# Projections of surfaces in $\mathbb{R}^{4}$ to $\mathbb{R}^{3}$ and the geometry of their singular images 

Raúl Oset Sinha* and Farid Tari ${ }^{\dagger}$


#### Abstract

We study the geometry of germs of singular surfaces in $\mathbb{R}^{3}$ whose parametrisations have an $\mathcal{A}$-singularity of $\mathcal{A}_{e}$-codimension $\leq 3$, via their contact with planes. These singular surfaces occur as projections of smooth surfaces in $\mathbb{R}^{4}$ to $\mathbb{R}^{3}$. We recover some aspects of the extrinsic geometry of the surfaces in $\mathbb{R}^{4}$ from those of the images of the projections.


## 1 Introduction

Our investigation of singular surfaces is motivated by the study of the geometry of smooth surfaces in $\mathbb{R}^{4}$. Let $P_{v}$ be the orthogonal projection in $\mathbb{R}^{4}$ along a non zero direction $v \in \mathbb{R}^{4}$ to the 3 -space $v^{\perp}$. Given an embedded surface $M$ in $\mathbb{R}^{4}$, the surface $P_{v}(M)$ can be regular or can have generically at any given point one of the local singularities in Table 1. We seek to extract geometric information about $M$ from $P_{v}(M)$. We consider the geometric properties of $P_{v}(M)$, as a surface in the 3 -space $v^{\perp}$, obtained via its contact with planes in $v^{\perp}$.

We take $\mathbb{R}^{3}$ as a model for $v^{\perp}$. Parametrised surfaces in $\mathbb{R}^{3}$ can have stable singularities of cross-cap type (also called Whitney umbrella). The differential geometry of the cross-cap is studied, for instance, in $[6,8,9,18,20,23]$. We study in this paper the geometry of singular surfaces $S \subset \mathbb{R}^{3}$ derived from the contact of $S$ with planes. We shall suppose that $S$ is parametrised by $\phi: \mathbb{R}^{2}, 0 \rightarrow \mathbb{R}^{3}, 0$, where $\phi$ is $\mathcal{A}$-equivalent to one of the normal forms in Table 1. (Two germs $f$ and $g$ are said to be $\mathcal{A}$-equivalent, denoted by $f \sim_{\mathcal{A}} g$, if $g=k \circ f \circ h^{-1}$ for some germs of diffeomorphisms $h$ and $k$ of,

[^0]Table 1: Classes of $\mathcal{A}$-map-germs of $\mathcal{A}_{e}$-codimension $\leq 3$ ([16]).

| Name | Normal form | $\mathcal{A}_{e}$-codimension |
| :---: | :---: | :---: |
| Immersion | $(x, y, 0)$ | 0 |
| Crosscap | $\left(x, y^{2}, x y\right)$ | 0 |
| $S_{k}^{ \pm}$ | $\left(x, y^{2}, y^{3} \pm x^{k+1} y\right), k=1,2,3$ | $k$ |
| $B_{k}^{ \pm}$ | $\left(x, y^{2}, x^{2} y \pm y^{2 k+1}\right), k=2,3$ | $k$ |
| $C_{3}^{ \pm}$ | $\left(x, y^{2}, x y^{3} \pm x^{3} y\right)$ | 3 |
| $H_{k}$ | $\left(x, x y+y^{3 k-1}, y^{3}\right), k=2,3$ | $k$ |
| $P_{3} *$ | $\left(x, x y+y^{3}, x y^{2}+a y^{4}\right), a \neq 0, \frac{1}{2}, 1, \frac{3}{2}$ | 3 |
| $*$ The codimension of $P_{3}$ is that of its stratum. |  |  |

respectively, the source and target.) Of course we cannot take $\phi$ as one of the normal forms in Table 1 as diffeomorphisms in the target do not preserve the geometry of the image of $\phi$.

