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1. Introduction

We study in this paper pairs (ω, X), where ω is a germ, at the origin in R
n, of an

integrable 1-form and X is a germ, at the origin, of a vector field tangent to (the germ
of) the foliation determined by ω (tangent to ω for short). We are, in particular, interested
in the topological stability of such pairs. When ω = df for some germ of a function f , the
vector field X has f as a first integral. In [4], Lara studied the local topological stability
of pairs (f, X), where f is a function with a Morse singularity and X is a vector field
tangent to the level sets of f . A complete classification of stable pairs is given in [4] for
the cases in which n = 3, 4, and for n � 5 if the index of the singularity of f is 0 or n.

We study here a more general situation, namely when the foliation is given locally by a
germ of an integrable 1-form, and deal with the following question: given a topologically
stable pair (ω, X), is ω a topologically stable 1-form? We prove here that this is the case
for germs of analytic pairs (Theorem 3.1). The proof uses the fact that in the analytic
case we can characterize all the vector fields X tangent to ω in terms of ω. (A similar
question can be asked regarding the stability of X; see § 2.)

We give a classification of stable pairs (Theorem 3.2) when ω has a non-degenerate
singularity, thus extending the results of Lara. When the index of the singularity of ω

is 2 or n−2, we restrict ourselves to the set of analytic 1-forms. We show in Theorem 3.4
that if ω is as above, then for any pair (ω, X) there exists a tangent pair (η, Y ) with η
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a smooth 1-form, which is close to (ω, X) but is not topologically equivalent to (ω, X),
that is, (ω, X) is not stable.

The case when ω is regular follows from results on bifurcations of vector fields (see
§ 2). The results in this paper are given in § 3 and some preliminaries are given in § 2.
We include an appendix containing one of Lara’s results and a summary of its proof.

We observe that tangent pairs are also studied by Mol [6], where he considers a
codimension-1 foliation G in P

3
C

which is invariant by a dimension-1 foliation F in P
3
C
.

Therefore, locally we have a tangent pair (ω, X) in C
3. Mol proved that there is an open

and dense set of dimension-1 foliations of degree d, such that if F is an element of this
subset, then there is no codimension-1 foliation G in P

3
C

which is invariant by F .

2. Preliminaries

Let U be an open set in R
n. We denote by Λr(U) (respectively, Λa(U)) the set of inte-

grable (respectively, analytic) differential 1-forms of class Cr in U , 0 � r � ∞, and
endow this set with the Whitney Ck-topology (0 � k � r). So ω ∧ dω ≡ 0 for all ω in
Λr(U) or Λa(U).

A point p ∈ U is a singularity of ω if ω(p) = 0. We shall assume that the singularities
of ω are isolated. A point p is a non-degenerate singularity of ω if the linear part of
ω at p is not degenerate, i.e. the determinant of the matrix of the 1-jet of ω at p is
not zero. (See [12] for a classification of singularities of 1-forms.) As ω is integrable, it
determines a codimension-1 foliation in U − {p}. This foliation is denoted by Fω. The
foliation Fgω = Fω, for any function g not vanishing in U (and of the same class as ω).
As we are only interested in the foliation Fω, we shall identify gω with ω, i.e. we consider
the Pfaff equation ω = 0.

We denote by Xr(U) (respectively, Xa(U)) the set of vector fields of class Cr in U ,
0 � r � ∞ (respectively, analytic), and endow this set with the Whitney Ck-topology
(0 � k � r). Let X ∈ Xr(U) (respectively, Xa(U)) and ω ∈ Λr(U) (respectively, ω ∈
Λa(U)). We say that X is tangent to ω if ω(x)(X(x)) = 0 for all x in U . That is, X(x)
is tangent to the leaf of Fω at x. We denote by Xr(ω) (respectively, Xa(ω)) the subset
of Xr(U) (respectively, Xa(U)) of vector fields tangent to ω. This subset is given the
induced topology of Xr(U) (respectively, Xa(U)). We observe that Xr(ω) is not empty.
Indeed, given a non-identically zero 1-form ω =

∑n
i=1 ai dxi, then

aj
∂

∂xi
− ai

∂

∂xj
∈ X

r(ω) for i �= j.

In the rest of the paper the notation (ω, X) is reserved for pairs where X is tangent
to ω, which we shall call tangent pairs.

