Solution methods for the Incompressible Navier-Stokes Equations

- Discretization schemes for the Navier-Stokes equations
- Pressure-based approach
- Density-based approach
- Convergence acceleration
- Periodic Flows
- Unsteady Flows

Background (from ME469A or similar)

Navier-Stokes (NS) equations

Finite Volume (FV) discretization

Discretization of space derivatives (upwind, central, QUICK, etc.)

Pressure-velocity coupling issue

Pressure correction schemes (SIMPLE, SIMPLEC, PISO)

Multigrid methods

NS equations

Conservation laws:

Rate of change + advection + diffusion = source

$$\frac{d}{dt} \int_{\Omega} \rho d\Omega + \int_{S} \rho(\vec{V} \cdot \vec{n}_{S}) dS = 0$$

$$\frac{d}{dt} \int_{\Omega} (\rho \vec{V}) d\Omega + \int_{S} (\rho \vec{V}) (\vec{V} \cdot \vec{n}_{S}) dS + \int_{S} (\vec{\tau} \cdot \vec{n}) dS = \int_{S} (-p\vec{n}) dS$$

Fluid region of pipe flow discretized into finite set of control volumes (mesh).

NS equations

Differential form:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{v}) = 0$$

$$\frac{\partial}{\partial t}(\rho \vec{v}) + \nabla \cdot (\rho \vec{v} \vec{v}) = -\nabla p + \nabla \cdot (\overline{\overline{\tau}}) \cdot ($$

$$\overline{\overline{\tau}} = \mu \left[(\nabla \vec{v} + \nabla \vec{v}^{\mathrm{T}}) - \frac{2}{3} \nabla \cdot \vec{v} I \right]$$

The advection term is non-linear

The mass and momentum equations are coupled (via the velocity)

The pressure appears only as a source term in the momentum equation

No evolution equation for the pressure

There are four equations and five unknowns (ρ, V, p)

NS equations

Compressible flows:

The mass conservation is a transport equation for density. With an additional energy equation p can be specified from a thermodynamic relation (ideal gas law)

Incompressible flows:

Density variation are not linked to the pressure. The mass conservation is a constraint on the velocity field; this equation (combined with the momentum) can be used to derive an equation for the pressure

Finite Volume Method

Discretize the equations in conservation (integral) form

Eventually this becomes...

$$a_p \, \phi_p + \sum_{nb} a_{nb} \, \phi_{nb} = b_p$$

Pressure-based solution of the NS equation

The continuity equation is combined with the momentum and the divergence-free constraint becomes an elliptic equation for the pressure

$$\frac{\partial}{\partial x_i} \left(\frac{\partial p}{\partial x_i} \right) = -\frac{\partial}{\partial x_i} \left[\frac{\partial \left(\rho u_i u_j \right)}{\partial x_j} \right]$$

To clarify the difficulties related to the treatment of the pressure, we will define EXPLICIT and IMPLICIT schemes to solve the NS equations:

It is assumed that space derivatives in the NS are already discretized:

$$\frac{\partial}{\partial x_i} \to \frac{\delta}{\delta x_i}$$

Explicit scheme for NS equations

Semi-discrete form of the NS

Explicit time integration

The n+1 velocity field is NOT divergence free

Take the divergence of the momentum

Elliptic equation for the pressure

$$\frac{\partial (\rho u_i)}{\partial t} = -\frac{\delta (\rho u_i u_j)}{\delta x_j} + \frac{\delta \tau_{ij}}{\delta x_i} - \frac{\delta p}{\delta x_i} = H_i - \frac{\delta p}{\delta x_i}$$
$$(\rho u_i)^{n+1} - (\rho u_i)^n = \Delta t \left(H_i^n - \frac{\delta p}{\delta x_i}^n \right)$$
$$\frac{\delta (\rho u_i)^{n+1}}{\delta x_i} \neq 0$$
$$\frac{\delta}{\delta x_i} (\rho u_i)^{n+1} - \frac{\delta}{\delta x_i} (\rho u_i)^n = \Delta t \frac{\delta}{\delta x_i} \left(H_i^n - \frac{\delta p}{\delta x_i}^n \right)$$
$$\frac{\delta}{\delta x_i} \left(\frac{\delta p^n}{\delta x_i} \right) = \frac{\delta}{\delta x_i} H_i^n$$

Explicit pressure-based scheme for NS equations

Implicit scheme for NS equations

Semi-discrete form of the NS

Implicit time integration

Take the divergence of the momentum

$$\frac{\partial (\rho u_i)}{\partial t} = -\frac{\delta (\rho u_i u_j)}{\delta x_j} + \frac{\delta \tau_{ij}}{\delta x_i} - \frac{\delta p}{\delta x_i} = H_i - \frac{\delta p}{\delta x_i}$$
$$(\rho u_i)^{n+1} - (\rho u_i)^n = \Delta t \left(H_i^{n+1} - \frac{\delta p}{\delta x_i}^{n+1} \right)$$
$$\frac{\delta}{\delta x_i} \left(\frac{\delta p^{n+1}}{\delta x_i} \right) = \frac{\delta}{\delta x_i} H_i^{n+1}$$

