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Abstract. We study asymptotic curves on generically immersed surfaces in R5. We
characterise asymptotic directions via the contact of the surface with flat objects (k-
planes, k = 1–4), give the equation of the asymptotic curves in terms of the coefficients
of the second fundamental form and study their generic local configurations.
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1. Introduction

Singularity theory made important contributions to the study of extrinsic differential
geometry of submanifolds in Euclidean spaces. The idea is to define some natural
families of functions or maps on the submanifold and investigate the singularities of
such maps. The various types of singularities capture some aspects of the geometry of
the submanifold. For example, given a generic smooth surface M ⊂ R3, the projection
along a tangent direction u at q ∈M to a transverse plane is right-left equivalent to a
cusp (x, xy+ y3) if u is an asymptotic direction. The singularity of the projection is of
type lips/beaks (i.e. right-left equivalent to (x, x2y ± y3)) if q is a parabolic point.

For surfaces in R3, asymptotic directions and parabolic points are characterised in
Differential Geometry textbooks in terms of the normal curvature (see for example
[12]). However, this approach does not generalise easily to manifolds immersed in
higher dimensional spaces. A better approach is to define these concepts in terms
of the singularities of maps associated to the contact of the surface with flat objects
(k-planes). For 2-dimensional surfaces in R4 this is done in [17] and [28] in terms of
the contact of the surface with 3-dimensional planes and in [7] in terms of its contact
with lines. For 2-dimensional surfaces in Rn, n ≥ 5, this is done in [31] and [34] in
terms of the contact of the surface with (n− 1)-dimensional planes. (See also [26] and
[28, 29, 31] for definitions of asymptotic directions using the curvature ellipse.)

We characterise in this paper the asymptotic directions of an immersed 2-dimensional
smooth surface M in R5 in terms of the contact of the surface with k-planes, k =
1, 2, 3, 4 (§3). We obtain the differential equation of the asymptotic curves in terms
of the coefficients of the second fundamental form (§4) and study the generic local
configurations of these curve (§5). Some global consequences are given in §6.

Some aspects of the geometry of surfaces in R5 is studied in [31] and [29]. The
choice of the Euclidean space R5 is related to the concept of kth-regular immersion
of a submanifold M in Euclidean spaces. This is introduced independently by E. A.
Feldman [16] and W. Pohl [36]. The cases n = 3, 4 and n ≥ 7 are already studied
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(see §6 for details). The case n = 5 appears to be more complicated and few results
are known in this direction so far (see [13] for some partial results). Our study in this
paper is part of a project of understanding the geometry of surfaces in R5.

2. Preliminaries

Let M be a 2-dimensional smooth surface in the Euclidean space R5 defined locally
by an embedding f : R2 → R5, and denote by TM and NM its tangent and normal
bundles. Let ∇̄ denote the Riemannian connection of R5. Given any vector field Z on
M we denote by Z̄ its extension to an open set of R5. Given two tangent vector fields

X and Y on M , we define the Riemannian connection on M as ∇XY =
(∇̄X̄ Ȳ

)>
,

which is the orthogonal projection of ∇XY to the tangent plane of M . Let X (M)
(resp. N (M)) denote the spaces of tangent (resp. normal) fields on M . Then the
second fundamental form on M is given by

α : X (M)×X (M) −→ N (M)
(X, Y ) 7−→ ∇̄X̄ Ȳ −∇XY.

This is a well defined bilinear symmetric map. Given a normal field v on M the map
α induces a bilinear symmetric map

IIv : TM × TM −→ R
(X, Y ) 7−→ 〈α(X, Y ), v〉.

The map IIv is also referred to as the second fundamental form along v. The shape
operator associated to the normal field v is defined by

Sv : TM −→ TM

X 7−→ −(∇̄X̄ v̄
)>

This is a self-adjoint operator and satisfies IIv(X, Y ) =< Sv(X), Y > .

Let q ∈M and {e1, e2, e3, e4, e5} be frame in a neighbourhood of q, such that {e1, e2}
is a tangent frame and {e3, e4, e5} is a normal orthonormal frame in this neighbourhood.
The matrix of the second fundamental form α of f at the point q with respect to this
frame is given by

α(q) =



a3 b3 c3
a4 b4 c4
a5 b5 c5


 ,

where ai = 〈fxx, ei〉 , bi = 〈fxy, ei〉 and ci = 〈fyy, ei〉, i = 3, 4, 5.
The second fundamental form α(q) induces a linear map

Aq : NqM → Q2

where Q2 denotes the space of quadratic forms in two variables, and Aq(v) is the
quadratic form associated to IIv at q. We shall write Aq(v) = IIv(q). If v ∈ NqM is
represented by its coordinates (v3, v4, v5) with respect to the basis {e3, e4, e5}, then

Aq(v3, v4, v5) = v3(d
2f · e3) + v4(d

2f · e4) + v5(d
2f · e5).

We define the following subsets of M :

Mi = {q ∈M | rankαv(q) = i}.
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It is shown in [31] that for generically immersed surface in R5, M = M3 ∪M2, with
M2 a regular curve on M . Let C denote the cone of degenerate quadratic forms in Q2.
Then we have the following characterisation of points on M .

If q ∈M3, then Aq has maximal rank, so A−1
q (C) is a cone in NqM .

If q ∈ M2, the image of Aq is a plane through the origin in Q2. We can classify the
points on M2 according to the relative position of this plane with respect to the cone
C. We have the following three cases.

(a) Hyperbolic type (denoted by Mh
2 ): these are the points where ImAq ∩C consists

of two lines. In this case A−1
q (C) is the union of two planes intersecting along the line

kerα(q).
(b) Elliptic type (denoted by M e

2 ): these are the points where ImAq ∩ C consits of
the singular point of C. In this case A−1

q (C) = kerα(q) is a line.
(c) Parabolic type (denoted by Mp

2 ): these are the points where ImAq is tangent to
C along a line. In this case A−1

q (C) is a plane containing the line kerα(q).

In all the paper, we assume q to be the origin and take M locally in Monge form

(1) φ(x, y) = (x, y,Q1(x, y) + f 1(x, y), Q2(x, y) + f 2(x, y), Q3(x, y) + f 3(x, y)),

where the f i, i = 1, 2, 3 are germs of smooth functions with zero 2-jets at the origin,
and Q = (Q1, Q2, Q3) is a triple of quadratic forms. The flat geometry of submanifolds
in Rn is affine invariant ([5]), so we can make linear changes of coordinates in the source
and target and reduce Q to one of the following normal forms:

– (x2, xy, y2) if and only if q ∈M3,
– (xy, x2 ± y2, 0) if and only if q ∈Mh

2 (resp. q ∈M e
2 ) for the + (resp −) case,

– (x2, xy, 0) if and only if q is an Mp
2 -point.

We shall write
j3f 1 = a30x

3 + a31x
2y + a32xy

2 + a33y
3,

j3f 2 = b30x
3 + b31x

2y + b32xy
2 + b33y

3,
j3f 3 = c30x

3 + c31x
2y + c32xy

2 + c33y
3.

A tangent vector aφx(x, y)+ bφy(x, y) at the point φ(x, y) will be identified with the
vector (a, b) in R2.

We need the following notation from singularity theory (see [42]). Let En be the local
ring of germs of functions f : Rn, 0 → R and mn the corresponding maximal ideal. We
denote by E(n, p) the p-tuples of elements in En.

Let A = Diff(Rn, 0)×Diff(Rp, 0) denote the group of right-left equivalence which
acts smoothly on mn.E(n, p) by (h, k).f = k ◦ f ◦ h−1.

Given a map-germ f ∈ mn.E(n, p), θf denotes the En-module of vector fields along
f . We set θn = θIRn and θp = θIRp . One can define the homomorphisms tf : θn → θp,
with tf(ψ) = Df.ψ, and wf : θn → θp, with wf(φ) = φ ◦ f .