Our interest is in the local behaviour of the pairs (ω, X) at a given point p ∈ U , which
we normally choose to be the origin. So we consider germs at p of integrable differen-
tial 1-forms ω (respectively, vector fields), i.e. equivalence classes of differential 1-forms
(respectively, vector fields) under the equivalence of being identical in some neighbour-
hood of p. As usual, properties on germs are checked on a representative of the germ,
and throughout the paper we use the same notation for a germ and its representative.
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We denote by Ir(p) (respectively, Ia(p)) the set of germs, at p ∈ R
n, of integrable

1-forms of class Cr, 0 � r � ∞ (respectively, analytic), and endow this set with the
Whitney Ck-topology (0 � k � r). When p is the origin, the sets Ir(0) and Ia(0) are
denoted by Ir and Ia, respectively. We shall also drop p from the notation below for
vector fields when it indicates the origin.

We denote by V r(p) (respectively, V a(p)) the set of germs at p ∈ R
n of vector fields

of class Cr, 0 � r � ∞ (respectively, analytic), and endow this set with the Whitney
Ck-topology (0 � k � r). The subset V r(ω)(p) (respectively, V a(ω)(p)) of V r(p) (respec-
tively, V a(p)) denotes the set of germs of vector fields tangent to ω. This subset is given
the induced topology of V r(p) (respectively, V a(p)).

We need the following definitions (also valid in the analytic category).

Definition 2.1.

(i) Two germs ω ∈ Ir and η ∈ Ir(p) are topologically equivalent if there exists a germ
of homeomorphism h : R

n, 0 → R
n, p such that h is a topological equivalence

between the (germs of) foliations Fω and Fη, i.e. taking representatives, the image
under h of the leaves of Fω are the leaves of Fη.

(ii) A germ ω ∈ Ir is Cs-topologically stable if a representative ω ∈ Λr(U) in some
neighbourhood U of the origin satisfies the following. For any neighbourhood U ′ ⊂
U of the origin, there exists a neighbourhood U ⊂ Λr(U) of ω in the Whitney Cs-
topology such that any η ∈ U has a germ at some point p ∈ U ′ which is topologically
equivalent to the germ of ω at the origin.

The notions of topological equivalence of germs and stable germs of vector fields are
defined in similar ways for differential 1-forms (Definition 2.1), where now the homeo-
morphism h preserves trajectories, i.e. oriented orbits of the vector field.

Definition 2.2. Let (ω, X) ∈ Ir × V r and (η, Y ) ∈ Ir(p) × V r(p) be two tangent
pairs. We say that (ω, X) and (η, Y ) are topologically equivalent if there exists a germ
of homeomorphism h : R

n, 0 → R
n, p such that

(i) h is a topological equivalence between ω and η,

(ii) if F is a leaf of Fω, then h|F is a topological equivalence between X|F and Y |h(F ).

We are seeking tangent pairs that are topologically stable, that is, tangent pairs with
the property that they are topologically equivalent to any nearby tangent pair. Here the
term ‘nearby’ needs to be clarified. The set Λr(U) (and Ir) can be given the Whitney
Cs-topology (s � r) and Xr(U) (and V r) the Whitney Ct-topology (t � r), so the set of
tangent pairs is given the induced topology of the product Cs × Ct-topology. It is also
of interest to study germs of vector fields that are tangent to a fixed foliation Fω, that
is, vector fields in Xr(ω) (or in V r(ω)).
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Definition 2.3. Let ω ∈ Ir and X ∈ V r(ω).

(i) We say that X is Ct-topologically stable if there exists a neighbourhood V ⊂ V r(ω)
of X in the Whitney Ct-topology such that, for any Y ∈ V, the pair (ω, X) is
topologically equivalent to (ω, Y ).

(ii) We say that the pair (ω, X) is Cs,t-topologically stable if a representative (ω, X) ∈
Λr(U) × Xr(U) in some neighbourhood U of the origin satisfies the following. For
any neighbourhood U ′ ⊂ U of the origin, there exist neighbourhoods U ⊂ Λr(U) of
ω in the Whitney Cs-topology and V ⊂ Xr(U) of X in the Whitney Ct-topology,
such that any pair (η, Y ) ∈ U × V has a germ at some point p ∈ U ′ which is
topologically equivalent to the germ of (ω, X) at the origin.

Our investigation is motivated by the following question: given a topologically stable
pair (ω, X) (in some topology), are ω and/or X topologically stable?

When n = 2 the integral curves of X ∈ V r(ω) coincide with the leaves of Fω. There-
fore, (ω, X) is stable if and only if X is topologically stable (see, for example, [2] for
a classification of stable germs of vector fields in R

2, 0). However, the problem is of a
different nature when n � 3.

