2n�3x3 + y2(2n�3)y6 � 2y2n�3y3 + 1 = 0. (3.3)

If p|2n + 1, we consider integers m, r > 0 such that 2n + 1 = mpr and p - m. Likewise, we write

2n� 3 = mpr for the case p|2n� 3. Therefore (3.2) and (3.3) can be written as

(x2m)p
r

y2 � 2(xmym)p
r

xy � 2(xm)p
r

xy2 + (y2m)p
r

x2 � 2(ym)p
r

x2y + x2y2 = 0, (3.4)

and

(x2m)p
r

x6 + (y2m)p
r

y6 � 2(xm)p
r

x3 � 2(ym)p
r

y3 � 2(xmym)p
r

x3y3 + 1 = 0, (3.5)

respectively. In either case, we consider P = (u : v : 1) 2 F such that uv 6= 0 and define ↵ = ump

r

and

� = vmp

r

. The above equations give rise to the curves

G2 : ↵2Y 2Z2 � 2↵�XY Z2 � 2↵XY 2Z + �2X2Z2 � 2�X2Y Z +X2Y 2 = 0.
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and

G3 : ↵2X6 + �2Y 6 + Z6 � 2(↵X3Z3 + �Y 3Z3 + ↵�X3Y 3) = 0.

After scaling coordinates, it follows from Lemma A.1 that these curves are irreducible. Thus Remark 3.5

implies that F is classical w.r.t. ⌃3.

Finally, let us assume p|3n�2 and consider integers m, r > 0 such that 3n = mpr+2 and p - m. Thus

1 = xn + yn =) 1 = (xn + yn)3 =) 1 = x3n + y3n + 3xnyn

=) �27x3ny3n = (x3n + y3n � 1)3

=) �27(xmym)p
r

x2y2 = ((xm)p
r

x2 + (ym)p
r

y2 � 1)3.

Similarly to the previous cases, the latter equation gives rise to an irreducible curve (cf. Lemma A.1 )

G4 : (↵X2 + �Y 2 � Z2)3 + 27↵�X2Y 2Z2 = 0,

and then Remark 3.5 finishes the proof.

In all prior cases, since p > 17 and deg(G
i

) < p/3 for each i = 1, . . . , 4, Remark 3.5 is su�cient to

prove the classicality F w.r.t. ⌃3. To address the cases p 2 {13, 17}, the previous argument is slightly

refined: note that using a suitable projective tranformation (X : Y : Z) 7! (�X : �Y : Z), we can always

choose a point P
i

= (u : u : 1) 2 F and a cubic C
i

such that

I(P
i

,G
i

\ C
i

) = I(P̃
i

, G̃
i

\ C̃
i

) 2 {10, 12},

where G̃
i

, C̃
i

and P̃
i

are given by Lemma A.2. Since P̃
i

2 G̃
i

is a nonsingular point, then so is P
i

2 G
i

.

Now if there is another cubic C such that I(P
i

,G
i

\ C) � 10, the by Lemma 3.3, I(P
i

, C
i

\ C) � 10. This

contradicts Bezout’s Theorem as C
i

⇠= C̃
i

is irreducible. Therefore,

I(P
i

,G
i

\ C)  12 < p

for all cubics C, and then Lemma 3.4(b) gives the result.

Proposition 3.7. If p > 7 divides (n� 3)(3n� 1), then F : aXn + bY n = Zn is nonclassical w.r.t. ⌃3.

Moreover, for P = (u : v : 1) 2 F , uv 6= 0, the osculating cubic H
P

to F at P is the irreducible curve

H
P

(X,Y, Z) = 0, where

H
P

(X,Y, Z) =

8
><

>:

aun�3X3 + bvn�3Y 3 � Z3, if p | n� 3

(a3u3n�1X + b3v3n�1Y � Z)3 + 27a3b3(uv)3n�1XY Z, if p | 3n� 1.