The singularities in Table 1 are of corank 1, so one can write $\phi$ in the form $(x, p(x, y), q(x, y))$, with $p$ and $q$ having no constant or linear parts. We can then associate to $\phi$ a pair of quadratic forms $\left(j^{2} p, j^{2} q\right)$, given by the second degree Taylor expansions of $p$ and $q$ at the origin. As the contact of a surface with planes is invariant under affine transformations, we classify the singular points of $S$ according to the $\mathcal{G}=G L(2, \mathbb{R}) \times G L(2, \mathbb{R})$-class of $\left(j^{2} p, j^{2} q\right)$ (Definition 2.1). We obtain more geometric information about the cross-cap in §2. For instance, we relate in Theorem 2.3 the singularities of the height functions on the cross-cap to the torsion of the branches of its parabolic set. For the remaining singularities in Table 1, we identify in Theorem 2.7 the singularities of the parabolic set of $S$ in the source (which we call the pre-parabolic set and denote by $P P S$ ) as well as those of the height functions on $S$ (Theorem 2.8). We explain in Remark 2.10 and Table 4 the high degeneracy of the singularities of the PPS.

In $\S 3$ we apply the results in $\S 2$ to obtain geometric information about surfaces in $\mathbb{R}^{4}$. Points on a generic surface in $\mathbb{R}^{4}$ are called elliptic, hyperbolic, parabolic or inflection point (see $\S 3$ ). One key observation we make here is that this classification is precisely that of the $\mathcal{G}$-classification of the singular point of $P_{v}(M)$ along any tangent direction $v$ (Theorem 3.3). This explains a result in [18] comparing the type of the cross-cap of $P_{v}(M)$ at $P_{v}(p)$ and that of the point $p$.

It is worth observing that the results in this paper are independent of the metric as they are derived from the contact of the surfaces with planes and lines. They are valid, for instance, for projections of surfaces in the projective 4 -space to the projective 3 -space.

## 2 The geometry of singular surfaces

We consider the geometry of singular surfaces $S$ parametrised locally by a germ of a smooth function $\phi: \mathbb{R}^{2}, 0 \rightarrow \mathbb{R}^{3}, 0$, where $\phi$ is $\mathcal{A}$-equivalent to a singularity of $\mathcal{A}_{e^{-}}$ codimension $\leq 3$ in Table 1. More specifically, we consider the contact of these singular surfaces with planes. This contact is measured by the $\mathcal{K}$-singularities of the members $H_{v}$ of the family of height functions on $S, H: S \times S^{2} \rightarrow \mathbb{R}$, given by

$$
H(x, y, v)=H_{v}(x, y)=\phi(x, y) \cdot v
$$

where $S^{2}$ denotes the unit sphere in $\mathbb{R}^{3}$. (Two germs, at the origin, of functions $f, g$ are $\mathcal{K}$-equivalent if $g(x, y)=k(x, y) f\left(h^{-1}(x, y)\right)$, where $h$ is a germ of a diffeomorphism and $k$ is a germ of a function not vanishing at the origin.) The $\mathcal{K}$-singularities we shall use in this paper are the following simple ones (below left, [1]) and the unimodal ones (below right, [22]) with normal forms as follows:

$$
\begin{array}{ll}
A_{k}: x^{2} \pm y^{k+1}, k \geq 0 & J_{10}: x^{3}+a x^{2} y^{2}+y^{6}, 4 a^{3}+27 \neq 0 \\
D_{k}: x^{2} y \pm y^{k-1}, k \geq 4 & X_{1,0}: x^{4}+a x^{2} y^{2}+y^{4}, a^{2}-4 \neq 0 \\
E_{6}: x^{3}+y^{4} & X_{1,0}: x y\left(x^{2}+a x y+y^{2}\right), a^{2}-4<0 \\
E_{7}: x^{3}+x y^{3} & \\
E_{8}: x^{3}+y^{5} &
\end{array}
$$

(In the complex case, the singularity $X_{1,0}$ has one normal form given by $x^{4}+a x^{2} y^{2}+$ $y^{4}, a^{2}-4 \neq 0$, but this form does not include the case of two real roots.) Contact with planes is affine invariant, therefore we can make affine changes of coordinates in the target (see [3]).