If ω(0) �= 0, the problem becomes that of the classification of families of vector fields.
In fact we can fix the 1-form ω (for example, ω = dxn) and a pair (ω, X) ∈ Ir × V r

is stable if and only if X is stable in V r(ω) (see Remark 3.3 (1)). For example, when
n = 3 and ω = dx3 we have the following generic types which are topologically stable in
V r(dx3) in the topologies C0, C1, C2 and C3, respectively (see [9]):

(i) X(0) �= 0;

(ii) X|x3=c has a hyperbolic singularity at (0, 0, c);

(iii) X has a saddle-node singularity at the origin;

(iv) birth of a limit cycle.

In case (ii), for example, the pair (ω, X) is C1,1-stable in I1 × V 1 but X is clearly not
stable in the set of germs of vector fields in R

3, 0. Therefore, the stability of the pair
(ω, X) does not imply the stability of X in the set of germs of vector fields. However, it
is clear from Definition 2.3 that if (ω, X) is Cs,t-topologically stable in the set of tangent
pairs in Λr × Xr, then X is Ct-topologically stable in V r(ω).

We investigate next the stability of ω when (ω, X) is stable, and assume that ω(0) = 0.
Suppose that (ω, X) is stable (in some topology). Given any 1-form η close to ω, in order
to deduce that η is equivalent to ω, we need to find a vector field Y close to X and
tangential to η. Then the pair (η, Y ) is equivalent to (ω, X), as this pair is stable, and
hence η is equivalent to ω. The main difficulty is in finding such Y tangent to η. In the
next section, we characterize all analytic vector fields tangent to an analytic 1-form ω in
terms of ω. This allows us to deduce the stability of ω from that of (ω, X).
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3. Topological stability of pairs (ω, X)

We consider germs of analytic pairs (ω, X) and write ω =
∑n

i=1 ai dxi, where the ai are
germs of analytic functions. We set a = (a1, . . . , an) and denote by ã : C

n, 0 → C
n, 0

the germ of the complexification of a.

Theorem 3.1. Let ω ∈ Ia and suppose that the complexified foliation has an isolated
singularity at the origin. Let (ω, X) ∈ Ia × V a be a germ of a C1,1-topologically stable
analytic tangent pair. Then ω is C1-topologically stable in Ia.

Proof. We start by finding the germs of analytic vector fields tangent to ω. If X =
(X1, . . . , Xn), then it is tangent to ω if and only if

a1X1 + · · · + anXn = 0. (3.1)

Denote by On the set of germs of holomorphic functions C
n, 0 → C. Let G : (On)n →

On be the homomorphism defined by G(g1, . . . , gn) =
∑n

i=1 giãi. As the map ã is finite,
it follows that the kernel of G is generated by ãiej − ãjei, i < j, where the vector ei has
1 in the ith place and zeros elsewhere. (This follows from the fact that ã1, . . . , ãn form
an On-regular sequence (see [5, p. 123] for definition). Then ãn is On/On(ã1, . . . , ãn−1)-
regular. Suppose that g = (g1, . . . , gn) lies in the kernel of G. We have ãngn = 0 in
On/On(ã1, . . . , ãn−1), and so gn = 0 in the quotient ring. Writing gn = α1ã1 + · · · +
αn−1ãn−1, we subtract

∑n−1
i=1 αi(ãien − ãnei) from g to obtain an element of the kernel

whose last component vanishes. The result then follows by induction.)
The real parts of the generators of the kernel of G generate the real part of that kernel.

As the ai are real, it follows that any X satisfying equation (3.1) can be written in the
form

n∑
i,j=1, i<j

αij(aiej − ajei), (3.2)

where αij are germs of real analytic functions.
Suppose now that ω is not C1-topologically stable and let (ω, X) be a C1,1-stable

tangent pair, with X as in (3.2). We take representatives of ω and X in some neighbour-
hood U of the origin. (We can still write X as in (3.2), with its coefficients being the
representatives of the germs αij in U , shrinking U if necessary.)

Let η =
∑n

i=1 bi dxi be an analytic 1-form C1-close to ω in Λa(U) but not topologically
equivalent to ω. The vector field Y =

∑n
i,j=1, i<j αij(biej − bjei) in Xa(U), with αij the

coefficients of X in U , is tangent to η. It is clear that Y is C1-close to X and the
pair (ω, X) is not topologically equivalent to (η, Y ), which contradicts the hypothesis.
Therefore, ω is C1-topologically stable. �

We seek now examples of stable tangent pairs with ω(0) = 0. We shall suppose that
the origin of R

n is a non-degenerate singularity of ω in I∞ or in Ia. Then we can write
its 1-jet at the origin, in a suitable coordinate system, in the form j1ω = d(x2

1 + · · · +
x2

k − x2
k+1 − · · · − x2

n) (see, for example, [1]). We say that the singularity at the origin is
of index k. When n = 3 we have the following result.
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Figure 1. Morse–Smale vector field of north-pole–south-pole type.

