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Solution methods for the
Incompressible Navier-Stokes Equations

  Discretization schemes for the Navier-Stokes equations
  Pressure-based approach
  Density-based approach
  Convergence acceleration 
  Periodic Flows
  Unsteady Flows
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Background (from ME469A or similar)

Navier-Stokes (NS) equations

Finite Volume (FV) discretization

Discretization of space derivatives (upwind, central, QUICK, etc.)

Pressure-velocity coupling issue

Pressure correction schemes (SIMPLE, SIMPLEC, PISO)

Multigrid methods
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NS equations 

Conservation laws:

      Rate of change     +        advection         +    diffusion    =   source

= 0
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The advection term is non-linear
The mass and momentum equations are coupled (via the velocity)
The pressure appears only as a source term in the momentum equation
No evolution equation for the pressure
There are four equations and five unknowns (ρ, V, p)

NS equations 

Differential form:

0
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Compressible flows:

The mass conservation is a transport equation for density. With an additional
energy equation p can be specified from a thermodynamic relation (ideal gas law)

Incompressible flows:

Density variation are not linked to the pressure. The mass conservation is a
constraint on the velocity field; this equation (combined with the momentum) can
be used to derive an equation for the pressure

NS equations 
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Finite Volume Method

Discretize the equations in conservation (integral) form

Eventually this becomes…
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Pressure-based solution of the NS equation

The continuity equation is combined with the momentum and the
divergence-free constraint becomes an elliptic equation for the pressure

To clarify the difficulties related to the treatment of the pressure, we
will define EXPLICIT and IMPLICIT schemes to solve the NS equations: 

It is assumed that space derivatives in the NS are already discretized:
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Explicit scheme for NS equations

Semi-discrete form of the NS

Explicit time integration

The n+1 velocity field is NOT divergence free

Take the divergence of the momentum

Elliptic equation for the pressure
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Explicit pressure-based scheme for NS equations

Velocity field (divergence free) available at time n

Compute Hn

Solve the Poisson equation for the pressure pn

Compute the new velocity field un+1
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Implicit scheme for NS equations

Semi-discrete form of the NS

Implicit time integration

Take the divergence of the momentum

The equations are coupled and non-linear
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Newtonian fluid

Navier-Stokes Equations

In 3D: 5 equations & 6 unknowns: p, ρ, vi, E(T)

Need supplemental information: equation of state

Conservation of mass

Conservation of momentum

Conservation of energy
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Approximations

1. Continuum hypothesis
2. Form of the diffusive fluxes
3. Equation of state

Although the Navier-Stokes equations are considered the appropriate
conceptual model for fluid flows they contain 3 major approximations:

Simplified conceptual models can be derived introducing additional
assumptions: incompressible flow

Conservation of mass (continuity)

Conservation of momentum

Difficulties:
Non-linearity, coupling, role of the pressure
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A Solution Approach
The  momentum equation can be interpreted as a advection/diffusion
equation for the velocity vector

The mass conservation should be used to derive the pressure…
taking the divergence of the momentum:

A Poisson equation for the pressure is derived
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The Projection Method

Implicit, coupled and non-linear

Predicted velocity but

assuming and taking the divergence

we obtain this is what we would 
like to enforce

combining (corrector step)
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Alternative View of Projection
Reorganize the NS equations (Uzawa)

LU decomposition

Exact splitting

Momentum eqs.
Pressure Poisson eq.
Velocity correction
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Alternative View of Projection
Exact projection requires the inversion of the LHS of the momentum eq.
thus is costly.

Approximate  projection methods are constructed using two auxiliary
matrices (time-scales)

Momentum eqs.
Pressure Poisson eq.
Velocity correction

The simplest (conventional) choice is
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What about steady state?
Solution of the steady-state NS equations is of primary importance

Steady vs. unsteady is another hypothesis that requires formalization…

Mom. Equations

Reference Quantities

Non dimensional Eqn

Reynolds and Strouhal #s



ME469B/3/GI 18

Implicit scheme for steady NS equations

Compute an intermediate velocity field
(eqns are STILL non-linear)

Define a velocity and a pressure correction

Using the definition and combining

Derive an equation for u’ 

{
{
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Implicit scheme for steady NS equations

Taking the divergence…

We obtain a Poisson system for the pressure correction…

Solving it and computing a gradient:

So we can update 

And also the pressure at the next level
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Implicit pressure-based scheme for NS equations (SIMPLE)