All the singularities in Table 1 are of corank 1 , so we can make changes of coordinates in the source and rotations in the target and write $\phi$ in the form

$$
\phi(x, y)=(x, p(x, y), q(x, y))
$$

with $p, q \in \mathcal{M}^{2}(x, y)(\mathcal{M}(x, y)$ denotes the maximal ideal in the ring of germs of functions in $(x, y))$. We denote by $Q_{1}(x, y)=j^{2} p(x, y)=p_{20} x^{2}+p_{21} x y+p_{22} y^{2}$ and $Q_{2}(x, y)=j^{2} q(x, y)=q_{20} x^{2}+q_{21} x y+q_{22} y^{2}$, where the $k$-jet $j^{k} f$ of a germ $f$ at the origin is its Taylor polynomial of degree $k$ at the origin.

We consider the action of $\mathcal{G}=G L(2, \mathbb{R}) \times G L(2, \mathbb{R})$ on the pairs of binary forms $\left(Q_{1}, Q_{2}\right)$, given by linear changes of coordinates in the source and target. The $\mathcal{G}$-orbits (see for example [12]) are listed in Table 2.

Definition 2.1 The singular point of $S$ is called hyperbolic/elliptic/parabolic or an inflection point if the $\mathcal{G}$-class of $\left(Q_{1}, Q_{2}\right)$ is as in Table 2.

Table 2: The $\mathcal{G}$-classes of pairs of quadratic forms.

| $\mathcal{G}$-class | Name |
| :---: | :---: |
| $\left(x^{2}, y^{2}\right)$ | hyperbolic point |
| $\left(x y, x^{2}-y^{2}\right)$ | elliptic point |
| $\left(x^{2}, x y\right)$ | parabolic point |
| $\left(x^{2} \pm y^{2}, 0\right)$ | inflection point |
| $\left(x^{2}, 0\right)$ | degenerate inflection |
| $(0,0)$ | degenerate inflection |

At the singular point of $S, d \phi_{0}\left(T_{0} \mathbb{R}^{2}\right)$ is a line, which we call the tangent line to $S$. There is a plane of directions orthogonal to this tangent line. These directions are called the normal directions to $S$ at the singular point. The Gauss-map of $S$ is not defined at its singular point. However, we can still define the closure of the parabolic set of $S$ as the image by $\phi$ of the zero set of

$$
\begin{equation*}
\tilde{K}(x, y)=\left(\left(\phi_{x} \times \phi_{y} \cdot \phi_{x x}\right)\left(\phi_{x} \times \phi_{y} \cdot \phi_{y y}\right)-\left(\phi_{x} \times \phi_{y} \cdot \phi_{x y}\right)^{2}\right)(x, y) \tag{1}
\end{equation*}
$$

Note that away from the singular point, $\tilde{K}_{\tilde{K}}$ vanishes if and only if the Gaussian curvature of $S$ vanishes. We call the zero set of $\tilde{K}$ the pre-parabolic set of $S$ and denote it by $P P S$.

Let $X$ be one of the normal forms in Table 1. We define the following subset of the set $\mathcal{E}(2,3)$ of all smooth map-germs $\mathbb{R}^{2}, 0 \rightarrow \mathbb{R}^{3}, 0$,

$$
T_{X}:=\left\{\phi \in \mathcal{E}(2,3): \phi \sim_{\mathcal{A}} X\right\}
$$

We give $T_{X}$ the induced Whitney topology and say that a property $(P)$ is generic if it is satisfied in a residual subset of $T_{X}$. Map-germs in such a residual subset are referred to as generic map-germs.

Let $W$ be a codimension $k$ subset of $T_{X}$. We can proceed as above and give $W$ the induced Whitney topology. Then $\phi \in W$ is said to be a generic codimension $k$ germ if it satisfies a property that holds in a residual subset of $W$.

### 2.1 The cross-cap

The differential geometry of the cross-cap from the singularity theory point of view was initiated in $[6,23]$; see also $[8,9,18,20]$ for other studies on the geometry of the cross-cap. It is shown in [23] that a parametrisation of a cross-cap can be taken, by a suitable choice of a coordinate system in the source and affine changes of coordinates in the target, in the form

$$
\begin{equation*}
\phi(x, y)=\left(x, x y+p(y), y^{2}+a x^{2}+q(x, y)\right), \tag{2}
\end{equation*}
$$