The equations are coupled and non-linear

Navier-Stokes Equations

$$\begin{cases} \frac{\partial \rho}{\partial t} + \frac{\partial (\rho v_i)}{\partial x_i} = 0 \\ \frac{\partial \rho v_i}{\partial t} + \frac{\partial (\rho v_j v_i)}{\partial x_j} = \frac{\partial \tau_{ij}}{\partial x_j} - \frac{\partial p}{\partial x_i} \\ \frac{\partial (\rho E)}{\partial t} + \frac{\partial (\rho v_j E)}{\partial x_j} = \frac{\partial}{\partial x_j} \left(k \frac{\partial T}{\partial x_j} \right) + \frac{\partial}{\partial x_j} (\tau_{ij} v_i) \end{cases}$$

Conservation of mass

Conservation of momentum

Conservation of energy

Newtonian fluid
$$\tau_{ij} = \mu \left[\left(\frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i} \right) - \frac{2}{3} \frac{\partial v_k}{\partial x_k} \right]$$

In 3D: 5 equations & 6 unknowns: ρ , ρ , v_i , E(T)

Need supplemental information: equation of state

Approximations

Although the Navier-Stokes equations are considered the appropriate conceptual model for fluid flows they contain 3 major approximations:

- 1. Continuum hypothesis
- 2. Form of the diffusive fluxes
- 3. Equation of state

Simplified conceptual models can be derived introducing additional assumptions: incompressible flow

$$\frac{\partial u_i}{\partial x_i} = 0$$

Conservation of mass (continuity)

$$\frac{\partial u_i}{\partial t} + \frac{\partial u_j u_i}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\mu \frac{\partial u_i}{\partial x_j} \right) - \frac{1}{\rho} \frac{\partial p}{\partial x_i}$$

Conservation of momentum

Difficulties:

Non-linearity, coupling, role of the pressure

A Solution Approach

The momentum equation can be interpreted as a advection/diffusion equation for the velocity vector

$$\frac{\partial u_i}{\partial t} + \frac{\partial u_j u_i}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\mu \frac{\partial u_i}{\partial x_j} \right) - \frac{1}{\rho} \frac{\partial p}{\partial x_i}$$

The mass conservation should be used to derive the pressure... taking the divergence of the momentum:

$$\frac{\partial}{\partial x_i} \left[\frac{\partial u_i}{\partial t} + \frac{\partial u_j u_i}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\mu \frac{\partial u_i}{\partial x_j} \right) - \frac{1}{\rho} \frac{\partial p}{\partial x_i} \right]$$

A Poisson equation for the pressure is derived

$$\frac{\partial}{\partial x_i} \left(\frac{1}{\rho} \frac{\partial p}{\partial x_i} \right) = RHS$$

The Projection Method

$$\frac{u_i^{n+1} - u_i^n}{\Delta t} + C_i^{n+1} = D_i^{n+1} - \frac{1}{\rho} \frac{\partial p}{\partial x_i}^{n+1}$$
$$\frac{\partial}{\partial x_i} \left(\frac{1}{\rho} \frac{\partial p}{\partial x_i}^{n+1} \right) = RHS^{n+1}$$

$$\frac{\partial}{\partial x_i} \left(\frac{1}{\rho} \frac{\partial p}{\partial x_i}^{n+1} \right) = RHS^{n+1}$$

Implicit, coupled and non-linear

Predicted velocity
$$\frac{u_i^* - u_i^n}{\Delta t} + C_i^m = D_i^m - \frac{1}{\rho} \frac{\partial p^n}{\partial x_i} \quad \text{ but } \quad \frac{\delta u^*}{\delta x_i} \neq 0$$

assuming $p^{n+1} = p^n + p^*$ and taking the divergence

$$\frac{1}{\Delta t} \left(\frac{\delta u_i^*}{\delta x_i} - \frac{\delta u_i^n}{\delta x_i} \right) + \frac{\delta C_i^m}{\delta x_i} = \frac{\delta D_i^m}{\delta x_i} - \frac{\delta}{\delta x_i} \left(\frac{1}{\rho} \frac{\delta p}{\delta x_i}^{n+1} - \frac{1}{\rho} \frac{\delta p^*}{\delta x_i} \right)$$

we obtain
$$\frac{\delta}{\delta x_i} \left(\frac{1}{\rho} \frac{\delta p^*}{\delta x_i} \right) = \frac{1}{\Delta t} \frac{\delta u_i^*}{\delta x_i}$$

this is what we would like to enforce

combining (corrector step)
$$\frac{u_i^{n+1} - u_i^*}{\Delta t} = -\frac{1}{\rho} \frac{\delta p^*}{\delta x_i}$$