Velocity field (divergence free) available at time n

Compute intermediate velocities u*

Solve the Poisson equation for the pressure correction p’  
Neglecting the u*’ term

Compute the new velocity un+1 and pressure pn+1 fields

Solve the velocity correction equation for u’  
Neglecting the u*’ term

SIMPLE: Semi-Implicit Method for Pressure-Linked Equations
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Implicit pressure-based scheme for NS equations (SIMPLEC)

Velocity field (divergence free) available at time n

Compute intermediate velocities u*

Solve the Poisson equation for the pressure correction p’  
Use an approximation to u*’ (neighbor values average u*’ ~ Σ u’)

Compute the new velocity un+1 and pressure pn+1 fields

Solve the velocity correction equation for u’  
Use an approximation to u*’

SIMPLE: SIMPLE Corrected/Consistent
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Implicit pressure-based scheme for NS equations (PISO)

Velocity field (divergence free) available at time n

Compute intermediate velocities u* and p’ as in SIMPLE

Solve the Poisson equation for the pressure correction p(m+1)’  
u*’ is obtained from  u m’ 

Compute the new velocity un+1 and pressure pn+1 fields

Solve the velocity correction equation for u(m+1)’   
u*’ is obtained from u m’

PISO: Pressure Implicit with Splitting Operators
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SIMPLE, SIMPLEC & PISO - Comments

In SIMPLE under-relaxation is required due to the neglect of u*’

 un+1 = u* + αu u’ p = pn + αp p’

          There is an optimal relationship αp =1- αu 

SIMPLEC and PISO do not need under-relaxation

SIMPLEC/PISO allow faster convergence than SIMPLE

PISO is useful for irregular cells
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Under-relaxation

Is used to increase stability (smoothing)

Equation (implicit) under-relaxation

Variable under-relaxation
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Segregated (pressure based) solver in FLUENT

FV discretization for mixed elements

The quantities at the cell faces can be computed using several different schemes

Ω

f
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Options for the segregated solver in FLUENT

Discretization scheme for convective terms
1st order upwind (UD)
2nd order upwind (TVD)
3rd order upwind (QUICK), only for quad and hex

Pressure interpolation scheme (pressure at the cell-faces)
linear (linear between cell neighbors)
second-order (similar to the TVD scheme for momentum)
PRESTO (mimicking the staggered-variable arrangement)

Pressure-velocity coupling 
SIMPLE
SIMPLEC
PISO

Discretization of the equations
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P e E

φ(x)

φP φe

φE

Flow direction

interpolated 
value

Discretization of the convective terms

Determine the face value

1st Order Upwind

Depending on the flow direction ONLY

Very stable but dissipative
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P e E

φ(x)

φP

φe
φE

interpolated 
value

Flow direction

Determine the face value

Central differencing (2nd order)

Symmetric. Not depending on the flow direction

Not dissipative but dispersive (odd derivatives)

Discretization of the convective terms
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P e E

φ(x)

φP

φe φE

W

φW

Flow direction

interpolated 
value

Determine the face value

2nd order upwind

Depends on the flow direction

Less dissipative than 1st order but 
not bounded (extrema preserving)

Possibility of using limiters

Discretization of the convective terms
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P e E

φ(x)

φP

φe φE

W

φW

Flow direction

interpolated 
value

Determine the face value

Quick (Quadratic Upwind Interpolation
for Convection Kinetics)

Formally 3rd order

Depends on the flow direction

As before it is  not bounded 

Discretization of the convective terms
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Evaluation of gradients

Gauss Gradient

Least Square
Gradient

LS system
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b

P
b

b

Solution of the equation

φ is one of the velocity component and the convective terms must be linearized:

This correspond to a sparse linear system for each velocity component

Fluent segregated solver uses:
Point Gauss-Seidel technique 
Multigrid acceleration
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Grids

Multiblock structured - Gambit
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Grids

Hybrid non-conformal - Gambit
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Grids

Hybrid adaptive - non-Gambit
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Grids

Polyhedral - non-Gambit



ME469B/3/GI 37

Set-up of problems with FLUENT
Graphics Window

Text Window

Command Menus

Read/Import the grid
Define the flow solver option
Define the fluid properties
Define the discretization scheme
Define the boundary condition
Define initial conditions
Define convergence monitors
Run the simulation
Analyze the results
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Solver set-up

Define → Models → Solver     Define → Controls → Solution

define/models/solver segregated         solve/set/discretization-scheme/mom 1
define/models/steady       solve/set/under-relaxation/mom 0.7