(a) (b)

Figure 2. Generic vector fields tangent to the foliation of df = d(x2
1 + x2

2 − x2
3).

Theorem 3.2.

(a) Let ω ∈ I∞ and suppose that ω has a non-degenerate singularity of index 3 (or 0)
at the origin in R

3.

(a1) There exists an open and dense set A′ ⊂ V 2(ω) of vector fields C2-stable in
V 2(ω) whose restrictions to each leaf of Fω are of Morse–Smale north-pole–
south-pole type (see Figure 1).

(a2) For any X ∈ A′, the pair (ω, X) is C3,2-topologically stable in I∞ × V 2.

(b) Let ω ∈ Ia and suppose that ω has a non-degenerate singularity of index 2 (or 1)
at the origin in R

3.

(b1) There exist open sets B′, C′ ⊂ V 2(ω) with B′ ∪ C′ dense in V 2(ω) such that

(i) the vector fields in B′ are C1-stable in V 1(ω) and topologically equivalent
to (x2 + x3,−x1 − x3, x1 − x2) (see Figure 2a),

(ii) the vector fields in C′ are C2-stable in V 2(ω) and topologically equivalent
to (−x2 − x1x3, x1 − x2x3,−(x2

1 + x2
2)) (see Figure 2b).

(b2) For any X ∈ B′, the pair (ω, X) is C2,1-topologically stable in Ia × V 1.

(b3) For any X ∈ C′, the pair (ω, X) is C3,2-topologically stable in Ia × V 2.

Proof. (a1) We can assume, without loss of generality, that j1ω = d(x2
1 + x2

2 + x2
3).

Then ω has an integrating factor [7]; that is, there exist germs of functions f, g : R
3, 0 →

R, with 0 a non-degenerate critical point of f and g(0) �= 0, such that ω = g df . A C∞



Vector fields tangent to foliations 771

change of coordinates sets df = d(x2
1 +x2

2 +x2
3). As ω is a multiple of df , the topological

stability of X ∈ V 2(ω) is the same as that of (f, X) in Lara’s work. The result then
follows by Lara’s theorem (Theorem A 2 (a)). If φ is the diffeomorphism that sets ω to
g df , then we take A′ = {φ−1

∗ Z, Z ∈ A}, where A is as in Appendix A.

(a2) Let (ω, X) be a tangent pair and assume, without loss of generality, that ω =
d(x2

1 + x2
2 + x2

3). Let (η, Y ) be a tangent pair close to (ω, X) in some topology to be
determined below. Then there exists a C∞-diffeomorphism h such that (h∗η, h∗Y ) =
(w, h∗Y ). In order to use (a1), X must be in A and h∗Y must satisfy the properties
given below. We claim that such a diffeomorphism exists as long as η is C3-close to ω.
We prove the claim in two steps. We first show that h can be taken to have a 3-jet,
at the origin, the identity. We then show that, for such an h, h∗Y satisfies the desired
properties.

We set η = df (see the argument in (a1)) and make linear changes of coordinates
(close to the identity) so that j2f = x2

1 + x2
2 + x2

3. Write f = f2 + f3 + f4 + · · · , where fi

are homogeneous polynomials of degree i. As η is C3-close to ω = d(x2
1 + x2

2 + x2
3), the

functions f3 and f4 are C3- and C4-close to zero, respectively, and indeed C∞-close to
zero. Let h = (x1 + k2, x2 + l2, x3 + m2), where k2, l2, m2 are homogeneous polynomials
of degree 2. Then the homogeneous part of degree 3 in f ◦ h is given by

2x1k2 + 2x2l2 + 2x3m2 + f3.

As f3 is C∞-close to zero, we can make the above expression vanish with k2, l2, m2 well
chosen and C∞-close to zero. For example, we can take

k2 = −f3(x1, x2, x3) − f3(0, x2, x3)
2x1

,

l2 = −f3(0, x2, x3) − f3(0, 0, x3)
2x2

,

m2 = −f3(0, 0, x3)
2x3

.

We can now suppose that j3f = x2
1 +x2

2 +x2
3. Repeating the above process, we eliminate

the terms of degree 4 in f by a diffeomorphism of the form h = (x1 +k3, x2 + l3, x3 +m3),
where k3, l3, m3 are homogeneous polynomials of degree 3 satisfying

2x1k3 + 2x2l3 + 2x3m3 + f4 = 0.