Alternative View of Projection

Reorganize the NS equations (Uzawa)
$$\begin{bmatrix} A & G \\ D & 0 \end{bmatrix} \begin{bmatrix} v^{n+1} \\ p^{n+1} \end{bmatrix} = \begin{bmatrix} RHS \\ 0 \end{bmatrix}$$

Exact splitting

$$\begin{bmatrix} A & 0 \\ D & -DA^{-1}G \end{bmatrix} \begin{bmatrix} v^* \\ p^* \end{bmatrix} = \begin{bmatrix} RHS \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} I & A^{-1}G \\ 0 & I \end{bmatrix} \begin{bmatrix} v^{n+1} \\ p^{n+1} \end{bmatrix} = \begin{bmatrix} v^* \\ p^* \end{bmatrix}$$

$$Av^* = RHS$$

 $Dv^* - DA^{-1}Gp^* = 0$
 $v^{n+1} + A^{-1}Gp^{n+1} = v^*$
 $p^{n+1} = p^*$

Momentum eqs.

Pressure Poisson eq.

Velocity correction

Alternative View of Projection

Exact projection requires the inversion of the LHS of the momentum eq. thus is costly.

Approximate projection methods are constructed using two auxiliary matrices (time-scales)

$$Av^*=RHS$$
 Momentum eqs.
$$Dv^*-DB_1Gp^{n+1}=0$$
 Pressure Poisson eq.
$$v^{n+1}+B_2Gp^{n+1}=v^*$$
 Velocity correction

The simplest (conventional) choice is

$$B_1 = B_2 \approx I\Delta t$$

What about steady state?

Solution of the steady-state NS equations is of primary importance

Steady vs. unsteady is another hypothesis that requires formalization...

Mom. Equations

$$\frac{\partial u_i}{\partial t} + \frac{\partial u_j u_i}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\mu \frac{\partial u_i}{\partial x_j} \right) - \frac{1}{\rho} \frac{\partial p}{\partial x_i}$$

Reference Quantities

$$\tilde{t} = \frac{t}{T}$$
 $\tilde{x}_i = \frac{x_i}{L}$ $\tilde{u}_i = \frac{u_i}{U}$ $\tilde{p} = \frac{p}{\rho U^2}$

Non dimensional Eqn

$$St\frac{\partial u_i}{\partial t} + \frac{\partial u_j u_i}{\partial x_j} = \frac{1}{Re} \frac{\partial}{\partial x_j} \left(\frac{\partial u_i}{\partial x_j} \right) - \frac{\partial p}{\partial x_i}$$

Reynolds and Strouhal #s

$$Re = \frac{UL}{\nu}$$
 $St = \frac{L}{TU} = \frac{fL}{U}$

Implicit scheme for steady NS equations

Compute an intermediate velocity field (eqns are STILL non-linear)

Define a velocity and a pressure correction

$$a_P(u_i)_P^* = \sum_f a_f(u_i^* \cdot n_i)_f - \frac{1}{\rho} \frac{\delta p}{\delta x_i}^n$$

$$\begin{cases} u^{n+1} = u^* + u' \\ p^{n+1} = p^n + p' \end{cases}$$

Using the definition and combining

$$\begin{cases} a_P(u_i)_P^{n+1} = \sum_f a_f(u_i^{n+1} \cdot n_i)_f - \frac{1}{\rho} \frac{\delta p}{\delta x_i}^{n+1} \\ a_P(u_i)_P^* = \sum_f a_f(u_i^* \cdot n_i)_f - \frac{1}{\rho} \frac{\delta p}{\delta x_i}^n \end{cases}$$

Derive an equation for u'

$$a_P(u_i)'_P = \sum_f a_f [(u_i^{n+1} - u_i^*) \cdot n_i]_f - \frac{1}{\rho} \frac{\delta p'}{\delta x_i}$$

$$(u_i)'_P = (\tilde{u_i})' - \frac{1}{a_P} \frac{1}{\rho} \frac{\delta p'}{\delta x_i}$$

Implicit scheme for steady NS equations

Taking the divergence..

$$\frac{\delta}{\delta x_i}(u_i)_P^{n+1} = 0 = \frac{\delta}{\delta x_i}(u_i)_P^* + \frac{\delta}{\delta x_i}(u_i)_P'$$

$$0 = \frac{\delta}{\delta x_i} (u_i)_P^* + \frac{\delta}{\delta x_i} (\tilde{u_i})' - \frac{\delta}{\delta x_i} \left(\frac{1}{a_P} \frac{1}{\rho} \frac{\delta p'}{\delta x_i} \right)$$

We obtain a Poisson system for the pressure correction...