…       …

Example: text commands can be used (useful for batch execution)
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Material properties

Define → Materials

Quantities are ALWAYS dimensional
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Initial and boundary conditions

Solve → Initialize → Initialize           Define → Boundary Conditions

Only constant values can be specified BCs will be discussed case-by-case
More flexibility is allowed via patching
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Initial conditions using patching

Adapt → Region → Mark           Solve → Initialize → Patch

Mark a certain region of the domain
(cells are stored in a register)

Patch desired values for each variable
in the region (register) selected
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Convergence monitors

Solve → Monitors → Residuals            Solve → Monitors → Surface

Convergence history of the equation residuals are stored together with the solution
User-defined monitors are NOT stored by default
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Postprocessing

Display → Contours     Plot → XY Plot

Cell-centered 
data are 
Computed
This switch
interpolates the
results on the 
cell-vertices
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Detailed post-processing

Define additional quantities

Define plotting lines, planes and surfaces

Compute integral/averaged quantities

Define → Custom Field Function



ME469B/3/GI 45

Fluent GUI - Summary

File: I/O 
Grid: Modify (translate/scale/etc.), Check
Define: Models (solver type/multiphase/etc.), Material (fluid properties),
            Boundary conditions 
Solve: Discretization, Initial Condition, Convergence Monitors
Adapt: Grid adaptation, Patch marking
Surface: Create zones (postprocessing/monitors)
Display: Postprocessing (View/Countors/Streamlines)
Plot: XY Plots, Residuals
Report: Summary, Integral
Parallel: Load Balancing, Monitors Typical simulation
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Example – Driven cavity

Problem set-up                    Solver Set-Up

Material Properties:
ρ = 1kg/m3

µ = 0.001kg/ms

Reynolds number:
H = 1m, Vslip= 1m/s
Re = ρVslipH/µ = 1,000

Boundary Conditions:
 Slip wall (u = Vslip) on top
 No-slip walls the others

Initial Conditions:
u = v = p = 0

Convergence Monitors:
Averaged pressure and
friction on the no-slip walls

Classical test-case for
incompressible flow solvers

Vslip=1

H

Segregated Solver

Discretization:
2nd order upwind
SIMPLE

Multigrid
V-Cycle
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Example – Driven cavity

The effect of the meshing scheme 

Quad-Mapping 1600 cells       Tri-Paving  3600 cells             Quad-Paving 1650 cells

Edge size on the boundaries is the same
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Example – Driven cavity

The effect of the meshing scheme – Vorticity Contours 

Quad-Mapping 1600 cells       Tri-Paving  3600 cells             Quad-Paving 1650 cells
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Example – Driven cavity

The effect of the meshing scheme – Convergence 

Quad-Mapping 1600 cells       Tri-Paving  3600 cells             Quad-Paving 1650 cells



ME469B/3/GI 50

Example – Driven cavity

Symbols corresponds to
Ghia et al., 1982

x-velocity component in the middle of the cavity

Quad-Mapping   Tri-Paving      Quad-Paving

The effect of the meshing scheme
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Example – Driven cavity

Grid Sensitivity – Quad Mapping Scheme

1600 cells             6400 cells           25600 cells

Vorticity Contours
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Example – Driven cavity

1600 cells             6400 cells           25600 cells
Symbols corresponds to
Ghia et al., 1982

x-velocity component in the middle of the cavity
Grid Sensitivity – Quad Mapping Scheme
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How to verify the accuracy?

Define a reference solution (analytical or computed on a very fine grid)
Compute the solution on successively refined grids
Define the error as the deviation of the current solution from the reference
Compute error norms
Plot norms vs. grid size (the slope of the curve gives the order of accuracy)

Problems with unstructured grids:

1) Generation of a suitable succession of grids
2) Definition of the grid size
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Generation of successively refined grid

1) Modify grid dimensions in GAMBIT and regenerate the grid
2) Split all the cells in  FLUENT

Adapt → Region → Adapt

Element shape & metric
properties are preserved

The region MUST contain
the entire domain
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Driven Cavity - Error evaluation

Reference solution computed on a 320x320 grid (~100,000 cells)
Reference solution interpolated on coarse mesh to evaluate local errors

Quad-Mapping      Tri-Paving      Quad-Paving

Note that the triangular grid has more than twice as many grid cells
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Driven Cavity – Accuracy evaluation