The extended tangent space to the A-orbit of f at the germ f is given by

LeA.f = tf(θn) + wf(θp)
= En.{fx1 , . . . , fxn}+ f ∗(Ep).{e1, . . . , ep},
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where subscripts denote partial differentiation, e1, . . . , ep the standard basis vectors of
Rp considered as elements of E(n, p), and f ∗(mp) the pull-back of the maximal ideal in
Ep. The Ae-codimension is given by

Ae-codim(f) = dimR(E(n, p)/LAe.f).

We denote by Jk(n, p) the space of kth order Taylor expansions without constant
terms and write jkf for the k-jet of f . A germ is said to be k−A-determined if any g
with jkg = jkf is A-equivalent to f (notation: g ∼ f). The k-jet of f is then called a
sufficient jet.

Various classifications (i.e. the listing of representatives of the orbits) of finitely
A-determined germs were carried out by various authors for low dimensions n and p.
(We shall give references in the appropriate places.)

Let X be a manifold and G a Lie group acting on X. The modality of a point
x ∈ X under the action of G on X is the least number m such that a sufficiently small
neighbourhood of xmay be covered by a finite number ofm-parameter families of orbits
(see [1]). The point x is said to be simple if its modality is 0, that is, a sufficiently
small neighbourhood intersects only a finite number of orbits. The modality of a finitely
determined map-germ is defined to be the modality of a sufficient jet in the jet-space
under the action of the jet-group.

In all the paper, a property is called generic if it is satisfied by a residual subset of
immersions φ : M → R5, where the later is endowed with the C∞-Whitney topology.
A given immersion (surface) is called generic if it belongs to a residual subset which is
determined by the context in consideration.

3. Characterisations of asymptotic directions

Asymptotic directions on surfaces in R5 are introduced in [31] in terms of the contact
of the surface with 4-dimensional planes. We recall below the definition in [31] of the
asymptotic directions and characterise these directions in terms of the contact of the
surface with k-planes, k = 1, 2, 3, 4.

3.1. Asymptotic directions and contact with 4-planes. The contact of the sur-
face with 4-dimensional planes is measured by the singularities of the height function

H : M × S4 −→ R× S4

(q, v) 7−→ (hv(q), v)

where hv(q) = 〈φ(q), v〉. A height function hv has a singularity at q ∈M if and only if
v ∈ NqM .

It follows from a general result of Montaldi [33] (see also Looijenga’s Theorem in
[27]) that for a residual set of immersions φ : M → R5, the family H is a generic family
of mappings. (The notion of a generic family is defined in terms of transversality to
submanifolds of multi-jet spaces, see for example [18].) This means that the singulari-
ties of hv that occur in an irremovable way in the family H are those of Ae-codimension
≤ 4 (the dimension of the parameter space S4). So hv has generically a singularity
of type Ak≤5, D

±
4 or D5 (see [1] for notation) and these are versally unfolded by the

family H.
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We define the flat ridge of M as the set of points where the height function, along
some normal direction, has a singularity of type Ak with k ≥ 4. The flat ridge is
generically either empty or is a regular curve of A4-points. The A5-points form isolated
points on this curve. These points are called higher order flat ridge points.

It is shown in [31] that for a generic surface, q ∈ M3 if and only if hv has only
Ak-singularities for any v ∈ TqM . A point q ∈ Mh

2 ∪M e
2 (resp. q ∈ Mp

2 ) if and only if
there exists v ∈ NqM such that hv has a singularity of type D±

4 (resp. D5) at q. This
direction v is called the flat umbilic direction.

Given v ∈ NqM , the quadratic forms IIv(q) and the Hessian Hess(hv)(q) are equiva-
lent, up to smooth local changes of coordinate in M . So we can identify the quadratic
form Aq(v) with Hess(hv)(q).

A direction v ∈ NqM is said to be degenerate if q is a non-stable singularity of hv (i.e.
hv has an Ae-codimension ≥ 1 singularity at q). In this case, the kernel of the Hessian
of hv, ker(Hess(hv)(q)), contains non zero vectors. Any direction u ∈ ker(Hess(hv)(q))
is called a contact direction associated to v.

A unit vector v = (v3, v4, v5) ∈ NqM is called a binormal direction if hv has a
singularity of type A3 or worse at q. (They are labelled binormal by analogy to the
case of curves in R3.) We have the following result where we assume, without loss of
generality, that v5 6= 0.

Proposition 3.1. ([31]) Let q be an M3-point. Then there are at most 5 and at least 1
binomial directions at q. If M is taken in Monge form (1), then the binomial directions
at the origin are along (1

2
v2

4, v4, 1) with

c30 + (2b30 − c31)
v4

2
+ (a30 − 2b31 + c32)

v2
4

4
− (a31 − 2b32 + c33)

v3
4

8
+ (a32 − 2b33)

v4
4

16
− a33

v5
4

32
= 0.

Definition 3.2. ([31]) Let q ∈M and v ∈ NqM be a binormal direction. An asymptotic
direction at q is any contact direction associated to v.

Remark 3.3. At an M3-point q the height function hv has only singularities of type Ak.
So to any binormal direction at q is associated a unique asymptotic direction. It follows
from Proposition 3.1 that there are at most 5 and at least 1 asymptotic directions at
any M3-point. At a point q on the M2 curve, the height function along the flat umbilic
direction has generically a D4 or a D5 singularity, so ker(Hess(hv)(q)) = TqM and
every tangent direction at q could be considered to be asymptotic. However, we shall
identify in §3.2 some special directions in TqM and will reserve the label asymptotic
directions at an M2-point for these special directions.

Asymptotic directions are also characterised in [31] in terms of normal sections of
M . Let v be a degenerate direction at q ∈ M3 (so rank(Hess(hv)(q)) = 1), and let
θ be a tangent direction in ker(Hess(hv)(q)). We denote by γθ the normal section
of the surface M in the tangent direction θ, that is, γθ is the curve obtained by the
intersection of M with the 4-space Vθ = NqM ⊕ 〈θ〉.
Proposition 3.4. ([31]) Let q ∈ M3 and let v ∈ NqM be a degenerate direction. Let
θ be a tangent direction in ker(Hess(hv)(q)). Then θ is an asymptotic direction if and
only if v is the binormal direction at q of the curve γθ in the 4-space Vθ.
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The analysis of the contact of the normal sections of M with 3-planes allows us to
characterise the flat ridge as follows.

Given a curve γ : R → Rn, consider its Frenet-Serret frame {T,N1, · · · , Nn−1} and
the corresponding curvature functions κ1, . . . , κn−1. We say that a point q = γ(t0) is a
flattening of γ if κn−1(t0) = 0. The point q is a degenerate flattening when κn−1(t0) =
κ′n−1(t0) = 0

Proposition 3.5. Let q ∈ M3 and let v ∈ NqM be a binormal direction. Let θ be
its corresponding asymptotic direction and γθ the corresponding normal section of M .
Then

(1) q = γθ(0) is a flat ridge point of M if and only if q is a flattening of γθ (as a
curve in the 4-space Vθ).

(2) q = γθ(0) is a higher order flat ridge point of M if and only if q is a degenerate
flattening of γθ.

Proof. The point q is a singularity of type Ak of the height function hv on M if and only
if it is a singularity of type Ak of hv|γθ

. Therefore it is a flattening (resp. degenerate
flattening) of γθ if and only if it is a flat ridge point (resp. higher order flat ridge point)
of M . ¤

3.2. Asymptotic directions and contact with lines. If TS4 denotes the tangent
bundle of the 4-sphere S4, the family of projections to 4-planes is given by

P : M × S4 → TS4

(q, v) → (q, pv(q))

where pv(q) = q− < q, v > v. For a given v ∈ S4, the map pv can be considered locally
as a germ of a smooth map R2, 0 → R4, 0. A classification of A-simple singularities of
smooth map-germs R2, 0 → R4, 0 is carried out in [24]; see also [25].