Figure 1: Hyperbolic and elliptic cross-caps.
where $p \in \mathcal{M}^{4}(y)$ and $q \in \mathcal{M}^{3}(x, y)$. The following is also shown in [23]. When $a<0$, the height function along any normal direction at the cross-cap point has an $A_{1}$-singularity. Such cross-caps are labelled hyperbolic cross-caps as all points, except the origin, have negative Gaussian curvature (Figure 1, left). When $a>0$, there are two normal directions $(0, \pm 2 \sqrt{a}, 1)$ at the cross-cap point along which the height function has a singularity more degenerate than $A_{1}$ (i.e., of type $A_{\geq 2}$ ). Such a cross-cap is labelled elliptic cross-cap (Figure 1, right). The singularity of the height function along the degenerate normal direction is precisely of type $A_{2}$ if and only if $q\left(\mp \frac{1}{\sqrt{a}}, 1\right) \neq 0$. When $a=0$, there is a unique normal direction at the cross-cap point where the height function has a singularity more degenerate than $A_{1}$. The singularity of its corresponding height function is of type $A_{2}$ if and only if $\frac{\partial^{3} q}{\partial x^{3}}(0,0) \neq 0$. Such a cross-cap is labelled parabolic cross-cap.

We start with this simple but important observation.
Theorem 2.2 A cross-cap is hyperbolic/elliptic/parabolic if and only if its singular point is elliptic/hyperbolic/parabolic (as in Table 2).

Proof The pair of quadratic forms associated to $\phi$ in (2) is $\left(x y, y^{2}+a x^{2}\right)$. This is $\mathcal{G}$-equivalent to $\left(x y, x^{2}-y^{2}\right),\left(x^{2}, y^{2}\right)$ or $\left(x^{2}, x y\right)$ in Table 2 if and only if $a<0, a>0$ or $a=0$, and the result follows from the discussion above.

We introduce a new notation and call an elliptic cross-cap where the height function has an $A_{i}$-singularity along one degenerate direction and an $A_{j}$-singularity along the other degenerate direction an elliptic cross-cap of type $A_{i} A_{j}$ or an $A_{i} A_{j}$-elliptic crosscap. Likewise, we label an $A_{k}$-parabolic cross-cap one where the height function has a degenerate singularity (of type $A_{k}$ ) along the unique degenerate normal direction.

When $a \neq 0$ above, the $P P S$ has an $A_{1}^{+}$-singularity if $a<0$ and $A_{1}^{-}$-singularity if $a>0$. The closure of the parabolic set on the cross-cap consists of two tangential curves, and each branch of the parabolic set is linked to one of the two degenerate normal directions at the cross-cap point.

Theorem 2.3 Let $P_{i}(t), i=1,2$, be parametrisations of the branches of the parabolic set on an elliptic cross-cap (with $P_{i}(0)$ being the cross-cap point) and denote by $\tau_{i}(t)$ the torsion of these space curves. Then the height function along the degenerate normal direction associated to the branch $P_{i}$ has singularity at the cross-cap point of type

$$
\begin{aligned}
& A_{2} \Longleftrightarrow \tau_{i}(0) \neq 0 \\
& A_{3} \quad \Longleftrightarrow \\
& A_{4} \quad \Longleftrightarrow \quad \tau_{i}(0)=0, \tau_{i}^{\prime}(0) \neq 0 \\
& \tau_{i}(0)=\tau_{i}^{\prime}(0)=0, \tau_{i}^{\prime \prime}(0) \neq 0
\end{aligned}
$$

Proof The proof follows by direct calculations (using Maple). We parametrise the cross-cap as in (2) and set $a=1$ with further affine changes of coordinates. We write $j^{5} p=p_{44} y^{4}+p_{55} y^{5}$ and $j^{5} q=q_{3}+q_{4}+q_{5}$ with $q_{i}=\sum_{j=0}^{i} q_{3 j} x^{i-j} y^{j}$. The PPS is given by the zero set of $\tilde{K}$ in (1). The 2 -jet of $\tilde{K}$ is $4(x-y)(x+y)$.