We choose, as above, a solution with k3, l3 and m3 C∞-close to zero. We can now suppose
that j4f = x2

1 + x2
2 + x2

3. One can show, by applying [11, Proposition 4.4.1], that there
exists a germ of a diffeomorphism h, with j3h the identity, such that f ◦h = x2

1 +x2
2 +x2

3.
(The idea in the following step was suggested by the referee.) We know that h∗Y ∈

V 2(ω) as h∗η = ω. Let λ and b (respectively, λ′ and b′) be the constants associated to X

(respectively, h∗Y ) in Appendix A, and suppose that X ∈ A. It follows from the proof
of Theorem A 2 that, for (ω, h∗Y ) to be topologically equivalent to (ω, X), it is sufficient
for h∗Y ∈ A (i.e. λ′b′ �= 0) and for b′ to have the same sign as b. The constants λ′ and b′
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depend only on j2(h∗Y ) at the origin. However, the 3-jet of h is the identity, so λ′ and b′

depend only on j2Y at the origin. If we take Y to be C2-close to X, then (λ′, b′) is close
to (λ, b) (see the proof of Theorem A 2). So, in this case, h∗Y ∈ A and b′ have the same
sign as b. Consequently, (ω, h∗Y ) is topologically equivalent to (ω, X).

(b) The difference here is that if ω has index 2 (or 1) it has no integrating factor in the
smooth category but does have one in the analytic category [8]. So, assuming that ω is
analytic, we can proceed as in (a). Then the results in (b1) follow from Lara’s work (as in
the proof of (a1)) and those in (b2) and (b3) by using the same argument as in the proof
of (a2). If φ is the diffeomorphism that sets ω to g df , then we take B′ = {φ−1

∗ Z, Z ∈ B}
and C′ = {φ−1

∗ Z, Z ∈ C}, where B and C are as in Appendix A. �

Remark 3.3.

(1) Following the argument in the proof of Theorem 3.2 (a2), the study of the topolog-
ical stability of tangent pairs (ω, X) when ω is regular also reduces to the study
of X ∈ V r(ω). Then the pairs (w, X) in R

3, 0 in § 2 are topologically stable in the
topologies C0,0, C1,1, C2,2 and C3,3, respectively, for the cases (i)–(iv).

(2) Lara’s results for n � 4 (Remark A 3) can also be generalized to C∞ (respectively,
analytic) 1-forms ω if the index is distinct from 2 or n − 2 (respectively, equal to 2
or n − 2). The topological stability of pairs (ω, X), in appropriate topologies, can
be dealt with as in Theorem 3.2.

In Theorem 3.2 (b) when the index of the singularity of ω is 2 or 1, we restricted
ourselves to the set analytic 1-forms. We show below that there are no topologically
stable pairs (ω, X) in the smooth category when ω is analytic and has a non-degenerate
singularity of index 2 or n − 2.

Medeiros showed in [3] that the stable 1-form ω1 = xdx+y dy − (z1 dz1 + · · ·+ zl dzl),
l = n − 2 (the case of Theorem 3.2 (b) when n = 3), in the set of analytic 1-forms is not
topologically stable in the set of smooth 1-forms. Indeed, consider the following 1-form:

β =

⎧⎨
⎩

εr exp(−1/r)
x2 + y2 (−y dx + xdy) if r > 0,

0 if r � 0,
(3.3)

where r = x2 + y2 − (z2
1 + · · · + z2

l ), l = n − 2. One can choose ε small enough so that
β is C∞-close to zero. The 1-form ω1 + β is integrable, is C∞-close to ω1 but is not
topologically equivalent to ω1, as the two 1-forms have distinct limit sets [3]. We use this
result to show the following.

Theorem 3.4. Let ω ∈ Ia. Suppose that the origin is a non-degenerate singularity of
index 2 or n − 2 of ω. Then, for any X ∈ V ∞(ω), there exists a tangent pair (η, Y ) ∈
I∞ × V ∞ which is C∞,1-close to (ω, X) but is not topologically equivalent to (ω, X).