It follows by Montaldi’s Theorem [33] that for a residual set of immersions φ : M →
R5, the family P is a generic family of mappings. So the singularities of pv that occur
in an irremovable way in the family P are those of Ae-codimension ≤ 4, and these are
versally unfolded by the family P . For a generic surface, the singularities of pv are
simple and are given in Table 1 (from [24] and [25]).

Table 1: Local singularities of projections of surfaces in R5 to 4-spaces.

Type Normal form Ae-codimension
immersion (x, y, 0, 0) 0

Ik (x, xy, y2, y2k+1), k = 1, 2, 3, 4 k
II2 (x, y2, y3, xky), k = 2 4

III2,3 (x, y2, y3 ± xky, xly), k = 2, l = 3 4
VII1 (x, xy, xy2 ± y3k+1, xy3), k = 1 4

The bifurcation set of the family of projections P (resp. height functions H) is the
set of parameter v ∈ S4 (resp. u ∈ S4) where pv (resp. hu) has a non-stable singularity
at some point q ∈ M , i.e. has a singularity of Ae-codimension ≥ 1. We denote by
Bif(P, Ik) (resp. Bif(H,Ak)) the stratum of the bifurcation set where pv (resp. hu)
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has precisely a singularity of type Ik (resp. Ak). We have the following duality result
in S4, analogous to those in [4], [6], [7], [8], [10], [30], [41].

Theorem 3.6. Suppose that q ∈ M3. Then to a direction v ∈ NqM where hv has an
Ak≥3-singularity at q is associated a unique dual direction v∗ ∈ TqM where pv∗ has an
Ik≥2-singularity, and vice-versa. More precisely,

Bif(H,A3)
∗ = Bif(P, Ik≥2) and Bif(P, I2)

∗ = Bif(H,Ak≥3).

Proof. The family of height functions H is a versal unfolding of an A3-singularity of hv

at a given point q ∈ M . So the closure of Bif(H,A2) is locally diffeomorphic to the
product of a cusp with R2 (see for example [11]). The singular locus of Bif(H,A2)
is Bif(H,A3) and is therefore a smooth submanifold of codimension 2 in S4. Let
v ∈ Bif(H,A3) be a binormal direction at q ∈ M . We can decompose the limiting
tangent space to Bif(H,A2) at v into a direct sum TvBif(H,A3) ⊕ 〈w〉, for some
w ∈ TvBif(H,A2).

The 4-dimensional space TvBif(H,A2) ⊕ 〈v〉 determines two poles ui ∈ S4, i =
1, 2. As q varies locally in M , the two poles trace two subspaces of codimension 2
in S4. These are two copies of the dual of Bif(H,A3). Indeed a pole determines
TvBif(H,A2) and this gives TvBif(H,A3) by taking the orthogonal complement of w
in TvBif(H,A2).

We need to show now that projecting along the directions ui to a transverse 4-space
yields a map-germ with an Ik≥2-singularity at q. We take the surface in Monge form as
in (1). We assume, without loss of generality, that v = (0, 0, 1) so the family of height
functions can be taken as

h(x, y) = v1x+ v2y + v3(x
2 + f 1(x, y)) + v4(xy + f 2(x, y)) + y2 + f 3(x, y).

A point q near the origin is an A3-singularity of h in the direction (v3, v4, 1) if and
only if hx = hy = h2

xy − hxxhyy = 0 (so j2h(q) = L2 for some linear term L in x, y)
and the cubic part of h at q divides L. Using these equations we can find the limiting
tangent space TvBif(H,A2) and the poles that it determines. A calculation shows that
these poles are the points of intersection of the line through the origin in the direction
(−2, v4) with the unit circle in TqM . It is not difficult to show that projecting along
(−2, v4) yields a singularity of type Ik≥2 (generically of type Ik, 2 ≤ k ≤ 4). Therefore
Bif(H,A3)

∗ = Bif(P, Ik≥2).
Suppose that pu has an I2-singularity at q. The family P is a versal unfolding of this

singularity so Bif(P, I2) is a smooth submanifold of codimension 2 in S4. In this case,
the stratum Bif(P, I1) is also a smooth submanifold of codimension 1 in S4 and one
can write TuBif(P, I1) = TuBif(P, I2)⊕ 〈w〉 for some w ∈ TuBif(P, I1).

The 4-dimensional space TuBif(P, I1) ⊕ 〈u〉 determines two poles in S4, and these
poles trace two copies of the dual of TuBif(P, I2). Indeed a pole determines TuBif(P, I1)
and this gives TuBif(P, I2) by taking the orthogonal complement of w in TuBif(P, I1).
A calculation shows that the height function along the direction determined by one of
the poles has a singularity of type Ak≥3 (generically of type Ak, 3 ≤ k ≤ 5), so the
pole is a point on TuBif(H,Ak≥3). Therefore Bif(P, I2)

∗ = Bif(H,Ak≥3). ¤
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It follows from Theorem 3.6 that to each binormal direction v ∈ NqM with q ∈ M3

is associated a unique (dual) tangent direction v∗ ∈ TqM where the projection along
v∗ to a transverse 4-space has a singularity of type I2 or worse (i.e. of higher Ae-
codimension).

Proposition 3.7. A direction u ∈ TqM , with q ∈ M3, is asymptotic if and only if
the projection of M along u to a transverse 4-space has an A-singularity of type I2 or
worse.

Proof. Given a binormal direction v ∈ NqM , the dual direction v∗ ∈ TqM generates
ker(Hess(hv(q)). The result then follows by Theorem 3.6. ¤
Remark 3.8. As a consequence of Proposition 3.7, we shall define an asymptotic
direction at q as one along which the projection of M at q to a transverse 4-space has
an I2-singularity or worse (compare with Definition 3.2). This definition leads to the
existence of at most 5 asymptotic directions at an M2-point (Proposition 3.9 below; see
Remark 3.3).

We consider now in some details the singularities of the projection to a 4-space. We
take M in Monge form as in (1). We assume that the kernel of the projection is along
u ∈ TqM (otherwise pu has maximal rank). Then the projection along u = (u1, u2) ∈
TqM to a transverse 4-space can be written locally in the form

pu(x, y) = (u2x− u1y,Q1(x, y) + f 1(x, y), Q2(x, y) + f 2(x, y), Q3(x, y) + f 3(x, y)).

We analyse the A-singularities of pu(x, y). We have the following result, where generic
in the M3-set (resp. M2-set) means possibly away from some curve (resp. points). The
excluded cases are dealt with in Proposition 3.10. (See Table 1 for notation.)

Proposition 3.9. (1) At generic M3-points there are at most 5 and at least 1 tangent
directions u where pu has an A-singularity of type I2. These are the solutions of the
following quintic form

c30u
5
1 + (c31 − 2b30)u

4
1u2 + (c32 − 2b31 + a30)u

3
1u

2
2 + (c33 − 2b32 + a31)u

2
1u

3
2 + (a32 − 2b33)u1u

4
2 + a33u

5
2 = 0.

(2) Suppose that q is a generic M2-point. Then there at most 3 and at least 1 tangent
directions where pu has an A-singularity of type I2. These are dual to the flat umbilic
direction. There are also two directions (resp. none) where pu has an A-singularity of
type II2 if q ∈Mh

2 (resp. q ∈M e
2 ), and one direction where pu has an A-singularity of

type VII1 if q ∈ Mp
2 . These are dual to the directions giving an A3-singularity of the

height function.

Proof. The proof follows by making successive changes of coordinates in order to reduce
the appropriate jet of pu to a normal form. The duality results in part (2) also follow
by a calculation similar to the one in the proof of Theorem 3.6. However, there is a
geometric argument why the dual of the flat umbilic direction consists of at most 3 and
at least 1 tangent directions. The bifurcation set of the family of height functions H at
a D4-singularity is the product of the sets in Figure 1 with a line (a D4-singularity has
Ae-codimension 3 and H has 4 parameters and is generically a versal unfolding of this
singularity). The limiting tangent spaces of the cuspidal-edges in Figure 1 determine
3 or 1 poles (i.e. dual directions) in S4. ¤
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Figure 1. The bifurcation set of a D4-singularity (elliptic left, hyper-
bolic right).