11



Proof. Suppose p|n � 3, and let m, r > 0 be integers such that n = mpr + 3 and p - m. Note that for

G(X,Y ) = axmp

r

X3 + bymp

r

Y 3 � 1, we have G(x, y) = 0. Since G
P

(X,Y ) := aump

r

X3 + bvmp

r

Y 3 � 1

is irreducible of degree 3, Lemma 3.4(a) implies that F is nonclassical w.r.t. ⌃3 and H
P

(X,Y, Z) = 0 is

the osculating cubic to F at P .

For the case p|3n� 1, note that axn + byn = 1 implies

(axn + byn)3 = 1 =)

a3x3n + b3y3n + 3abxnyn = 1 =)

(a3(xm)p
r

x+ b3(ym)p
r

y � 1)3 = �27a3b3(xmym)p
r

xy, (3.6)

where m, r > 0 are integers such that 3n = mpr + 1 and p - m. That is, for G(X,Y ) := (a3(xm)p
r

X +

b3(ym)p
r

Y � 1)3 + 27a3b3(xmym)p
r

XY , we have G(x, y) = 0. The irreducibility of G
P

(X,Y ) :=

(a3u3n�1X + b3v3n�1Y � 1)3 + 27a3b3(uv)3n�1XY follows from that of G̃4 in Lemma A.1. Therefore,

Lemma 3.4(a) gives the result.

Next we present the main result of this section.

Theorem 3.8. If p > 11 then F : Xn + Y n = Zn is nonclassical w.r.t. ⌃3 if and only if

p divides (n� 2)(n� 1)(n+ 1)(2n� 1)(n� 3)(3n� 1).

Proof. Suppose that F is nonclassical w.r.t. ⌃3. If P = (u : 0 : 1) 2 F(F
q

), and `
P

is tangent line to

F at P , then clearly I(P,F \ `
P

) = n. Therefore, the (⌃1, P )-order sequence is (0, 1, n), and then the

(⌃3, P )-order sequence is (0, 1, 2, 3, n, n+ 1, n+ 2, 2n, 2n+ 1, 3n). Thus Proposition 2.2 implies that

p|(n� 2)(n� 1)(n+ 1)(2n� 1)(3n� 1)(n� 3)(3n� 2)(2n+ 1)(2n� 3)(n+ 2).

From Lemma 3.6, we have that p - (3n� 2)(2n+ 1)(2n� 3)(n+ 2) and the result follows.

Conversely, suppose that p|(n�2)(n�1)(n+1)(2n�1)(3n�1)(n�3). If p|(n�2)(n�1)(n+1)(2n�1),

then Theorem 2.4 implies that F is nonclassical w.r.t. ⌃2, and then F is nonclassical w.r.t. ⌃3 (cf. Lemma

3.2). The case p|(3n� 1)(n� 3) follows from Lemma 3.7.

Remark 3.9. The restriction p > 11 in Theorem 3.8 cannot be dropped. To see this, consider the curve

F : Xn + Y n = Zn over F11 with n ⌘ �2 mod 11. For P = (u : v : 1) 2 F such that uv 6= 0, let

G1 : ↵X2Z2 + �Y 2Z2 �X2Y 2 = 0 be the irreducible curve as defined in the proof of Lemma 3.6. It can

be checked that G1 is nonclassical w.r.t. ⌃3. That is, there exists a cubic C
P

such that I(P,G1\C
P

) � 11.

Therefore, from Lemma 3.3, I(P,F \ C
P

) � 11. In other words, 11|n+2, but the curve F is nonclassical

w.r.t. ⌃3.

12



Remark 3.10. Assume p > M , and consider the Fermat curve F : xn + yn +1 = 0. Since the inflection

points of F have (⌃1, P )-order sequence (0, 1, n), it follows from Proposition 2.2 that if F is nonclassical

w.r.t. ⌃
s

, then p divides
Q

s

i=1

Q
s�i

t=�s

(in+ t). In [4, Remark 5], Garcia and Voloch somewhat raised the

question of whether or not the converse of this statement holds. Theorem 3.8 gives a negative answer: if

p|(3n� 2)(2n+ 1)(2n� 3)(n+ 2), then F is classical w.r.t. ⌃3.

4 F
q

-Frobenius classicality of F with respect to cubics

In this section we provide the additional results that will lead us to the proof of Theorem 1.2. Hence-

forth, we consider the irreducible curve F : aXn + bY n = Zn, where n > 3 and p > 7.