Proof. As ω is analytic, it admits an analytic first integral [8]. In fact, ω is analytically
equivalent to ω1 = xdx+y dy−(z1 dz1 + · · ·+zl dzl), where l = n−2, in some coordinate
system. So it is enough to consider tangent pairs (ω1, X).
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Given a tangent pair (ω1, X), (ω1, jkX) is also a tangent pair, for any k-jet of X at
the origin, with k � 1 [4, Lemma II-3]. Observe that jkX is Ck-close to X. Now, as the
tangent pair (ω1, jkX) is analytic and the complexified foliation of ω1 has an isolated
singularity, we have

jkX =
n∑

i,j=1, i<j

αij(aiej − ajei)

for some germs of analytic function αij (proof of Theorem 3.1).
Let β be as in (3.3) and set ω̃ = ω1 + β. We seek a vector field Z ∈ V ∞ (Ck-close

to zero), such that jkX + Z is tangent to ω̃. So we need ω̃(jkX + Z) = 0, that is
(ω1 + β)(jkX + Z) = 0. Equivalently,

ω1(Z) + β(jkX + Z) = 0. (3.4)

Let Z be identically zero when r = x2 + y2 − (z2
1 + · · · + z2

l ) � 0, and write Z =
(Z1, . . . , Zn) when r > 0. Substituting in (3.4) yields an equation that can be rearranged
as follows:

x(Z1 + δZ2 + α12xδ) + y(−δZ1 + Z2 + α12yδ) +
n∑

j=3

zj−2(−Zj + α2jxδ − α1jyδ) = 0,

where δ = εr exp(−1/r)/(x2 +y2) and αij are the coefficients of jkX above. We can now
find Z by setting the quantities in brackets to be zero. We obtain

Z1 = α12(−x + yδ)δ/(1 + δ2),

Z2 = −α12(y + xδ)δ/(1 + δ2),

Zj = (α2jx − α1jy)δ, j = 3, . . . , n.

The vector field jkX + Z is tangent to ω̃ and is Ck-close to X. As ω̃ is not equivalent
to ω1 [3], it follows that (ω1, X) is not topologically equivalent to (ω̃, jkX + Z), that is,
(ω1, X) is not C∞,k-topologically stable. Clearly, we can take k = 1. �
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Appendix A.

We state in this appendix one of Lara’s results in [4] and summarize his proof. Before
doing so, we recall a classification theorem of Takens. Let X ∈ V k and denote by X1

the 1-jet of X at the origin. Denote by Hm the real vector space of vector fields whose
coefficients are homogeneous polynomials of degree m. Let Tm : Hm → Hm be the
linear map given by Tm(Z) = [X1, Z], where [· , ·] denotes the Lie bracket. One can write
Hm = Bm ⊕ Gm, where Bm = Im(Tm) and Gm is a complementary space.
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Theorem A 1 (Takens [10, Theorem 2.1]). Let X, X1, Bm and Gm be as above.
Then, for l � k, there is a germ of a C∞-diffeomorphism φ : R

n, 0 → R
n, 0 such that

φ∗(X) = X ′ is of the form

X ′ = X1 + g2 + · · · + gl + Rl,

where gi ∈ Gi, i = 2, . . . , l, and Rl is a vector field, the component functions of which all
have zero l-jet.

The proof is by induction on l. For l = 1, the assertion is trivially true. Suppose that
X = X1+g2+· · ·+gl−1+Rl−1. We can then write Rl−1 = bl+gl+Rl with bl ∈ Bl. There
exists Y ∈ H l such that bl = T l(Y ). The diffeomorphism φ is then given by integrating
Y over time t = −1.

Lara studied in [4] the local topological stability of pairs (df, X), where f is a function
with a Morse singularity. A complete classification of stable pairs is given in [4] for the
cases when n = 3, 4, and for n � 5 if the index of the singularity of f is 0 or n. One
can take, without loss of generality, the function f in a normal form. The main theorem
in [4] for the case n = 3 is the following.

Theorem A 2 (Lara [4, Theorem 1]).

(a) If f = x2
1 + x2

2 + x2
3, then there exists an open and dense set A ⊂ V 2(df) of vector

fields C2-stable in V 2(df) whose restrictions to each leaf of Fdf are of Morse–Smale
north-pole–south-pole type (see Figure 1).

(b) If f = x2
1 + x2

2 − x2
3, then there exist open sets B, C ⊂ V 2(df) with B ∪ C dense in

V 2(df) such that

(i) the vector fields in B are C1-stable in V 1(df) and topologically equivalent to
(x2 + x3,−x1 − x3, x1 − x2) (see Figure 2a),

(ii) the vector fields in C are C2-stable in V 2(df) and topologically equivalent to
(−x2 − x1x3, x1 − x2x3,−(x2

1 + x2
2)) (see Figure 2b).

Proof. The proof in [4] is very detailed and lengthy. We give a brief summary here,
highlighting the main ideas. The theorem is proved in several steps, with the first step
concerning the reduction of X ∈ V k(df) to some pre-normal form.