Proposition 3.10. (1) There may be a curve in M3 where projecting along one of
the directions in Proposition 3.9 (1) yields a singularity of type I3 and isolated points
on this curve where the singularity is of type I4. For generic surfaces, this curve is
distinct from the flat ridge. That is, the dual of a normal direction along which the
height function has an A4-singularity does not yield in general a projection with an
I3-singularity of the projection, and vice-versa.

(2) There may be isolated points on M2 where projecting along one of the directions
dual the flat umbilic direction yields a singularity of type II3. There may also be isolated
Mh

2 -points where projecting along one of the directions not dual the flat umbilic direction
yields a singularity of type III2,3. The above points are in general distinct from the D5-
points.

The proof is straightforward and is omitted.

3.3. Asymptotic directions and contact with 2-planes. An orthogonal projection
from R5 to a 3-dimensional subspace is determined by its kernel, so we can parametrise
all these projections by the Grassmanian G(2, 5) of 2-planes in R5. If w1, w2 are two
linearly independent vectors in R5, we denote by {w1, w2} the plane they generate and
by π(w1,w2) the orthogonal projection from R5 to the orthogonal complement of 〈w1, w2〉.
The restriction of π(w1,w2) to M , π(w1,w2)|M , can be considered locally at a point q ∈M
as a map-germ

π(w1,w2)|M : R2, 0 → R3, 0.

We start with the case where 〈w1, w2〉 is transverse to TqM , so π(w1,w2)|M is locally

an immersion.
Let v ∈ NqM and Mv be the surface patch obtained by projecting M orthogonally to

the 3-space TqM ⊕ 〈v〉 (considered as an affine space through q). We can characterise
the asymptotic directions of M at q in terms of the geometry of Mv at q.

Recall that to a smooth surface patch S in an Euclidean 3-space is associated the
Gauss map N : S → S2 which takes a point q on S to a unit normal vector to S
at q. The map has generically local singularities of map-germs from the plane to the
plane of type fold or cusp (see for example [18]). The fold singularities are precisely
the parabolic points of S and form a smooth curve on S. The cusp singularities occur
at isolated points on this curve and are called cusps of Gauss.

Proposition 3.11. Suppose that q ∈M3 and let v ∈ NqM .
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(1) The direction v is degenerate if and only if q is a parabolic point of Mv. In this
case, the unique principal asymptotic direction of Mv at q coincides with the contact
direction associated to v.

(2) A direction u ∈ TpM is asymptotic if and only if there exists v ∈ NpM such that
q is a cusp of Gauss of Mv and u is its unique asymptotic direction there.

Proof. (1) We take M in Monge form as in (1) with Q = (x2, xy, y2). Given a normal
direction v = (v3, v4, v5) at the origin, the surface Mv is parametrised by ψ(x, y) =
(x, y, f(x, y)) with

f(x, y) = v3(x
2 + f 1(x, y)) + v4(xy + f 2(x, y)) + v5(y

2 + f 3(x, y)).

The equation of the asymptotic direction of Mv is given by

fyydy
2 + 2fxydxdy + fxxdx

2 = 0.

The discriminant ∆ of the above equation is the zero set of the function δ = f 2
xy −

fxxfyy and corresponds to the parabolic set of Mv. We have j2f = v3x
2 + v4xy + v5y

2,
so the origin is a parabolic point if and only if v2

4 − 4v3v5 = 0, that is, if and only if
the height function along v has a degenerate singularity.

(2) The origin is a cusp of Gauss if and only if the unique asymptotic direction of
Mv at the origin is tangent to the discriminant ∆ (see for example [2]), that is if and
only if δ = 0 and (δx, δy).(−fyy, fxx) = 0. When v5 6= 0 (so we can set v5 = 1), this
occurs if and only if

c30 + (2b30 − c31)
v4

2
+ (a30 − 2b31 + c32)

v2
4

4
− (a31 − 2b32 + c33)

v3
4

8
+ (a32 − 2b33)

v4
4

16
− a33

v5
4

32
= 0.

This is exactly the condition for the direction v = (
v2
4

2
, v4, 1) to be binormal (Proposi-

tion 3.1). Its dual direction is along (−2, v4) which is precisely the unique asymptotic
direction of Mv at the origin.

If v5 = 0, the origin is a parabolic point of Mv when v4 = 0. We then set v = (1, 0, 0).
The origin is a cusp of Gauss of Mv if and only if a33 = 0. In this case v is also binormal
as hv has a singularity of type A≥3 at the origin. The dual direction is along (0, 1)
which is precisely the unique asymptotic direction of Mv at the origin. ¤

Proposition 3.12. Suppose that q ∈ M2. There are two distinct directions v ∈ NqM
if q ∈ Mh

2 , none if q ∈ M e
2 , and a unique direction if q ∈ Mp

2 , where q is a cusp of
Gauss of Mv and v∗ is the unique asymptotic direction of Mv at q. In addition, there
is a unique direction v̄ ∈ NqM where Mv̄ has a flat umbilic at q. The asymptotic
directions of M at q associated to v̄ are the tangent directions to the separatrices of the
asymptotic curves of Mv̄ at q (see Figure 2).

Proof. The proof is similar to that of Proposition 3.11. If we take the surface in
Monge form (x, y, xy + f 1(x, y), x2 ± y2 + f 2(x, y), f 3(x, y)), the asymptotic directions
u = (u1, u2) corresponding to the flat umbilic direction v = (0, 0, 1) are given by
f 3(u2, u1) = 0. The surface Mv is parametrised by (x, y, f 3(x, y)) and the tangent to
the separatrices of its asymptotic curves are also given by f 3(u2, u1) = 0 ([9]). ¤
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Figure 2. Asymptotic curves at a flat umbilic on a surface in R3 (elliptic
left, hyperbolic right).

We deal now with the case when π(w1,w2)|M is singular. This occurs when the kernel

of the projection π(w1,w2) contains a tangent direction at q. When {w1, w2} = TqM , the
map-germ π(w1,w2)|M has rank zero at the origin and does not identify the asymptotic

directions. We shall assume that {w1, w2} is distinct from TqM . Then π(w1,w2)|M has

rank 1 at the origin. It follows by Montaldi’s Theorem that for generic surfaces, the
irremovable singularities of π(w1,w2)|M in the family are those of Ae-codimension ≤ 6 (as

dimG(2, 5) = 6). The A-simple singularities of map-germs R2, 0 → R3, 0 are classified
by Mond [32]; see Table 2. Some non-simple orbits are given in [32] and [38].

Table 2: A-simple singularities of projections of surfaces in R5 to 3-spaces.

Name Normal form Ae-codimension
Immersion (x, y, 0) 0
Cross-cap (x, y2, xy) 0

S±k (x, y2, y3 ± xk+1y), k ≥ 1 k
B±

k (x, y2, x2y ± y2k+1), k ≥ 2 k
C±k (x, y2, xy3 ± xky), k ≥ 3 k
F4 (x, y2, x3y + y5) 4
Hk (x, xy + y3k−1, y3), k ≥ 2 k

We take M in Monge from (1) and for simplicity q an M3-point (the results hold
at any point on M). Suppose, without loss of generality, that the intersection of the
kernel of the projection π(w1,w2) with TqM is along u = (1, 0). So the kernel is generated
by u and some v = (v3, v4, v5) ∈ NqM (and π(w1,w2) = π(u,v)). Observe that the dual
direction to u is u∗ = (0, 0, 1).

If < u∗, v > 6= 0, then v5 6= 0 and π(u,v)|M is A-equivalent to

g(x, y) = (y, x2 + f 1, xy + f 2).

This map-germ has a cross-cap singularity at the origin.
If < u∗, v >= 0, then v = (v3, v4, 0) and π(u,v)|M is A-equivalent to

g(x, y) = (y, v4(x
2 + f 1)− v3(xy + f 2), y2 + f 3).