Lemma 4.1. If p divides (n� 3)(3n� 1), then the following hold

(a) The order sequence of F w.r.t. ⌃3 is (0, 1, 2, 3, 4, 5, 6, 7, 8, pr), for some r > 0

(b) The curve F is F
q

-Frobenius nonclassical w.r.t. ⌃3 if and only if �
q

(P ) 2 H
P

for infinitely many

points P 2 F .

Proof. Let ("0, . . . , "8, "9) be the order sequence of F w.r.t. ⌃3, and suppose that "8 > 8. Thus Theorem

2.1 implies "8 � p, and then "9 > p. Let P 2 F be a ⌃3-ordinary point, that is, P is such that j
i

(P ) = "
i

for all i 2 {0, . . . , 9}. Let C
P

be a cubic for which I(P,F \ C
P

) = "8 � p and let H
P

be the osculating

cubic to F at P . Note that H
P

6= C
P

. Lemma 3.3 implies that

I(P,H
P

\ C
P

) � p > 9 = deg(H
P

) · deg(C
P

). (4.1)

Thus by Bezout’s Theorem the curves H
P

and C
P

have a common component. However, from Proposition

3.7, the osculating cubic H
P

is irreducible. Therefore, H
P

= C
P

, a contradiction. Hence "8 = 8, and

then "
i

= i for all i  8. Now it follows from Propositions 2.3 and 3.7 that "9 = pr for some r > 0. The

second assertion follows directly from the first one together with Proposition 2.6.

The next result is straightforward.

Lemma 4.2. Let K be an arbitrary field. Consider nonconstant polynomials b1(x), b2(x) 2 K[x], and let

l and m be positive integers. Then

yl � b1(x) divides ym � b2(x)

if and only if l|m and b2(x) = b1(x)
m
l .

Proposition 4.3. Suppose that p divides n � 3. The curve F is F
q

-Frobenius nonclassical w.r.t. ⌃3 if

and only if

n =
3(ph � 1)

pr � 1
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for some r < h such that r|h, and a, b 2 F
p

r .

Proof. By Lemma 4.1 F is F
q

-Frobenius nonclassical w.r.t. ⌃3 if and only if �(P ) 2 H
P

for infinitely

many points P 2 F , where H
P

denotes the osculating cubic to F at P . Thus Proposition 3.7 implies

that this is equivalent to the function

axn�3+3q + byn�3+3q � 1

being vanishing.

Therefore, seeing the functions as polynomials, F is F
q

-Frobenius nonclassical if and only if

yn �
✓
1

b
� a

b
xn

◆
divides yn+3(q�1) �

✓
1

b
� a

b
xn+3(q�1)

◆
.

By Lemma 4.2, that means n|n+ 3(q � 1) and

✓
1

b
� a

b
xn

◆ 3(q�1)
n +1

=
1

b
� a

b
xn+3(q�1). (4.2)

Clearly equation (4.2) implies 3(q�1)
n

+ 1 = pr for some r > 0, that is, pr � 1 divides 3(ph � 1). Since

n > 3 and p > 2, it follows that r < h and r|h. It is also clear that (4.2) gives a, b 2 F
p

r . Conversely, the

latter conditions obviously imply equation (4.2), which completes the proof.

Proposition 4.4. Suppose that p divides 3n� 1. The curve F is F
q

-Frobenius nonclassical w.r.t. ⌃3 if

and only if

n =
ph � 1

3(pr � 1)

for some r < h such that r|h, and a3, b3 2 F
p

r .

Proof. As in the previous proof, by Lemma 4.1 and Proposition 3.7, the curve F is F
q

-Frobenius non-

classical w.r.t. ⌃3 if and only if the function

V := (a3x3n�1+q + b3y3n�1+q � 1)3 + 27a3b3x3n�1+qy3n�1+q (4.3)

is vanishing. Therefore, the condition n = p

h�1
3(pr�1) , for some r < h such that r|h, and a3, b3 2 F

p

r implies

V =
⇣
(a3x3n + b3y3n � 1)3 + (3abxnyn)3

⌘
p

r

. (4.4)

Using (4.4) to replace byn by 1 � axn yields V = 0, which gives the result. Conversely, suppose V = 0.