Solving it and computing a gradient:

$$(u_i)'_P = (\tilde{u_i})' - \frac{1}{a_P} \frac{1}{\rho} \frac{\delta p'}{\delta x_i}$$

So we can update

$$u^{n+1} = u^* + u'$$

And also the pressure at the next level

$$p^{n+1} = p^n + p'$$

Implicit pressure-based scheme for NS equations (SIMPLE)

SIMPLE: Semi-Implicit Method for Pressure-Linked Equations

Implicit pressure-based scheme for NS equations (SIMPLEC)

SIMPLE: SIMPLE Corrected/Consisten

Implicit pressure-based scheme for NS equations (PISO)

PISO: Pressure Implicit with Splitting Operators

SIMPLE, SIMPLEC & PISO - Comments

In SIMPLE under-relaxation is required due to the neglect of u^*

$$u^{n+1} = u^* + \alpha_u u' \qquad p = p^n + \alpha_p p'$$

There is an optimal relationship $\alpha_p = 1 - \alpha_u$

SIMPLEC and PISO do not need under-relaxation

SIMPLEC/PISO allow faster convergence than SIMPLE

PISO is useful for irregular cells

Under-relaxation

Is used to increase stability (smoothing)

Variable under-relaxation

$$\phi = \phi_{\text{old}} + \alpha \Delta \phi$$

Equation (implicit) under-relaxation

$$\frac{a_p \phi}{\alpha} = \sum_{nb} a_{nb} \phi_{nb} + b + \frac{1 - \alpha}{\alpha} a_p \phi_{\text{old}}$$

Segregated (pressure based) solver in FLUENT

FV discretization for mixed elements

$$\int_{S} \rho \phi(\vec{V} \cdot \vec{n}_{S}) dS = \int_{S} \Gamma_{\phi}(\vec{\nabla \phi} \cdot \vec{n}) dS + \int_{\Omega} S_{\phi} d\Omega$$

$$\sum_{f}^{N_{faces}} \rho_f \phi_f (\vec{V} \cdot \vec{n})_f dS_f = \sum_{f}^{N_{faces}} \Gamma_{\phi} (\vec{\nabla \phi} \cdot \vec{n})_f dS_f + S_{\phi} \Omega$$

The quantities at the cell faces can be computed using several different schemes

Discretization of the equations

Options for the segregated solver in FLUENT

```
Discretization scheme for convective terms

1<sup>st</sup> order upwind (UD)

2<sup>nd</sup> order upwind (TVD)

3<sup>rd</sup> order upwind (QUICK), only for quad and hex

Pressure interpolation scheme (pressure at the cell-faces)

linear (linear between cell neighbors)

second-order (similar to the TVD scheme for momentum)

PRESTO (mimicking the staggered-variable arrangement)

Pressure-velocity coupling

SIMPLE

SIMPLEC

PISO
```


Determine the face value

1st Order Upwind

Depending on the flow direction ONLY

Very stable but dissipative

Determine the face value

Central differencing (2nd order)

Symmetric. Not depending on the flow direction

Not dissipative but dispersive (odd derivatives)

Determine the face value

2nd order upwind

Depends on the flow direction

Less dissipative than 1st order but not bounded (extrema preserving)

Possibility of using limiters

Determine the face value

Quick (Quadratic Upwind Interpolation for Convection Kinetics)

Formally 3rd order

Depends on the flow direction

As before it is not bounded

Evaluation of gradients

Gauss Gradient

$$(\nabla \phi)_{c0} = \frac{1}{V} \sum_{f} \overline{\phi}_{f} \vec{A}_{f}$$

$$\overline{\phi}_{f} = \frac{\phi_{c0} + \phi_{c1}}{2}$$

Least Square Gradient

$$(\nabla \phi)_{c0} \cdot \Delta r_i = (\phi_{ci} - \phi_{c0})$$

$$[J](\nabla \phi)_{c0} = \Delta \phi$$

LS system

Solution of the equation

 ϕ is one of the velocity component and the convective terms must be linearized:

$$\sum_{f}^{N_{faces}} \rho_f \phi_f (\vec{V} \cdot \vec{n})_f dS_f = \sum_{f}^{N_{faces}} \Gamma_{\phi} (\vec{\nabla \phi} \cdot \vec{n})_f dS_f + S_{\phi} \Omega$$
$$a_P \phi_P = \sum_{b} a_b \phi_b + RHS$$

This correspond to a sparse linear system for each velocity component

Fluent segregated solver uses: Point Gauss-Seidel technique Multigrid acceleration

Hybrid non-conformal - Gambit

Hybrid adaptive - non-Gambit

Set-up of problems with FLUENT

Read/Import the grid
Define the flow solver option
Define the fluid properties
Define the discretization scheme
Define the boundary condition
Define initial conditions
Define convergence monitors
Run the simulation
Analyze the results

Solver set-up

Define \rightarrow Models \rightarrow Solver

Define \rightarrow Controls \rightarrow Solution

Example: text commands can be used (useful for batch execution)

define/models/solver segregated
define/models/steady

solve/set/discretization-scheme/mom 1
solve/set/under-relaxation/mom 0.7

•••

•••

Material properties

Define → Materials

Quantities are ALWAYS dimensional

Initial and boundary conditions

Solve → Initialize → Initialize

Only constant values can be specified More flexibility is allowed via patching

Define → Boundary Conditions

BCs will be discussed case-by-case

Initial conditions using patching

 $Adapt \rightarrow Region \rightarrow Mark$

Mark a certain region of the domain (cells are stored in a register)