12 M. C. ROMERO-FUSTER, M. A. S. RUAS AND F. TARI

When v4 6= 0, the 2-jet of π(u,v)|M is A-equivalent to (y, x2, 0) (so all the simple sin-

gularities of type Sk, Bk, Ck, F4, with Ae-codimension ≤ 6 occur, as well as some
non-simple cases.)

If v4 = 0, v = (1, 0, 0) and π(u,v)|M is A-equivalent to

g(x, y) = (y, xy + f 2, y2 + f 3)

which has an Hk singularity provided f 3
xxx(0, 0) 6= 0. The condition f 3

xxx(0, 0) = 0
is precisely the condition for u = (1, 0) to be an asymptotic direction at the origin.
When this happens, the map-germ g has a non-simple singularity with 2-jet equivalent
to (y, xy, 0). So one can characterise asymptotic directions using the singularities of
projections to 3-spaces. We have thus the following result.

Proposition 3.13. Let u ∈ TqM and v in the unit sphere S2 ⊂ NqM .
(1) The projection π(u,v)|M has a cross-cap singularity for almost all v ∈ S2.

(2) On a circle of directions v in S2 minus a point, π(u,v)|M has a singularity with

2-jet A-equivalent to (x, y2, 0).
(3) There is a unique direction v ∈ S2 where π(u,v)|M has a singularity of type Hk

provided u is not an asymptotic direction. If u is asymptotic, then the singularity
becomes non-simple with 2-jet A-equivalent to (x, xy, 0).

3.4. Asymptotic curves and contact with 3-spaces. An orthogonal projection
from R5 to a 2-dimensional subspace is also determined by its kernel, so we can
parametrise all these projections by the Grassmanian G(3, 5) of 3-planes in R5. How-
ever, G(3, 5) can be identified with G(2, 5), so the projections can be parametrised by
{w1, w2} ∈ G(2, 5), where {w1, w2} is the orthogonal complement of the kernel of the
projection. We denote the associated projection by Π(w1,w2). The restriction of Π(w1,w2)

to M , Π(w1,w2)|M , can be considered locally at a point q ∈M as a map-germ

Π(w1,w2)|M : R2, 0 → R2, 0.

As in the previous section, we expect singularities of Ae-codimension ≤ 6 to occur
for generic surfaces. The list of corank 1 singularities of map-germs R2, 0 → R2, 0,
of Ae-codimension ≤ 6 is given by Rieger [39]. The A- simple singularities in these
dimensions, including those with corank 2 ([40]), are shown in Table 3.

Table 3: A-simple singularities of projections of surfaces in R5 to 2-planes.



ASYMPTOTIC CURVES ON SURFACES IN R5 13

Name Normal form Ae-codimension
Immersion (x, y) 0

Fold (x, y2) 0
Cusp (x, xy + y3) 0
4k (x, y3 ± xky), k ≥ 2 k − 1
5 (x, xy + y4) 1
6 (x, xy + y5 ± y7) 2
7 (x, xy + y5) 3

112k+1 (x, xy2 + y4 + y2k+1), k ≥ 2 k
12 (x, xy2 + y5 + y6), 3
13 (x, xy2 + y5 ± y9), 4
14 (x, xy2 + y5), 5
16 (x, x2y + y4 ± y5), 3
17 (x, x2y + y4), 4

I l,m
2,2 (x2 + y2l+1, y2 + x2m+1), l ≥ m ≥ 1 l +m
II l

2,2 (x2 − y2 + x2l+1, xy), l ≥ 1 2l

We start with the corank 1 singularities. Let u ∈ TqM , u⊥ an orthogonal vector to
u in TqM and v = (v1, v2, v3) ∈ NqM . We consider the projection Π(u⊥,v)|M .

We take M in Monge form (1) at the origin and suppose, without loss of generality,
that the intersection of the kernel of Π(u⊥,v) with TqM is along u = (1, 0). Then

Π(u⊥,v)|M(x, y) = (y, v1(x
2 + f 1(x, y)) + v2(xy + f 2(x, y)) + v3(cy

2 + f 3(x, y))),

where c is equal to 0 or 1 according to q being an M3 or an M2 point. Observe that
the A-type of the singularities of the above map-germ is independent of c. Therefore,
the corank 1 singularities of the projections to 2-planes do not distinguish between the
M3 and M2 points.

If v1 6= 0, then Π(u⊥,v)|M is A-equivalent to a fold map-germ.

If v1 = 0 and v2 6= 0, then j2Π(u⊥,v)|M ∼A (y, xy). The A-singularities of Π(u⊥,v)|M
are given by the normal forms 5, 6 and 7 in Table 3. Non-simple singularities of
Ae-codimension ≤ 6 may also occur.

If v1 = v2 = 0, Π(u⊥,v)|M(x, y) = (y, f 3(x, y)), and the singularities are of type

4k (Table 3) unless f 3
xxx(0, 0) = 0. In this case, the singularities are of type 112k+1

(Table 3) or more degenerate. The condition f 3
xxx(0, 0) = 0 is precisely the condition

for u = (1, 0) to be an asymptotic direction at the origin. So one can characterise
asymptotic directions using corank 1 singularities of projections to 2-planes.

Proposition 3.14. Let u ∈ TqM and v in the unit sphere S2 ⊂ NqM .
(1) The projection Π(u⊥,v)|M has a fold singularity for almost all v ∈ S2.

(2) On a circle of directions v in S2 minus a point Π(u⊥,v)|M has a singularity with

2-jet A-equivalent to (x, xy) (equivalently, it is not a fold and has a smooth critical
set).
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(3) There is a unique direction v ∈ S2 where Π(u⊥,v)|M has a singularity of type 4k

provided u is not an asymptotic direction. If u is asymptotic, then the singularity is
A-equivalent to 112k+1 or is more degenerate.

We analyse now the corank 2 singularities of the projection. Let {w1, w2} be a
plane in NqM and denote by M(w1,w2) the surface patch obtained by projecting M
orthogonally to the 4-space TqM ⊕ {w1, w2} (considered as an affine space through
q). The map-germ Π(w1,w2)|M has then a corank 2 singularity at the origin, and this

singularity can be characterised in terms of the geometry of M(w1,w2).
Points on a generic surface immersed in R4 are classified in [26], and in [28] and

[7] in terms of singularities of certain maps on the surface. In [28], a point is called
hyperbolic/parabolic/elliptic if there are 2/1/0 directions in the normal plane such that
the associated height function has a degenerate singularity (i.e. worse than Morse).
The parabolic points form a curve on the surface. This curve may have generically
Morse singularities at isolated points. These singularities are called inflection points
of real type if the singularity is a crossing and of imaginary type if it is an isolated
point. (When the singularity of the parabolic curve is more degenerate, the inflection
is called of flat type.) The following result follows directly from this classification and
the A-classification of map-germs from the plane to the plane ([39], [40]).

Proposition 3.15. The following hold for a generic immersed surface M in R5.
(1) The 2-jet of the projection Π(w1,w2)|M is A-equivalent to (x2, y2), (x2 − y2, xy)

or (x2, xy) if and only if q is, respectively, a hyperbolic, elliptic or parabolic point of
M(w1,w2).

(2) The 2-jet of the projection Π(w1,w2)|M is A-equivalent to (x2 + y2, 0), (x2− y2, 0),

or (x2, 0) if and only if q is, respectively, an inflection point of real type, of imaginary
type or of flat type of M(w1,w2).

Moreover, if q ∈ M3 then Π(w1,w2)|M satisfies (1) for every plane {w1, w2} ⊂ NqM .

The point q ∈ M2 if and only if there exists a direction w2 ∈ NqM such that q is an
inflection point of M(w1,w2), for any w1 ∈ NqM.

4. Equation of the asymptotic directions

In this section we obtain the equation of the asymptotic directions in terms of the
coefficients of the second fundamental form and give another geometric argument why
the equation is a quintic form.