That is,

(a3x3n+q�1 + b3y3n+q�1 � 1)3 + 27a3b3x3n+q�1y3n+q�1 = (axn + byn � 1)h(x, y) (4.5)
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for some h(x, y) 2 F
q

[x, y]\{0}. Evaluating both sides of (4.5) at y = 0 yields

(a3x3n+q�1 � 1)3 = (axn � 1)h(x, 0).

This implies that axn � 1 divides a3x3n+q�1 � 1, and then n | q � 1. Therefore, we may use (4.5) to

replace yn by (1� axn)/b, and then write

⇣
a3x3n+q�1 + b3(

1� axn

b
)3+

q�1
n � 1

⌘3
= �27a3b3x3n+q�1(

1� axn

b
)3+

q�1
n . (4.6)

Since ( 1�ax

n

b

)3+
q�1
n is a factor of both sides of (4.6), we conclude that 3n | q � 1.

Let r and t be integers such that 1 + q�1
3n = prt and p - t. From equation (4.6), we have

⇣
a

3
pr x3nt + b

3
pr (

1� axn

b
)3t � 1

⌘3
= �27(ab)

3
pr x3nt(

1� axn

b
)3t. (4.7)

Now equation (4.7) implies that (1 � axn)t is a factor of a
3
pr x3nt � 1. Since the latter polynomial is

separable, it follows that t = 1. Hence 1+ q�1
3n = pr, that is, n = q�1

3(pr�1) . Moreover, using equation (4.7)

to replace xn by 0 and 1/a, we obtain b3 2 F
p

r and a3 2 F
p

r , respectively. This finishes the proof.

Proof of Theorem 1.2: It follows directly from Theorems 2.4 and 3.8, and Propositions 4.3 and 4.4.

5 The number of rational points

The possible values of N
q

(F) in the case of F
q

-Frobenius nonclassicality when s = 2 are discussed in

[5]. In this section, we determine N
q

(F) for the new curves in the case s = 3, i.e., for those given by

Theorem 1.2.

Theorem 5.1. Suppose that n = 3(ph�1)
p

r�1 and a, b 2 F
p

r .

(1) If pr ⌘ 1 mod 3, then

N
q

(F) =
n2

9

⇣
N

p

r (C)� k
⌘
+

nk

3
,

where C is the curve aX3 + bY 3 = Z3 defined over F
p

r , and k := #{Q = (x0 : x1 : x2) 2
C(F

p

r ) | x0x1x2 = 0}.

(2) If pr 6⌘ 1 mod 3, then N
q

(F) = n

2

9 (pr � 2) + n.

Proof. The map ⇢ : F(F
q

) �! C(F
p

r ) given by (x0 : x1 : x2) 7! (x
n
3
0 : x

n
3
1 : x

n
3
2 ) is clearly well defined.

Since x 7! x
n
3 is the norm function of F

q

onto F
p

r , we have F(F
q

) =
S

Q2C(Fpr )
⇢�1(Q). Thus, setting

k := #{Q = (x0 : x1 : x2) 2 C(F
p

r ) | x0x1x2 = 0}, we arrive at

N
q

(F) =
⇣n
3

⌘2 �
N

p

r (C)� k
�
+

n

3
k,
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which proves the first assertion.

Now note that in the case pr 6⌘ 1 mod 3, the map ↵ 7! ↵3 permutes F
p

r , and then k = 3. Moreover,

in this case, N
p

r (C) = pr + 1, which finishes the proof.

Theorem 5.2. If n = p

h�1
3(pr�1) and a3, b3 2 F

p

r , then

N
q

(F) =

8
><

>:

3n+ n2
�
pr � 2

�
, if pr ⌘ 1 mod 3

3n+ n2pr, otherwise.

Proof. Since a3, b3 2 F
p

r , we may assume that F is defined by Xn + Y n + Zn = 0. Setting m = h/r, we

obtain (pr)m�1
n(pr�1) = 3. Thus the result follows from a direct application of Theorem 2.10, observing that:

• if pr 6⌘ 1 mod 3, then t = 2 and l = 3.