Quad-Mapping   Tri-Paving      Quad-Paving

Quad and Pave meshing
schemes yield very similar
accuracy (close to 2nd order)

Tri meshing scheme yields
Slightly higher errors and
lower accuracy

Note that the definition of Δx
is questionable (a change will
only translate the curves not
change the slope)

(N)-1/2

Er
ro

r (
L2

 n
or

m
)

Nominal 2nd 
order accuracyNominal 1st 

order accuracy
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Driven Cavity – Fluent vs. other CFD codes

FLUENT                StarCD          NASA INS2D
Symbols corresponds to
Ghia et al., 1982

x-velocity component in the middle of the cavity
Quad Mapping Scheme (1600 cells)
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Techniques for the incompressible NS equations

Pressure correction schemes

Artificial compressibility approach

Vorticity-streamfunction formulation

Density-based approach
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Vorticity-streamfunction approach

It is effectively a change-of-variables; introducing the streamfunction and the vorticity
vector the continuity is automatically satisfied and the pressure disappears (if needed the
solution of a Poisson-like equation is still required). It is advantageous in 2D because it
requires the solution of only two PDEs but the treatment of BCs is difficult. In addition
in 3D the PDEs to be solved are six

Artificial compressibility approach

A time-derivative (of pressure) is added to the continuity equation with the goal of
transforming the incompressible NS into a hyperbolic system and then to apply schemes
suitable for compressible flows. The key is the presence of a user-parameter β (related
to the artificial speed of sound) that determines the speed of convergence to steady state

Techniques for the incompressible NS equations
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Density-based solvers for the NS equations

The equation are written in compressible form and, for low Mach numbers,
the flow is effectively incompressible

The energy equation is added to link pressure
and density through the equation of state

In compact (vector) form:
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Stiffness occurs because of the disparity between fluid velocity and speed
of sound (infinite in zero-Mach limit)

The equations are solved in terms of the primitive variables

where

Note that the continuity becomes (again) an
evolution equation for the pressure

Density-based solvers for the NS equations
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The time derivative is modified (preconditioned) to force all the eigenvalues
to be of the same order (similar to the artificial compressibility approach)

Density-based solvers for the NS equations

≠

The eigenvalues of Γ are
where
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Limiting cases

Density-based solvers for the NS equations

Compressible flows
(ideal gas):

Incompressible flows (ideal gas):

Incompressible fluids:

All eigenvalues
are comparable
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FLUENT density-based solver

Explicit Scheme

Multistage Runge-Kutta scheme

Multigrid acceleration

Residual Smoothing
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FLUENT density-based solver

Implicit Scheme

Euler (one-step) implicit with Newton-type linearization

Point Gauss-Seidel iterations

Multigrid acceleration
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Example – Driven cavity
Problem set-up                    Solver Set-UpClassical test-case for

incompressible flow solvers

Vslip=1

H

Coupled Solver

Discretization:
2nd order upwind
Implicit

Multigrid
V-Cycle

Material Properties:
ρ = 1kg/m3

µ = 0.001kg/ms

Reynolds number:
H = 1m, Vslip= 1m/s
Re = ρVslipH/µ = 1,000

Boundary Conditions:
 Slip wall (u = Vslip) on top
 No-slip walls the others

Initial Conditions:
u = v = p = 0

Convergence Monitors:
Averaged pressure and
friction on the no-slip walls
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Example – Driven cavity

Effect of the solver  - Quad mesh (1600 cells)

Vorticity Contours

Segregated               Coupled
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Example – Driven cavity

Segregated             Coupled
Symbols corresponds to
Ghia et al., 1982

x-velocity component in the middle of the cavity
Effect of the solver  - Quad mesh (1600 cells)
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Multigrid acceleration

Basic idea: the global error (low-frequency) on a fine grid appears as a local
error (high-frequency) on coarse meshes.

Why it is important: linear system solver like Gauss-Seidel are effective in
removing high-frequency errors but VERY slow for global errors. Note
that, on structured, grid line-relaxation (or ADI-type) schemes can be used
to improve the performance of Gauss-Seidel; on unstructured grid similar
concepts are extremely difficult to implement.