Solve \rightarrow Initialize \rightarrow Patch

Patch desired values for each variable in the region (register) selected

Convergence monitors

Solve \rightarrow Monitors \rightarrow Residuals

Convergence history of the equation residuals are stored together with the solution User-defined monitors are NOT stored by default

Postprocessing

Display → Contours

 $Plot \rightarrow XY Plot$

Cell-centered data are
Computed
This switch interpolates the results on the cell-vertices

Detailed post-processing

Define additional quantities

Define plotting lines, planes and surfaces

Compute integral/averaged quantities

Fluent GUI - Summary

File: I/O

Grid: Modify (translate/scale/etc.), Check

Define: Models (solver type/multiphase/etc.), Material (fluid properties),

Boundary conditions

Solve: Discretization, Initial Condition, Convergence Monitors

Adapt: Grid adaptation, Patch marking

Surface: Create zones (postprocessing/monitors)

Display: Postprocessing (View/Countors/Streamlines)

Plot: XY Plots, Residuals

Report: Summary, Integral

Parallel: Load Balancing, Monitors

Typical simulation

Classical test-case for incompressible flow solvers

Problem set-up

Material Properties:

 $\rho = 1 \text{kg/m}^3$

 $\mu = 0.001 kg/ms$

Reynolds number:

H = 1m, $V_{slip} = 1m/s$ $Re = \rho V_{slip} H/\mu = 1,000$

Boundary Conditions:

Slip wall ($u = V_{slip}$) on top No-slip walls the others

Initial Conditions:

$$\mathbf{u} = \mathbf{v} = \mathbf{p} = \mathbf{0}$$

Convergence Monitors:

Averaged pressure and friction on the no-slip walls

Solver Set-Up

Segregated Solver

Discretization:

2nd order upwind

SIMPLE

Multigrid

V-Cycle

The effect of the meshing scheme

Quad-Mapping 1600 cells

Tri-Paving 3600 cells

Quad-Paving 1650 cells

Edge size on the boundaries is the same

The effect of the meshing scheme – Vorticity Contours

Quad-Mapping 1600 cells

Tri-Paving 3600 cells

Quad-Paving 1650 cells

The effect of the meshing scheme – Convergence

Quad-Mapping 1600 cells

Tri-Paving 3600 cells

Quad-Paving 1650 cells

The effect of the meshing scheme x-velocity component in the middle of the cavity

Quad-Mapping Tri-Paving

Quad-Paving

Symbols corresponds to Ghia et al., 1982

Vorticity Contours

Grid Sensitivity – Quad Mapping Scheme x-velocity component in the middle of the cavity

How to verify the accuracy?

Define a reference solution (analytical or computed on a very fine grid)
Compute the solution on successively refined grids
Define the error as the deviation of the current solution from the reference
Compute error norms
Plot norms vs. grid size (the slope of the curve gives the order of accuracy)

Problems with unstructured grids:

- 1) Generation of a suitable succession of grids
- 2) Definition of the grid size

Generation of successively refined grid

- 1) Modify grid dimensions in GAMBIT and regenerate the grid
- 2) Split all the cells in FLUENT

$Adapt \rightarrow Region \rightarrow Adapt$

The region MUST contain the entire domain

Element shape & metric properties are preserved

Driven Cavity - Error evaluation

Reference solution computed on a 320x320 grid (~100,000 cells)
Reference solution interpolated on coarse mesh to evaluate local errors

Note that the triangular grid has more than twice as many grid cells

Driven Cavity – Accuracy evaluation

Quad and Pave meshing schemes yield very similar accuracy (close to 2nd order)

Tri meshing scheme yields Slightly higher errors and lower accuracy

Note that the definition of Δx is questionable (a change will only translate the curves not change the slope)

Quad-Mapping Tri-Paving

Quad-Paving

Driven Cavity – Fluent vs. other CFD codes

Quad Mapping Scheme (1600 cells) x-velocity component in the middle of the cavity

Techniques for the incompressible NS equations

Pressure correction schemes

Artificial compressibility approach

Vorticity-streamfunction formulation

Density-based approach

Techniques for the incompressible NS equations

Vorticity-streamfunction approach

It is effectively a change-of-variables; introducing the streamfunction and the vorticity vector the continuity is automatically satisfied and the pressure disappears (if needed the solution of a Poisson-like equation is still required). *It is advantageous in 2D because it requires the solution of only two PDEs but the treatment of BCs is difficult. In addition in 3D the PDEs to be solved are six*