We take as in §2 φ : U → R5 to be a local parametrisation of M and choose a frame
e = {e1, e2, e3, e4, e5} depending smoothly on q ∈ U , such that e1 = φx(q), e2 = φy(q)
and {e3, e4, e5} is an orthonormal frame of the normal plane at q.

We consider, without loss of generality, q ∈M3. This is not restrictive as M2-points
form a curve on a generic surface M . So the equation obtained at M3-points is also
valid at M2-points by passing to the limit. We use here the characterisation of an
asymptotic direction given in Proposition 3.11.

If we write, in the frame e, u = (dx, dy) ∈ TqM and v = (v3, v4, v5) ∈ NqM , then u
is an asymptotic direction of Mv at q if and only if IIv(u, u) = 0, if and only if
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(2) (v3c3 + v4c4 + v5c5)dy
2 + 2(v3b3 + v4b4 + v5b5)dxdy + (v3a3 + v4a4 + v5a5)dx

2 = 0.

To simplify the notation, we denote by A/B/C the coefficients of dy2/2dxdy/dx2,
respectively, in equation (2). Note that as we are considering q ∈ M3, at least one of
the coefficients A,B,C is not zero at q.

The point q is a parabolic point of Mv if and only if the discriminant function
δ = B2 − AC of equation (2) is zero at q, that is, if and only if

(3)
(b23 − a3c3)v

2
3 + (2b4b3 − a4c3 − a3c4)v3v4 + (2b5b3 − a5c3 − a3c5)v3v5+

(b24 − a4c4)v
2
4 + (2b5b4 − a5c4 − a4c5)v4v5 + (b25 − a5c5)v

2
5 = 0.

In this case, equation (2) has a unique solution along (A,−B) if A 6= 0 or along
(0, 1) otherwise.

The point q is a cusp of Gauss of Mv if and only if the unique asymptotic direction
u, i.e. the unique solution of equation (2) at q, is tangent to ∆ (the zero set of δ). This
is the case if (δx, δy).(A,−B) = 0 when A 6= 0 or (δx, δy).(0, 1) = 0 when A = 0. When
A = 0, we have B = 0 (and C 6= 0) as δ = 0. Therefore δy = −AyC and the condition
becomes Ay = 0. So the condition for tangency is

(4)
Aδx −Bδy = 0 if A 6= 0

Ay = 0 if A = 0

By Proposition 3.11, u is an asymptotic direction if and only if equations (2), (3),
(4) are satisfied.

Suppose that A 6= 0 at q. Equation (3) determines a conic in the projective plane
(v3 : v4 : v5) and Aδx − Bδy = 0 a cubic curve. Therefore, by Bézout’s theorem, these
two curves intersect in at most 6 points. However, if A = 0, both equations are satisfied
and this gives one of the intersection points of the two curves. This intersection point is
of multiplicity 1 unless Ay = 0. So the intersection point of multiplicity 1 corresponding
to A = 0 does not give an asymptotic direction. Hence, the two curves above intersect
in at least 1 and at most 5 other points.

If A = 0 at q, then B = 0 (as δ = B2 − AC) and these two equations determine a
unique direction v in NqM , given by the point of tangency of the line A = 0 with the
cone δ = 0 in RP 2. Equations (2)–(4) with A = 0 may be satisfied on a curve in M ,
given by Ay = 0, with v the point given by A = B = 0. But when A = Ay = 0 the
cubic Aδx − Bδy = 0 is tangent to the conic at A = B = 0. This is a limiting case of
when A 6= 0 where a binormal direction on the cone approaches the point A = B = 0.
So here too we have at least 1 and at most 5 asymptotic directions.

The equation of the asymptotic directions can be obtained as follows using Maple.
When equations (2)–(4) are satisfied, we can rewrite (2) as Ady+Bdx = 0 and equation
(4) as δxdx + δydy = 0. We work, without loss of generality, in the chart v5 = 1 and
use the resultant to eliminate v3 and v4 from Ady + Bdx, δ and δxdx + δydy. We
then take the relevant component of the resultant. We have the following result, where
a = (ai), b = (bi), c = (ci) are the coefficients of the second fundamental form written
as vectors and [, , ] denotes a 3× 3-determinant.
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Theorem 4.1. There is at least one and at most five asymptotic curves passing through
any point on a generic immersed surface in R5. These curves are solutions of the
implicit differential equation

A0dy
5 + A1dxdy

4 + A2dx
2dy3 + A3dx

3dy2 + A4dx
4dy + A5dx

5 = 0,

where the coefficients Ai, i = 0, 1, 2, 3, 4, 5 depend on the coefficients of the second
fundamental form and their first order partial derivatives, and are given by

A0 = [ ∂c
∂y
, b, c],

A1 = [ ∂c
∂x
, b, c] + 2[ ∂b

∂y
, b, c] + [ ∂c

∂y
, a, c],

A2 = [ ∂c
∂x
, a, c] + 2[ ∂b

∂x
, b, c] + [∂a

∂y
, b, c] + 2[ ∂b

∂y
, a, c] + [ ∂c

∂y
, a, b],

A3 = [∂a
∂x
, b, c] + 2[ ∂b

∂x
, a, c] + [ ∂c

∂x
, a, b] + 2[ ∂b

∂y
, a, b] + [∂a

∂y
, a, c],

A4 = [∂a
∂x
, a, c] + 2[ ∂b

∂x
, a, b] + [∂a

∂y
, a, b],

A5 = [∂a
∂x
, a, b].

Remark 4.2. For 2-dimensional surfaces in R3 and R4 the asymptotic curves are
given by a quadratic (binary) differential equation in dx, dy. The coefficients of their
equations depend only on the coefficients of the second fundamental form (and not on
their derivatives).

If the surface is given in Monge form as in (1) we can obtain the asymptotic directions
at the origin using Theorem 4.1. We have the following result where all the partial
derivatives are evaluated at the origin.

Corollary 4.3. (1) Suppose the origin is an M3-point. Then u = (u1, u2) is an as-
ymptotic direction at the origin if and only if

u2
2(f

1
yyyu

3
2 + 3f 1

xyyu1u
2
2 + 3f 1

xxyu
2
1u2 + f 1

xxxu
3
1)−

2u1u2(f
2
yyyu

3
2 + 3f 2

xyyu1u
2
2 + 3f 2

xxyu
2
1u2 + f 2

xxxu
3
1)+

u2
1(f

3
yyyu

3
2 + 3f 3

xyyu1u
2
2 + 3f 3

xxyu
2
1u2 + f 3

xxxu
3
1) = 0.

(2) Suppose the origin is an Mh
2 or M e

2 -point. Then u = (u1, u2) is an asymptotic
direction at the origin if and only if

(u2
1 ∓ u2

2)(f
3
yyyu

3
2 + 3f 3

xyyu1u
2
2 + 3f 3

xxyu
2
1u2 + f 3

xxxu
3
1) = 0.

(3) Suppose the origin is an Mp
2 -point. Then u = (u1, u2) is an asymptotic direction

at the origin if and only if

u2
1(f

3
yyyu

3
2 + 3f 3

xyyu1u
2
2 + 3f 3

xxyu
2
1u2 + f 3

xxxu
3
1) = 0.
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5. Generic configurations of the asymptotic curves

For a generic surface, at least one of the coefficients in Theorem 4.1 is not zero at
any point q ∈ M . We can assume the point in consideration to be the origin and
make linear changes of coordinates in the source so that the coefficient of dy5 is locally
nonzero. We then set p = dy

dx
(as dx = 0 is not a solution of the equation) so that the

equation of the asymptotic curves near the origin is an implicit differential equation
(IDE) in the form

F (x, y, p) = p5 + A1(x, y)p
4 + A2(x, y)p

3 + A3(x, y)p
2 + A4(x, y)p+ A5(x, y) = 0

where Ai(x, y), i = 1, · · · , 5 are smooth functions in some neighbourhood U of the
origin. We consider F as a multi-germ U × R, (0, 0, pi) → R, 0, where pi are the
solutions of F (0, 0, p) = 0 (there are at most 5 of them).