(a) A vector field X tangent to the level sets of f has the properties that X(0) = 0
and X1 = DX(0) is given by an antisymmetric matrix. Thus, the eigenvalues of X1 are
λ1 = 0, λ2 = iλ and λ3 = −iλ (λ ∈ R). One can then change coordinates via a rotation
and write X1 = λT with

T = −x2
∂

∂x1
+ x1

∂

∂x2
.

Using Takens’s theorem (Theorem A 1), there exists a diffeomorphism φ such that φ∗X ∈
V 2(df) and φ∗X = λT +X2 +R2, with j2R2 ≡ 0 and X2 in the kernel of the linear map
T 2. The kernel of T 2 is generated by x3T and

x3R − r2 ∂

∂x3
,
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with

R = x1
∂

∂x1
+ x2

∂

∂x2
and r2 = x2

1 + x2
2.

So

X2 = ax3T + b

(
x3R − r2 ∂

∂x3

)
for some a, b ∈ R.

Let
A = {X ∈ V 2(df) : λb �= 0}.

If X ∈ A, then the restriction of φ∗X (and hence of X) to each leaf of Fdf is of
Morse–Smale north-pole–south-pole type, and the poles are the only singularities. The
sign of b determines which pole is an attractor or repulsor. Using blow-up, Lara showed
that, in some neighbourhood of the origin, the poles of φ∗X = λT + X2 + R2 on the
spheres Sr = f−1(r) occur inside some cone C(s) = {(x1, x2, x3) : x2

1 + x2
2 = sx2

3}, s > 0.
Let Y ∈ A, then there exists a diffeomorphism ψ such that ψ∗Y = λ′T + Y2 + R′

2
(as above for X). Let b′ be the constant associated to Y2, and suppose that b′ has the
same sign as b. On any given sphere Sr (with r small enough), the type of a given pole
of ψ∗Y |Sr (attractor/repulsor) is the same as that of the nearby one of φ∗X|Sr . We can
suppose that the cone C(s) contains the singularities of ψ∗Y (otherwise take C(s) as the
cone associated to ψ∗Y ). Lara then constructed the topological conjugation h between
(df, φ∗X) and (df, ψ∗Y ) as follows:

(1) h(x) = x if x ∈ ∂C(s) with x3 > 0;

(2) h sends the north poles (respectively, south poles) of φ∗X on Sr to the north poles
(respectively, south poles) of ψ∗Y on the same sphere;

(3) if x is not a singularity of φ∗X, let t(x) be the time such that φ∗Xt(x)(x) ∈ ∂C(s);
then h(x) = ψ∗Y−t(x)(φ∗Xt(x)(x)) (observe that one can now conclude that (df, X)
and (df, Y ) are topologically equivalent).

Let Y ∈ V 2(df) be C2-close to X ∈ A. Then Y ∈ A and b′ has the same sign
as b. Indeed, the constant λ′ is obtained from the eigenvalues of j1Y at the origin, so
λ′ is close to λ, and hence λ′ �= 0. Also, Y1 = λ′T and X1 = λT , so the linear map
T 2

Y = [Y1,−] : H2 → H2 is a scalar multiple of T 2
X = [X1,−] : H2 → H2. Consider the

decomposition H2 = B2⊕G2 with B2 = Im(T 2
X) = Im(T 2

Y ) and G2 = ker(T 2
X) = ker(T 2

Y )
in the sketch of the proof of Takens’s theorem (Theorem A 1). Then the hypothesis
implies that Y2 is C∞-close to X2. Therefore, b′ is close to b, so it has the same sign as b.
Consequently, (df, Y ) is equivalent to (df, X).

(i) Suppose now that f = x2
1 + x2

2 − x2
3. If X ∈ V 2(df), then

DX(0) =

⎛
⎜⎝

0 α β

−α 0 γ

β γ 0

⎞
⎟⎠
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Σ

Sc > 0

Sc < 0

p1(c)

p(c)

C(c)

p1(c)

q(c)

S

(x, X)

x

Λ
q(c, X)

p(c, X)

C(c, X)

Λ+Λ
Λ

u

p1(c)s

−

β

(x, X)α

(a) (b) (c)

Figure 3. The construction of the topological equivalence when f = x2
1 + x2

2 − x2
3.

in an appropriate coordinate system. The eigenvalues of DX(0) are 0 and

±
√

β2 + γ2 − α2.

Let
B = {X ∈ V 1(df) : β2 + γ2 − α2 > 0}.