Artificial compressibility approach

A time-derivative (of pressure) is added to the continuity equation with the goal of transforming the incompressible NS into a hyperbolic system and then to apply schemes suitable for compressible flows. The key is the presence of a user-parameter β (related to the artificial speed of sound) that determines the speed of convergence to steady state

The equation are written in compressible form and, for low Mach numbers, the flow is effectively incompressible

$$\frac{\partial}{\partial t} \int_{\Omega} \rho d\Omega + \int_{S} \rho (\vec{V} \cdot \vec{n}_{S}) dS = 0$$

$$\frac{\partial}{\partial t} \int_{\Omega} (\rho \vec{V}) d\Omega + \int_{S} (\rho \vec{V}) (\vec{V} \cdot \vec{n}_{S}) dS + \int_{S} (\vec{\tau} \cdot \vec{n}) dS + \int_{S} (p\vec{n}) dS = 0$$

$$\frac{\partial}{\partial t} \int_{\Omega} \rho E d\Omega + \int_{S} \rho \vec{V} E dS + \int_{S} (\vec{q} \cdot \vec{n}) dS = 0$$

The energy equation is added to link pressure and density through the equation of state

$$E = H - p/\rho$$
 $H = h + |\mathbf{v}|^2/2$

In compact (vector) form:

$$\frac{\partial}{\partial t} \int_{V} \mathbf{W} \, dV + \oint \left[\mathbf{F} - \mathbf{G} \right] \cdot d\mathbf{A} = \int_{V} \mathbf{H} \, dV$$

$$\mathbf{W} = \begin{cases} \rho \\ \rho u \\ \rho v \\ \rho w \\ \rho E \end{cases}, \ \mathbf{F} = \begin{cases} \rho \mathbf{v} \\ \rho \mathbf{v} u + p \hat{\mathbf{i}} \\ \rho \mathbf{v} v + p \hat{\mathbf{k}} \\ \rho \mathbf{v} w + p \hat{\mathbf{k}} \\ \rho \mathbf{v} E + p \mathbf{v} \end{cases}, \ \mathbf{G} = \begin{cases} 0 \\ \tau_{xi} \\ \tau_{yi} \\ \tau_{zi} \\ \tau_{ij} v_j + \mathbf{q} \end{cases}$$

Stiffness occurs because of the disparity between fluid velocity and speed of sound (infinite in zero-Mach limit)

The equations are solved in terms of the primitive variables

$$\frac{\partial \mathbf{W}}{\partial \mathbf{Q}} \frac{\partial}{\partial t} \int_{V} \mathbf{Q} \, dV + \oint [\mathbf{F} - \mathbf{G}] \cdot d\mathbf{A} = \int_{V} \mathbf{H} \, dV$$

$$ec{Q} = \left[p, ec{V}, T
ight]^T$$

Note that the continuity becomes (again) an evolution equation for the pressure

where

where
$$\frac{\partial \mathbf{W}}{\partial \mathbf{Q}} = \begin{bmatrix} \rho_p & 0 & 0 & 0 & \rho_T \\ \rho_p u & \rho & 0 & 0 & \rho_T u \\ \rho_p v & \rho & 0 & \rho & \rho_T v \\ \rho_p w & 0 & \rho & \rho_T w \\ \rho_p H - \delta & \rho u & \rho v & \rho w & \rho_T H + \rho C_p \end{bmatrix} \qquad \begin{array}{c} \rho_p = \frac{\partial \rho}{\partial p} \bigg|_T, \ \rho_T = \frac{\partial \rho}{\partial T} \bigg|_p \\ \delta = 1 & \text{ideal gas} \\ \delta = 0 & \text{incompressible fluid} \end{array}$$

$$\rho_p = \frac{\partial \rho}{\partial p}\Big|_T$$
, $\rho_T = \frac{\partial \rho}{\partial T}\Big|_T$

$$\delta = 1$$
 ideal gas

$$\delta = 0$$
 incompressible fluid

The time derivative is modified (preconditioned) to force all the eigenvalues to be of the same order (similar to the artificial compressibility approach)

$$\Gamma \frac{\partial}{\partial t} \int_{V} \mathbf{Q} \, dV + \oint [\mathbf{F} - \mathbf{G}] \cdot d\mathbf{A} = \int_{V} \mathbf{H} \, dV$$

$$\Gamma = \begin{bmatrix} \Theta & 0 & 0 & 0 & \rho_T \\ \Theta u & \rho & 0 & 0 & \rho_T u \\ \Theta v & 0 & \rho & 0 & \rho_T u \\ \Theta w & 0 & 0 & \rho & \rho_T u \\ \Theta H - \delta & \rho u & \rho v & \rho w & \rho_T H + \rho C_p \end{bmatrix} \neq \frac{\partial \mathbf{W}}{\partial \mathbf{Q}} = \begin{bmatrix} \rho_p & 0 & 0 & 0 & \rho_T u \\ \rho_p u & \rho & 0 & 0 & \rho_T u \\ \rho_p v & 0 & \rho & 0 & \rho_T v \\ \rho_p w & 0 & 0 & \rho & \rho_T w \\ \rho_p H - \delta & \rho u & \rho v & \rho w & \rho_T H + \rho C_p \end{bmatrix}$$