If F (0, 0, p) has 5 simple roots then, by the implicit function theorem, the solutions
of F = 0 consists of a net of 5 transverse smooth curves. Two distinct such nets are
not homeomorphic. So discrete topological models do not exist in general for IDEs of
degree 5. We shall say here that two IDEs above are equivalent if their solutions are
the union of the same number of topologically equivalent foliations.

The surface F−1(0) is generically smooth and the projection π : F−1(0) → R2, 0 is
generically a submersion or has a singularity of type fold, cusp or two transverse folds.
The set of singular points of π is called the criminant and its projection to the plane
the discriminant of the IDE.

The multi-valued direction field in the plane determined by the IDE lifts to a single
direction field on F−1(0). This field is along the vector field

ξ = Fp
∂

∂x
+ pFp

∂

∂y
− (Fx + pFy)

∂

∂p

(see for example [3]), where subscript denote partial differentiation at (x, y, p). We
analyse ξ around each point (0, 0, pi) and project down to obtain the configuration of
one of the foliations determined by the IDE.

If π is a submersion at (0, 0, pi) then, by the implicit function theorem, F is equivalent
to p − pi = g(x, y) in a neighbourhood of (0, 0, pi), where g is a smooth function. So
the integral curves are smooth.

If (0, 0, pi) is a fold singularity of π and is a regular point of ξ, then the configu-
ration of the integral curves in the plane is smoothly equivalent to a family of cusps,
Figure 3 1©f (see [14] for references). The field ξ may generically have an elementary
singularity (saddle/node/focus) and the configuration of integral curves in the plane is
topologically equivalent to a folded-singularity (p − pi)

2 − y + λx2 = 0, λ 6= 0, 1
4
. We

have a folded saddle if λ < 0, a folded node if 0 < λ < 1
4

and a folded focus if λ > 1
4

([14], Figure 3 1©g/h/i).
When π has a cusp singularity at (0, 0, pi), the equation has the modulus of functions

with respect to topological equivalence. There are two types of cusp singularities, the
elliptic cusp and the hyperbolic cusp ([14]), Figure 3 3©c/d respectively.

We conclude that the generic configurations of the integral curves of the IDE under
consideration are modelled by super-imposing in each quadrant one figure from the left
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column with one from the right column in Figure 3. We denote this super-imposition
by the sign +.

For generic surfaces in R5, the discriminant of the equation of the asymptotic direc-
tions in Theorem 4.1 is smooth. Therefore the cusp singularity (Figure 3 3©) does not
occur. The only possible configurations of the asymptotic curves are those obtained
from Figure 3 1© and 2©. We have the following geometric characterisation of the
various possibilities.

Proposition 5.1. (1) The local configurations of the asymptotic curves of a generically
immersed surface in R5 are modeled by super-imposing in each quadrant in Figure 3 1©
and 2© one figure from the left column with one from the right column.

(2) Let q ∈ M3 be a point on the discriminant ∆ of the asymptotic IDE and u the
double asymptotic direction there. Then q is a folded-singularity of the asymptotic IDE
at (q, u) if and only if q is an A4-singularity of the height function along u∗ (Figure 3
1© (a or b)+(g, h or i)).

(3) The discriminant ∆ intersects transversally the M2-curve at Mp
2 and D5-points

(it may also intersect it at other points). The D5-points are generically not folded
singularities, so the configuration of the asymptotic curves at such points is as in Figure
3 1© (a or b)+(f). An Mp

2 -point is (at the appropriate direction) a folded singularity of
the IDE of the asymptotic curves and the configurations there are as in Figure 3 1© (a
or b)+(g, h or i).

c
O

O

1

3

2

b

c

d

e

f

g

h

i

b

c

b

d

a

a

a

O

d

Figure 3. Generic configurations of the solutions of an IDE of degree
5 obtained by super-imposing in each quadrant one figure from the left
column with one from the right.
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Proof. (2) We take the surface in Monge form as in (1) at q = (0, 0) ∈ M3, suppose
without loss of generality that q ∈ ∆ and u = (1, 0) is the asymptotic direction there,
so f 3

xxx(0, 0) = (3f 3
xxy − 2f 2

xxx)(0, 0) = 0. Then the dual direction of u is u∗ = (0, 0, 1).
We can compute the tangent direction to the discriminant at q using the equation

in Theorem 4.1. It is along

(3f 3
xxyf

3
xyy + f 1

xxxf
3
xxy − 2f 3

xxxy , −2f 3
xxxx + 3(f 3

xxy)
2),

where the partial derivatives are evaluated at the origin. The above direction is parallel
to (1, 0) if and only if the origin is an A4-singularity of the height function along the
dual direction (0, 0, 1). (The above expression of the tangent direction can also be used
to determine the condition for the configuration of the asymptotic directions to be as
in Figure 3 2© (a or b)+(c).)

(3) Suppose that q is not an Mp
2 -point. The asymptotic directions at q are either

associated to the flat umbilic direction of the height function or to its simple binormal
directions (two of them at an Mh

2 -point an none at M e
2 ). So two of these directions can

coincide on ∆ in two ways. One way is for two of the asymptotic directions associated
to the flat umbilic to coincide at q. Then the point q is a D5-singularity (this follows
for example from Corollary 4.3 (2)). The second way is for one of the asymptotic direc-
tions corresponding to the simple binormal directions to coincide with an asymptotic
directions corresponding to the flat umbilic direction. If we take the surface in Monge
form as in (1) at q, then the condition for this to happen is j3f 3(1,±1) = 0 (Corollary
4.3 (2)). This can occur generically at isolated points on the M2-curve and these points
are distinct from the Mp

2 and D5-points.
Calculations show the D5-points are generically not folded singularities (the dou-

ble asymptotic directions are not tangent to ∆) and that ∆ and the M2-curves are
transverse at such points.

Suppose now that q is an Mp
2 -point and the surface is in Monge form as in (1) at

q. It follows from Corollary 4.3 (3) that q is a point of the discriminant ((0, 1) is a
double asymptotic direction at q). The tangent direction to the discriminant at q is
along the double asymptotic direction u = (0, 1), therefore the IDE of the asymptotic
curves has generically a folded singularity at q. The tangent direction to the M2-curve
at the origin is along (f 3

yyy, −f 3
xyy), so it is generically transverse to the discriminant

at Mp
2 -point. ¤

Remark 5.2. The flat ridge of M can be lifted to a regular curve on N = F−1(0)
by considering at each of its points the asymptotic direction associated the degenerate
binormal direction. (This follows from the following facts. The flat ridge and its
lift to the unit normal bundle of the M are generically smooth curves. Therefore the
corresponding asymptotic directions form a smooth curve in the tangent bundle of the
surface.) It follows from Proposition 5.1(2) that a point q ∈M3 is a folded-singularity
of the asymptotic IDE if and only if (q, u) is the intersection point on N of the lift of
the flat ridge with the criminant. The kernel of the differential of π : N →M at (q, u)
is generically transverse to the lift of the flat ridge. Therefore the discriminant and the
flat ridge are generically tangential at a folded-singularity of the asymptotic IDEs in
the M3 region.
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6. Global consequences

An immediate consequence of the above local considerations is the following.

Theorem 6.1. Suppose that M is a closed surface immersed in R5 with χ(M) 6= 0.
Then the discriminant ∆ of the asymptotic curves is not empty.

Proof. If ∆ is empty then there is a globally defined asymptotic line field on M (recall
that there is at least one asymptotic direction at each point on M). It follows from the
Poincaré-Hopf formula ([21]) and the hypothesis on M that this line field has critical
points onM . This is a contradiction as the critical points occur on the discriminant. ¤

We consider now the map π : F−1(0) → M in §5 and denote by Σπ its singular set
(i.e. the criminant).