• if pr ⌘ 1 mod 3, then t = l = 1.

Not surprisingly, using the two previous theorems, one can find examples of curves for which the upper

bound (1.7) fails.

Example 5.3. Consider the curve F : X294 + Y 294 = Z294 over F972 . Here F has degree n = 3 972�1
97�1 .

The number of F97-rational points of the cubic C := X3 + Y 3 = Z3 is N97(C) = 117. Thus Theorem 5.1

yields N972(F) = 1038114. Since, in this case, d = 3n = 882, it follows that N972(F) exceeds the upper

bound in (1.7).

Example 5.4. Let F be the curve X8 + Y 8 + Z8 = 0 over F232 . Since F has degree n = 232�1
3(23�1) , it

follows from Theorem 5.2 that N232(F) = 1496. One can check that d = 24, and then N232(F) exceeds

the upper bound in (1.7).

6 Remark on generalizations

In Section 3, we extensively used Lemma 3.4 to characterize the nonclassical Fermat curves F :

aXn + bY n = Zn w.r.t. ⌃3. To investigate the problem w.r.t. ⌃
s

for larger values of s, one may consider

the following generalization of Lemma 3.4.

Lemma 6.1. Assume p > s2. Let F
q

(x, y) be the function field of F , and P = (u : v : 1) 2 F be a

generic point. Suppose that there exists a polynomial G(X,Y ) =
P

a
ij

(x, y)pXiY j 2 F
q

[x, y][X,Y ] of

degree d � s such that G(x, y) = 0. For G
P

(X,Y ) :=
P

a
ij

(u, v)pXiY j 2 F
q

[X,Y ], the following holds:

(a) If G
P

(X,Y ) is irreducible of degree d = s, then F is nonclassical w.r.t. ⌃
s

and G
P

: G
P

(X,Y ) = 0

is the s-osculating curve to F at P .
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(b) If the curve G
P

: G
P

(X,Y ) = 0 is such that I(P,G
P

\ T ) < p for every curve T of degree s, then F
is classical w.r.t. ⌃

s

.

The proof this previous result is completely analogous the proof of Lemma 6.1. To illustrate its

application in a general setting, in analogy to the case p|n� 3, let us address the case p|n� s.

Proposition 6.2. Let s 2 {1, . . . , n � 1}. If p > s2 divides n � s, then F : aXn + bY n = Zn is

nonclassical w.r.t. ⌃
s

. Moreover, for P = (u : v : 1) 2 F , uv 6= 0, the s-osculating curve Hs

P

to F at P

is the irreducible curve Hs

P

(X,Y, Z) = 0, where Hs

P

(X,Y, Z) = aun�sXs + bvn�sY s � Zs.

Proof. Let m and r be positive integers such that n = prm+ s, with gcd(m, p) = 1. Then Lemma 6.1(a)

applied to the polynomial H(X,Y ) = axmp

r

Xs + bymp

r

Y s � 1 gives the result.

Note that using Proposition 6.2 and arguing as in the proof of Lemma 4.1, we arrive at ("1, . . . , "M�1, "M ) =

(1, . . . ,M � 1, pr) for some r > 0 and M =
�
s+2
2

�
� 1. In fact, if "

M�1 > M � 1, then Theorem 2.1 im-

plies that "
M�1 � p. Thus, similarly to (4.1) in the proof of Lemma 4.1, we will reach a contradiction.

Therefore, "
i

= i for i  M � 1, and then Propositions 2.3 and 6.2 will give "
M

= pr. Now we can state

the following:

Theorem 6.3. Suppose that p > s2 divides n� s. The curve F is F
q

-Frobenius nonclassical w.r.t. ⌃
s

if

and only if

n =
s(ph � 1)

pr � 1

for some r < h such that r|h, and a, b 2 F
p

r .

Proof. In view of the previous discussion and Propositions 2.6, 6.2, we have that F is F
q

-Frobenius

nonclassical w.r.t. ⌃
s

if and only if the function axn�s+qs + byn�s+qs � 1 is vanishing. Then, using

Lemma 4.2 and arguing as in the proof of Proposition 4.3, we obtain the desired conclusion.