Let Sc = f−1(c) and X ∈ B. Then X|Sc>0 has two singularities (both saddles) and
these lie on a smooth curve L tangent to the kernel of DX(0) (Figure 2a). The vector
field X|Sc<0 has no singularities. Let Σ be a smooth surface containing the curve L,
transverse to Sc>0 and such that Σ ∩ Sc<0 = ∅ and Σ ∩ S0 = {0} (Figure 3a). Write
X = (f1, f2, f3) and let S be the surface given by f3(x1, x2, x3) = 0. Then S is smooth
(as β = ∂f3/∂x1(0) �= 0 or γ = ∂f3/∂x2(0) �= 0) and contains the singularities of X|Sc>0

(Figure 3b). Let P be the plane x3 = x̄3, with x̄3 a positive constant close to zero. The
vector field X is transverse to P ∩ Sc except at two points denoted by p(c) and q(c)
(Figure 3c).

The surface S intersects Sc on a curve C. Let p1(c) and p2(c) be the singularities of
X|Sc>0 , and denote by ps

i(c) (respectively, pu
i (c)), i = 1, 2, the intersection of the stable

(respectively, unstable) manifold of X|Sc>0 with P . The set Λ = P ∩ S divides P into
two regions, Λ− which contains ps

1(c) and ps
2(c) and Λ+ which contains pu

1(c) and pu
2(c);

see Figure 3. (We add the letter X to the above notation when necessary.)
Given Y ∈ B, one can consider the same plane P and construct the surfaces Σ(Y ),

S(Y ) and the special curves, points and regions in a similar way as above. A topological
equivalence between X and Y , preserving the level sets of f , is constructed from a
homeomorphism h : P → P satisfying the following properties:

• h maps every circle P ∩ Sc to itself with the points p(c, X), q(c, X), pσ
i (c, X),

i = 1, 2, σ = u, s, sent to their corresponding points for Y ;

• the region Λ−(X) is mapped to Λ−(Y ) in such a way that the arcs [p(c, X),
ps
1(c, X)], [p1(c, X)s, ps

2(c, X)] and [ps
2(c, X), q(c, X)] are also sent to their corre-

sponding arcs for Y ;

• if x ∈ Λ+(X), let γ(x, X) be the trajectory of X through x at t = 0. Then h(x) =
γ(h(a(x)), Y ) ∩ Λ+(Y ) if a(x) = γ(x, X) ∩ Λ−(X) �= ∅, otherwise no condition is
imposed on h (i.e. it can be any homeomorphism if γ(x, X) ∩ Λ−(X) = ∅).
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The map h is then extended as follows to the upper semi-space bounded by Σ(X),
with h(Σ(X)) = Σ(Y ). If c < 0 and x ∈ Sc, then the trajectory γ(x, X) determines a
point β(x, X) on the plane P and a point α(x, X) on the curve C(c, X) such that x is
between α(x, X) and β(x, X) (Figure 3c). The point h(x) is defined as the unique point
on Sc such that h(β(x, X)) = β(h(x), Y ) and

cY [h(β(x, X)), h(x)]
cY [h(β(x, X)), α(h(x), Y )]

=
cX [β(x, X), x]

cX [β(x, X), α(x, Y )]

(where cZ [p, q] denotes the length of the arc of the trajectory of a vector field Z delimited
by the points p and q). The extension of the map h is defined similarly on Sc�0 by sliding
along integral curves and using the definition of h on the plane P . The same approach
is used to define h on the lower semi-space delimited by Σ(X).

The above construction works for any X, Y ∈ B. If Y ∈ V 1(df) is C1-close to X, then
the constants α′, β′, γ′ associated to Y are sufficiently close to those associated to X. So
Y ∈ B and therefore (df, Y ) is equivalent to (df, X).

(ii) When β2 + γ2 − α2 < 0 the eigenvalues of DX(0) are of the form λ1 = 0, λ2 = iλ

and λ3 = −iλ. Following the arguments in case (a), there is a diffeomorphism φ such
that φ∗X = λT + X2 + R2 with T , X2, R2 as in case (a). Let

C = {X ∈ V 2(df) : β2 + γ2 − α2 < 0, b �= 0}.

When b �= 0, X has two singularities on Sc<0, one is an attractor and the other a
repulsor. The type is completely determined by the sign of b. Given Y ∈ C with the
associated constants b′ having the same sign as b, Lara constructed a homeomorphism
that conjugates X and Y while preserving the foliation of df by combining the approaches
in the proofs of the cases (a) and (i). If Y ∈ V 2(df) is C2-close to X ∈ C, then Y ∈ C
and b′ has the same sign as b, so (df, Y ) is equivalent to (df, X). �

Remark A 3. In his thesis, Lara also treated the case n = 4 with f =
∑4

i=1 ±x2
i and

n � 5 with f =
∑n

i=1 x2
i . He proved results on the topological stability of vector fields in

V 3(df) in both cases.
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