Theorem 6.2. Let M be a closed orientable surface generically immersed in R5 with
non zero Euler characteristic χ(M). If the map π has non vanishing degree then the
IDE of the asymptotic curves has a folded singularities.

Proof. We can choose an orientation on both M and N . The map π determines a
decomposition of N as a union N = N+ ∪N− of closed surfaces such that N+ ∩N− =
∂N+ = ∂N− = Σπ, π|N+ being an orientation preserving immersion and π|N− an
orientation reversing immersion. We have χ(N) = χ(N+)+χ(N−), for χ(N+∩N−) =
χ(Σπ) = 0. Moreover, since π is a stable map without cusps, the following relation
holds (see [37])

χ(N)− 2χ(N−) = χ(M)deg(π).

That is, χ(N+)− χ(N−) = χ(M)deg(π).
When χ(N) 6= 0, it follows from Poincaré-Hopf formula ([21]) that there is a critical

point of the direction field determined by the IDE of the asymptotic curves on N . Then
the result follows from Proposition 5.1.

Suppose that χ(N) = 0. In this case, χ(N+) = −χ(N−) and thus 2χ(N+) =
χ(M)deg(π). It now follows from the hypothesis that χ(N+) 6= 0 and the extended
Poincaré-Hopf-Morse formula ([19]) implies that the restriction of the direction field to
the closed surface N+ must have singularities (that lie on the criminant curve ∂N+ =
Σπ). Therefore the IDE of the asymptotic curves has a folded singularity. ¤
Corollary 6.3. Let M be a closed orientable surface generically immersed in R5 with
non zero Euler characteristic χ(M). If the map π has a non vanishing degree then M
has either M2 points or flat ridges.

Proof. The result follows from the geometrical interpretation of folded singularities of
the IDE of the asymptotic curves in Proposition 5.1. ¤
Remark 6.4. With the hypothesis of Corollary 6.3, one can assert that there exist
either parabolic M2 points (i.e. intersections of the discriminant with the M2 curve)
or tangency points of the flat ridge curve and the discriminant.

We relate next the global existence of binormal/asymptotic fields with the 2nd-order
regularity problem. Let f : M → Rn be an immersion of a surface M in n-space. A
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point q ∈M is said to be 2-regular if and only if there exists some local coordinate sys-

tem {x, y} at q such that the subspace generated by the vectors {∂f
∂x
, ∂f

∂y
, ∂2f

∂x2 ,
∂2f
∂x∂y

, ∂2f
∂y2 }

at q has maximum rank. If this is not the case then q is said to be 2-singular. The
immersion f is said to be regular of order 2 if all the points of M are 2-regular. Feld-
man ([16]) proved that the set of 2-regular immersions of any closed surface M in Rn

is open and dense when n = 3 and n ≥ 7. When n = 6, the 2-singular points are
generically isolated. Moreover, 2-regular immersions satisfy the h-principle, that is,
any immersion of a surface into R6 can be deformed through a regular homotopy into
a 2-regular immersion ([15, 20]). When n = 4, the 2-singular points coincide with the
inflection points defined by Little in [26]. The existence of inflection points on generic
closed surfaces immersed in R4 was explored in [17] by analysing the behaviour of the
asymptotic curves on such surfaces. It is shown in [17] that generic closed locally con-
vex surfaces in R4 with non vanishing Euler number have inflection points. The case
n = 5 appears to be more complicated and not many results are known in this direc-
tion. Costa obtained in [13] an example of a 2-regular immersion of the 2-sphere into
R5 consisting in a double cover of the Veronese surface (projective plane) immersed in
S4. This is done as follows. Consider the map

V : R3 −→ R6

(x, y, z) 7−→ (x2, y2, z2, xy, xz, yz).

The restriction of V to the unit sphere S2 defines a 2-regular immersion of the real
projective plane into R6, known as the Veronese surface. It is not difficult to show
that V (S2) is contained in both a hyperplane (of equation X + Y + Z = 1, where
(X,Y, Z, U,W ) are the coordinates in R6) and a 5-sphere of R6, and hence in a 4-
sphere. By choosing appropriate coordinates on S2 and on the hyperplane of equation
X +Y +Z = 1 (identified with R5), we can locally define V (S2) by means of the chart
Ṽ : R2 → R5, given by

Ṽ (x, y) =
(y

√
4− x2 − y2

2
,
x
√

4− x2 − y2

2
,
xy

2
,
x2 − y2

4
,
3x2 + 3y2 − 8

4
√

3

)
.

The 2nd-order regularity of a generic surface in R5 is related to the generic behaviour
of the family of height functions on M . In fact, the 2-singular points coincide with the
points of type Mi, i < 3, and these are the corank 2 singularities of the height functions
([31]). We can then reinterpret the result in Corollary 6.3 as follows.

Corollary 6.5. Let M be a generic 2-regular closed orientable surface in R5 with non
zero Euler characteristic. If the map π has non vanishing degree, then M has flat ridge
curves and some of them must be tangent to the discriminant curve at some point.

In the particular case of the Veronese surface V (S2), it can be shown that all the
points on the surface are flat ridges. Indeed, this surface in not generic from the
viewpoint of its contacts with hyperplanes.

The 2nd-order regularity of a surface in R5 is also related to the global existence
of certain degenerate normal fields (called essential) on the surface ([34]). We analyse
next the geometrical dynamics associated to such fields.
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Given any normal field v on M , we can consider its associated shape operator Sv (see
§2). For each q ∈M there is an orthonormal basis in TqM formed by the eigenvectors of
Sv (v-principal directions). The corresponding eigenvalues k1 and k2 are called maximal
and minimal v-principal curvature, respectively. A point q is said to be v-umbilic if
both v-principal curvatures coincide at q. Denote by Uv the subset of all the v-umbilic
points of M . The v-principal directions define two, mutually orthogonal tangent fields
in the region M − Uv, whose critical points are the v-umbilics. The corresponding
integral curves are called v-curvature lines. The two foliations, together with their
critical points form the v-principal configuration of M . The differential equation of the
v-curvature lines is given by Sv

(
X(q)

)
= λ(q)X(q).

Suppose that v is a binormal field defined locally in some open region S of a surface
M immersed in R5. The matrices of Sv and IIv coincide on S. Therefore, in some
appropriate coordinate system, the matrix of Sv coincides with that of Hess(fv(q))(q),
∀q ∈ S. But this implies that one of the eigenvectors of Sv vanishes at every point of S.
Therefore, one of the principal foliations of Sv coincides with the asymptotic foliation
associated to v. So the v-curvature lines with associated vanishing curvature are also
solutions of the implicit differential equation of Theorem 4.1.

The critical points of the v-principal configurations associated to binormal fields on
surfaces immersed into R5 are points of type M2 and thus 2-singular ([34]). Therefore
the only 2-regular surfaces that may admit globally defined binormal fields are tori or
Klein bottles.

6.1. Final Remarks. The definition of an asymptotic direction at a point on a 2-
dimensional surface in the Euclidean space R5 in terms of singularities of projections
to k-planes, k = 1, 2, 3, 4, admits a natural generalisation to m-manifolds immersed
in Rn. The case of submanifolds of codimension 2 was first treated in [29] and more
recently in [35], where the existence and behaviour of asymptotic curves was studied
in connection with some global geometrical properties such as the vanishing of the
normal curvature, convexity and semi-umbilicity. A problem under investigation is the
determination of the configuration of the asymptotic curves on a 2-dimensional surface
immersed in Rn.

The study of contact of surfaces immersed in other spaces with special submanifolds
which are invariant with respect to the corresponding transformation groups is also
of interest. There is currently an extensive programme initiated by S. Izumiya on
the study of contact of submanifolds in Minkowski spaces with degenerate objects,
such as horospheres (see for example [22, 23] and these papers for more references).
For example, horo-asymptotic directions on surfaces in the Hyperbolic 4-space are
introduced and studied in [22].
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E-mail: Carmen.Romero@uv.es
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