Note that a complete investigation of the general problem requires looking at the remaining cases

where p|in + t, with 1  i  s and �s  t  s � i. In our case-by-case approach when s = 3, we often

relied on the construction of some (preferably irreducible) auxiliary curve G of small degree, and then

used Lemma 3.3 or Lemma 6.2. We point out that constructing such suitable curves G for each case

p|in+ t is usually the tricky step to extend the characterization for larger values of s.

A Some irreducible curves

Lemma A.1. If p > 3, then the following curves are irreducible over F
q

:

• G̃1 : X2Z2 + Y 2Z2 �X2Y 2 = 0

• G̃2 : Y 2Z2 +X2Z2 +X2Y 2 � 2XY Z(X + Y + Z) = 0

• G̃3 : X6 + Y 6 + Z6 � 2(X3Y 3 +X3Z3 + Y 3Z3) = 0
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• G̃4 : (X2 + Y 2 � Z2)3 + 27X2Y 2Z2 = 0.

Proof. The irreducibility of G̃1 and G̃2 follows from [1, Lemma A.1].

The proofs for the irreducibility of G̃3 and G̃4 are similar. Thus we will prove the latter case only.

For the curve G̃4, one can readily check that its set of singular points is given by C [ N where

C = {(0 : 1 : 1), (0 : �1 : 1), (1 : 0 : 1), (�1 : 0 : 1), (i : 1 : 0), (�i : 1 : 0)},

and

N = {(i : i : 1), (i : �i : 1), (�i : �i : 1), (�i : i : 1)},

with i2 = �1, are the sets of cusps and nodes of G̃4, respectively. We proceed to show that G̃4 has no

component of degree  3. Note that the lines x = 0, y = 0 and z = 0 intersect G̃4 in pairs of cusps

{P1, P2}, {Q1, Q2} and {R1, R2}, whose union is C . Therefore, any component of G̃4 must contain at

least 3 points P
i

, Q
j

, R
k

for some (i, j, k) 2 {1, 2}3. Since no choice of 3 such points will be collinear,

the curve has no linear components.

Now assume G̃4 = C [Q, where C is a smooth conic and Q is an irreducible quartic. Since the quartic

Q has at most 3 singularities, C and Q must intersect in at least 3 distinct cusps in C . Thus, by Bézout’s

theorem, C and Q intersect in at most 5 distinct points, and then G̃4 has at most 8 singular points. This

contradicts #(C [ N ) = 10.

Suppose G̃4 is the union of 3 distinct smooth conics. By Bézout’s theorem, the intersection of these

conics yields 12 (counted with multiplicities) singular points of G̃4. Since all points of C are cusps, its 6

points must be counted at least twice. Thus all singular points of G̃4 lie in C , a contradiction.

Finally, suppose that G̃4 is the union of 2 irreducible cubics. In the worst case scenario, each cubic

has one cusp. Thus, similarly to the previous cases, the remaining 4 cusps will give rise to a counting

contradiction. Therefore G̃4 is irreducible.

Lemma A.2. Suppose p 2 {13, 17}, and let G̃
i

be the curves given by Lemma A.1. For each i 2 {1, . . . , 4},
there exist a nonsigular point P̃

i

= (s
i

: s
i

: 1) 2 G̃
i

and a nonsingular cubic C̃
i

such that

I(P̃
i

, G̃
i

\ C̃
i

) 2 {10, 12}

Proof. Due to its simple but computational nature, our proof will be limited to presenting each point

P̃
i

= (s
i

, s
i

) and the corresponding cubic C
i

in a�ne coordinates.