The eigenvalues of Γ are

$$u, u, u, u' + c', u' - c'$$

where
$$\Theta = \left(\frac{1}{U_r^2} - \frac{\rho_T}{\rho C_p}\right)$$

$$u = \mathbf{v} \cdot \hat{n}$$

$$u' = u (1 - \alpha)$$

$$c' = \sqrt{\alpha^2 u^2 + U_r^2}$$

$$\alpha = \left(1 - \beta U_r^2\right)/2$$

$$\beta = \left(\rho_p + \frac{\rho_T}{\rho C_p}\right)$$

$$\Theta = \left(\frac{1}{U_r^2} - \frac{\rho_T}{\rho C_p}\right)$$

$$\alpha = (1 - \beta U_r^2)/2$$

$$\beta = \left(\rho_p + \frac{\rho_T}{\rho C_p}\right)$$

Limiting cases

Compressible flows (ideal gas):

$$U_r = c$$

$$\beta=(\gamma RT)^{-1}=1/c^2$$

$$\Gamma = \ \frac{\partial \mathbf{W}}{\partial \mathbf{Q}}$$

Incompressible flows (ideal gas):

$$U_r \rightarrow 0$$

$$\alpha \to 1/2$$

All eigenvalues are comparable

Incompressible fluids:

$$\beta = 0$$

FLUENT density-based solver

Explicit Scheme

Multistage Runge-Kutta scheme

$$\begin{array}{rcl} \mathbf{Q}^0 & = & \mathbf{Q}^n \\ \Delta \mathbf{Q}^i & = & -\alpha_i \Delta t \Gamma^{-1} \mathbf{R}^{i-1} \\ \mathbf{Q}^{n+1} & = & \mathbf{Q}^m \end{array} \qquad \qquad \mathbf{R}^i = \sum_{\mathbf{r}}^{N_{\mathrm{faces}}} \left(\mathbf{F}(\mathbf{Q}^i) - \mathbf{G}(\mathbf{Q}^i) \right) \cdot \mathbf{A} - V \mathbf{H} \end{array}$$

Residual Smoothing

$$\bar{R}_i = R_i + \epsilon \sum (\bar{R}_j - \bar{R}_i)$$

Multigrid acceleration

FLUENT density-based solver

Implicit Scheme

Euler (one-step) implicit with Newton-type linearization

$$\begin{bmatrix} D + \sum_{j}^{N_{\text{faces}}} S_{j,k} \end{bmatrix} \Delta \mathbf{Q}^{n+1} = -\mathbf{R}^{n}$$

$$D = \frac{V}{\Delta t} \Gamma + \sum_{j}^{N_{\text{faces}}} S_{j,i}$$

$$S_{j,k} = \left(\frac{\partial \mathbf{F}_{j}}{\partial \mathbf{Q}_{k}} - \frac{\partial \mathbf{G}_{j}}{\partial \mathbf{Q}_{k}} \right)$$

Point Gauss-Seidel iterations

Multigrid acceleration

Classical test-case for incompressible flow solvers

Problem set-up

Solver Set-Up

Material Properties:

 $\rho = 1 \text{kg/m}^3$

 $\mu = 0.001 kg/ms$

Coupled Solver

Discretization:

2nd order upwind

Implicit

Reynolds number:

H = 1m, $V_{slip} = 1m/s$

 $Re = \rho V_{slip} H/\mu = 1,000$

Multigrid V-Cycle

Slip wall $(u = V_{slip})$ on top No-slip walls the others

Initial Conditions:

u = v = p = 0

Convergence Monitors:

Averaged pressure and friction on the no-slip walls

Effect of the solver - Quad mesh (1600 cells) Continuity Residual Coupled Segregated Iteration 0.09 Monitor 1 99 0.03 200 **Vorticity Contours** Iteration -3.0 -2.2 -1.5 -0.8 0.0 0.8 1.5 2.2 3.0

Effect of the solver - Quad mesh (1600 cells) x-velocity component in the middle of the cavity

Segregated

Coupled

Symbols corresponds to Ghia *et al.*, 1982

Multigrid acceleration

Basic idea: the global error (low-frequency) on a fine grid appears as a local error (high-frequency) on coarse meshes.

Why it is important: linear system solver like Gauss-Seidel are effective in removing high-frequency errors but VERY slow for global errors. Note that, on structured, grid line-relaxation (or ADI-type) schemes can be used to improve the performance of Gauss-Seidel; on unstructured grid similar concepts are extremely difficult to implement.