Convergence Speed: number of iterations on the finest grid required to
reach a given level of convergence is roughly independent on the number of
grid nodes (multigrid convergence)
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Two-grid scheme

1. α smoothings are performed on the fine grid to reduce the high-
frequency components of the errors (pre-smoothing, αS)

2. the residual (error) is transferred to next coarser level (restriction, R)
3. γ iterations are performed on this grid level for the “correction” equation
4. the problem is transferred back to the fine grid (prolongation, P)
5. β smoothings are performed on the fine grid to remove the high-

frequency errors introduced on the coarse mesh (post-smoothing, βS)

Parameters to be defined are α, β, γ
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Multigrid Formalism

After few sweeps at level h

Definition of the error and residual

Transfer (restrict) the residual

Modified system on the coarse grid

Transfer (prolong) the solution

Correct



ME469B/3/GI 72

Restriction & Prolongation Operators

Fine Level
Coarse Level
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Algebraic Multigrid

The coarse levels are generated without the use of any discretization on
coarse levels; in fact no hierarchy of meshes is needed

AMG is effectively a solver for linear systems and the restriction and
prolongation operators might be viewed as means to modify (group or split)
the coefficient matrix

Formally:

Geometric multigrid should perform better than AMG because non-
linearity of the problem are retained on coarse levels (correction equation)
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Multigrid for unstructured meshes

Aggregative Coarsening: fine grid cells are collected into a coarse grid element

Selective Coarsening: few fine grid cells are retained on the coarser grids…
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Multigrid in Fluent

V-Cycle     W-Cycle

Level Cycling: V, W and F (W+V)
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Multigrid in Fluent

Flexible Cycle

Restriction Criteria:

A coarser level is invoked as soon as the residual reduction rate is below a certain %

Termination Criteria:

The corrections are transferred to a finer level as soon as a certain residual level is reached
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Multigrid in Fluent
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Algebraic Multigrid Performance

Convergence for the segregated solver  

1600 cells       6400 cells             25600 cells
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Algebraic Multigrid Performance

Convergence for the coupled solver  

1600 cells       6400 cells             25600 cells
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Periodic Flows

Geometrical
periodicity

Periodicity simply
corresponds to matching
conditions on the two
boundaries

The velocity field is periodic BUT
the pressure field is not. The
pressure gradient drives the flow and
is periodic. A pressure JUMP
condition on the boundary must be
specified
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Periodic Flows – Set-Up

Segregated solver Coupled Solver

In the segregated solver periodicity can be imposed by fixing either the
mass flow or the pressure drop
In the coupled solver periodicity is enforced by fixing the pressure drop

Define → Periodic Conditions      Define → Boundary Conditions
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An analytical solution of the Navier-
Stokes equations (Poiseuille flow) can
be derived:

Solution in the form u=u(y)
The pressure drop balances the viscous drag on the walls

Navier-Stokes equations

Velocity distribution in the channel

Averaged velocity

Periodic Flow Example – 2D channel

hy
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Periodic Flow Example – 2D channel

Problem set-up                    Solver Set-Up

Material Properties:
ρ = 1kg/m3

µ = 0.1kg/ms

Reynolds number:
h = 2m, Vave= 1m/s
Re = ρVsliph/µ = 20

Boundary Conditions:
 Periodicity Δp=0.3
 No-slip top/bottom walls

Initial Conditions:
u = 1; v = p = 0

Exact solution:
Vave = 1

Coupled Solver

Discretization:
2nd order upwind
SIMPLE

Multigrid
V-Cycleh

Periodic 
boundaries
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Periodic Flow Example – 2D channel

Quad-Mapping                    Tri-Paving

x-velocity distribution in the channel

Cell-centered values
showed (no interpolation)
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Nominal 2nd 
order accuracy

Quad-Mapping   Tri-Paving

The error in this case CAN be computed with reference to the exact solution
In this case the computed averaged velocity error is plotted

This test-case is available on the class web site

(N)-1/2

Nominal 1st 
order accuracy

Periodic Flow Example – 2D channel
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Overview of commercial CFD codes

About 30 packages.

Three major general-purpose products (covering ~50% of the market):
FLUENT, StarCD, CFX

UD/TVD
QUICK

CD
ILU

Algebraic
Coupled-

SIMPLEUnstructured
Mixed

CFX

UD/TVD
QUICK

CD

Conjugate
Gradient--

SIMPLE
SIMPISO

PISO

Unstructured
Mixed

StarCD

UD/TVD
QUICK

Gauss-SeidelAlgebraic
Geometric

Coupled
Implicit

Preconditioned

SIMPLE
SIMPLEC

PISO

Unstructured
Mixed

FLUENT

DiscretizationSystem
Solver

MultigridDensity BasedPressure
Based

Grid Type