• P̃1 = (s, s) where s2 = 2, and

C̃1 : x3 + 1677x2y � 1194sx2 + 1677xy2 � 1848sxy + 996x+ y3 � 1194sy2 + 996y � 232s = 0.
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• P̃2 = (4, 4), and

C̃2 : x3 + 543x2y � 672x2 + 543xy2 + 2112xy � 8448x+ y3 � 672y2 � 8448y � 14336 = 0

• P̃3 = (s, s) where s3 = 1/4, and

C̃3 : 13x3 + 27x2y � 27sx2 + 27xy2 � 42sxy + 13y3 � 27sy2 + 4 = 0

• P̃4 = (s, s) where s2 = 1/8, and

C̃4 : 532x3 +804x2y� 6216sx2 +804xy2 � 9120sxy+2841x+532y3 � 6216sy2 +2841y� 3322s = 0

B Frobenius nonclassicality of aXq�1 + (1� a)Y q�1 = Zq�1
with respect to conics

Theorem B.1. Suppose p > 5 divides n+1. Then the Fermat curve F : aXn+bY n = Zn is F
q

-Frobenius

nonclassical w.r.t. ⌃2 if and only if a+ b = 1 and n = q � 1.

Proof. Set x = X/Z and y = Y/Z, and let F(F
q

) := F
q

(x, y) be the function field of F . If F is

F
q

-Frobenius nonclassical, then it follows from the proof of ([5, Theorem 3]) that the function

G = xqyq � axn+1yq � byn+1xq,

seen as a polynomial, must be identically zero. That is, n+ 1 = q and a+ b = 1.

Conversely, suppose that F is given by aXq�1 + (1� a)Y q�1 = Zq�1. Since p - n� 1, it follows that

F is classical w.r.t. ⌃1 [12, Corollary 2.2]. Thus the order sequence of F w.r.t. ⌃2 is (0, 1, 2, 3, 4, ") with

" > 5 ([4, Theorem 3]). Now, for P = (u : v : 1) 2 F , with uv 6= 0, we claim that the osculating conic to

F at P has a�ne equation given by

C
P

: (au)qY +
�
(1� a)v

�
q

X �XY = 0.

First note that h(x, y) := (axq�1 + (1� a)yq�1 � 1)xy =
�
ax

�
q

y +
�
(1� a)y

�
q

x� xy = 0. Setting

g(x, y) := (au)qy +
�
(1� a)v

�
q

x� xy,

it follows that

g(x, y) = g(x, y)� h(x, y)

= (au� ax)qy +
�
(1� a)v � (1� a)y

�
q

x,

and then v
P

(g(x, y)) � q > 5. That is, (au)qY +
�
(1� a)v

�
q

X �XY = 0 is the osculating conic to F at

P = (u : v : 1).
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Let � : F ! F be the F
q

-Frobenius map. Since F has order sequence (0, 1, 2, 3, 4, "), by Proposition

2.6 it is F
q

-Frobenius nonclassical w.r.t. ⌃2 if and only if the function

(ax)qyq +
�
(1� a)y

�
q

xq � xqyq

is vanishing. Thus the result follows.

C Proof of Lemma 3.3

Proof. Let f , g, h be local equations of C,D1,D2 inO
S,P

, respectively. Then I(D1.D2, P ) = dim
K

O
S,P

/(g, h).

Since O
C,P

= O
S,P

/(f), the map O
S,P

/(g, h) ! O
C,P

/(g, h), where g and h are the images of f and g

in O
C,P

, is surjective. Hence,

I(D1.D2, P ) � dim
K

O
C,P

/(g, h). (C.1)

On the other hand,

I(C.D1, P ) = dim
K

O
S,P

/(f, g)

= dim
K

O
C,P

/(g)

= v
P

(g) (C.2)

where v
P

is the valuation of O
C,P

, and also

I(C.D2, P ) = v
P

(h). (C.3)

Let t 2 O
C,P

be a local parameter. Then Ô
C,P

⇠= K[[t]]. Since dim
K

K[[t]]/(g) = v
P

(g) and

dimK[[t]]/(h) = v
P

(h), we have dim
K

K[[t]]/(g, h) = min{v
P

(g), v
P

(h)}. Thus

dim
K

O
C,P

/(g, h) � min{v
P

(g), v
P

(h)}, (C.4)

because O
C,P

/(g, h) ! K[[t]]/(g, h) is surjective. Therefore, from C.1,C.2,C.3 and C.4, we have

I(D1.D2, P ) � min{I(C.D1, P ), I(C.D2, P )}.
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