Convergence Speed: number of iterations on the finest grid required to reach a given level of convergence is roughly independent on the number of grid nodes (multigrid convergence)

Two-grid scheme

- 1. α smoothings are performed on the fine grid to reduce the high-frequency components of the errors (pre-smoothing, α S)
- 2. the residual (error) is transferred to next coarser level (restriction, R)
- 3. γ iterations are performed on this grid level for the "correction" equation
- 4. the problem is transferred back to the fine grid (prolongation, P)
- 5. β smoothings are performed on the fine grid to remove the high-frequency errors introduced on the coarse mesh (post-smoothing, β S)

Parameters to be defined are α , β , γ

Multigrid Formalism

$$\rho^h = b - A^h x^h$$

After few sweeps at level h

$$\rho^{2h} = R \rho^h$$

Transfer (restrict) the residual

$$A^{2h}e^{2h} = \rho^{2h}$$

Modified system on the coarse grid

$$e^h = Pe^{2h}$$

Transfer (prolong) the solution

$$x = x^h + e^h$$

Correct

Definition of the error and residual

$$Ax_e = b$$

$$Ax_e = b$$
 $\rho = b - Ax$

Restriction & Prolongation Operators

☐ Fine Level

Coarse Level

Algebraic Multigrid

The coarse levels are generated without the use of any discretization on coarse levels; *in fact no hierarchy of meshes is needed*

AMG is effectively a solver for linear systems and the restriction and prolongation operators might be viewed as means to modify (group or split) the coefficient matrix

Formally:

$$e^h = Pe^{2h}$$

$$A^{h}e^{h} = A^{h}Pe^{2h} = \rho^{h}$$
 $(RA^{h}P)e^{2h} = A^{2h}e^{2H} = R\rho^{h}$

Geometric multigrid *should* perform better than AMG because non-linearity of the problem are retained on coarse levels (correction equation)

Multigrid for unstructured meshes

Aggregative Coarsening: fine grid cells are collected into a coarse grid element

Selective Coarsening: few fine grid cells are retained on the coarser grids...

Multigrid in Fluent

Level Cycling: V, W and F (W+V)

Multigrid in Fluent

Flexible Cycle

Restriction Criteria:

A coarser level is invoked as soon as the residual reduction rate is below a certain %

Termination Criteria:

The corrections are transferred to a finer level as soon as a certain residual level is reached

Multigrid in Fluent

Algebraic Multigrid Performance

Convergence for the segregated solver

Algebraic Multigrid Performance

Convergence for the coupled solver

Periodic Flows

Periodicity simply corresponds to matching conditions on the two boundaries

The velocity field is periodic BUT the pressure field is not. The pressure gradient drives the flow and is periodic. A pressure JUMP condition on the boundary must be specified

Periodic Flows – Set-Up

In the segregated solver periodicity can be imposed by fixing either the mass flow or the pressure drop

In the coupled solver periodicity is enforced by fixing the pressure drop

Define → Periodic Conditions

Segregated solver

Coupled Solver

An analytical solution of the Navier-Stokes equations (Poiseuille flow) can be derived:

Solution in the form u=u(y)

The pressure drop balances the viscous drag on the walls

Navier-Stokes equations

Velocity distribution in the channel

Averaged velocity

$$\nu \frac{d^2 u}{dy^2} = \frac{1}{\rho} \frac{dp}{dx}$$
$$u = \frac{1}{2\rho\nu} \left(-\frac{dp}{dx} \right) y (h - y)$$
$$\overline{u} = \frac{h^2}{12\rho\nu} \left(-\frac{dp}{dx} \right)$$

Problem set-up

Material Properties:

 $\rho = 1 \text{kg/m}^3$

 $\mu = 0.1 kg/ms$

Reynolds number:

h = 2m, $V_{ave} = 1m/s$

 $Re = \rho V_{slip}h/\mu = 20$

Boundary Conditions:

Periodicity $\Delta p=0.3$

No-slip top/bottom walls

Initial Conditions:

$$u = 1; v = p = 0$$

Exact solution:

$$V_{ave} = 1$$

Solver Set-Up

Coupled Solver

Discretization:

2nd order upwind

SIMPLE

Multigrid

V-Cycle

x-velocity distribution in the channel

Cell-centered values showed (no interpolation)

The error in this case CAN be computed with reference to the exact solution In this case the computed averaged velocity error is plotted

Quad-Mapping Tri-Paving

Overview of commercial CFD codes

About 30 packages.

Three major general-purpose products (covering ~50% of the market): FLUENT, StarCD, CFX

	Grid Type	Pressure Based	Density Based	Multigrid	System Solver	Discretization
FLUENT	Unstructured Mixed	SIMPLE SIMPLEC PISO	Coupled Implicit Preconditioned	Algebraic Geometric	Gauss-Seidel	UD/TVD QUICK
StarCD	Unstructured Mixed	SIMPLE SIMPISO PISO	-	-	Conjugate Gradient	UD/TVD QUICK CD
CFX	Unstructured Mixed	SIMPLE	-	Algebraic Coupled	ILU	UD/TVD QUICK CD