Consider for example the branch with tangent direction $(1,1)$, which is the graph of the function $y(x)=x+\alpha_{2} x^{2}+\alpha_{3} x^{3}+\alpha_{4} x^{4}+h . o . t$, with

$$
\begin{aligned}
\alpha_{2}= & q_{31}+\frac{1}{2} q_{32}+\frac{3}{2} q_{30}, \\
\alpha_{3}= & -\frac{3}{4} q_{31} q_{33}+\frac{3}{8} q_{31}^{2}+\frac{1}{2} q_{31} q_{32}-\frac{1}{8} q_{32}^{2}+\frac{3}{4} q_{30} q_{32}-\frac{9}{8} q_{30}^{2}+3 q_{40}+2 q_{42}+\frac{3}{2} q_{43}+\frac{5}{2} q_{41} \\
& +q_{44}-\frac{9}{8} q_{33}^{2}-\frac{3}{2} q_{33} q_{32}-2 p_{44}, \\
\alpha_{4}= & \frac{9}{2} q_{51}+\frac{7}{2} q_{53}+5 q_{50}+\frac{5}{2} q_{55}-5 p_{55}-\frac{9}{8} q_{33} q_{31}^{2}+4 q_{52}-\frac{3}{2} q_{41} q_{33}+9 q_{33} p_{44}+\frac{3}{2} q_{40} q_{32} \\
& +3 q_{30} q_{42}-7 q_{33} p_{44}-\frac{27}{8} q_{33} q_{31} q_{32}-\frac{9}{2} q_{33} q_{30} q_{32}-\frac{9}{8} q_{30} q_{31} q_{33}+3 q_{54}+\frac{5}{16} q_{31}^{2} q_{32} \\
& +3 q_{31} q_{42}-\frac{3}{16} q_{30} q_{32}^{2}-\frac{9}{16} q_{32} q_{30}^{2}-\frac{3}{2} q_{32} q_{44}-\frac{9}{16} q_{30} q_{31}-\frac{9}{2} q_{30} q_{40}-\frac{81}{16} q_{30} q_{33}^{2} \\
& +\frac{1}{11} q_{32}^{3}+\frac{27}{16} q_{30}^{3}+\frac{45}{16} q_{33}^{2} q_{32}+\frac{9}{2} q_{30} q_{43}+\frac{3}{2} q_{41} q_{32}-12 p_{44} q_{30}-\frac{9}{2} q_{33} q_{43}+2 q_{41} q_{31} \\
& +q_{42} q_{32}+3 q_{31} q_{43}+\frac{9}{2} q_{30} q_{44}+2 q_{31} q_{44}-3 q_{42} q_{33}+\frac{27}{8} q_{33}^{3}-\frac{9}{4} q_{31} q_{33}^{2}-6 q_{33} q_{44} .
\end{aligned}
$$

We calculate the torsion of the curve $\phi(x, y(x))$ and its first two derivatives at $x=0$ (using Maple). Observe that $\tau(0), \tau^{\prime}(0)$ and $\tau^{\prime \prime}(0)$ depend only on $\alpha_{2}, \alpha_{3}$ and $\alpha_{4}$.

The height function along the degenerate normal direction $v_{1}=(0,-2,1)$, which corresponds to the branch $(x, y(x))$ of the parabolic set is given by $h_{v_{1}}=(y-x)^{2}+$ $q(x, y)+2 p(y)$ and has a singularity at the origin of type

$$
\begin{aligned}
& A_{2} \Longleftrightarrow q_{3}(1,1) \neq 0, \\
& A_{3} \quad \Longleftrightarrow \quad q_{3}(1,1)=0 \text { and }\left(3 q_{33}+q_{31}+2 q_{32}\right)^{2}-4 q_{4}(1,1)+8 p_{44} \neq 0, \\
& A_{4} \quad \Longleftrightarrow \quad q_{3}(1,1)=\left(3 q_{33}+q_{31}+2 q_{32}\right)^{2}-4 q_{4}(1,1)+8 p_{44}=0 \text { and } O \neq 0
\end{aligned}
$$

with

$$
\begin{aligned}
O= & q_{5}(1,1)-2 p_{55}+\frac{1}{4}\left(q_{32}+3 q_{33}\right)\left(q_{31}+3 q_{33}+2 q_{32}\right)^{2} \\
& -\frac{1}{2}\left(q_{41}+2 q_{42}+3 q_{43}+4 q_{44}-8 p_{44}\right)\left(q_{31}+3 q_{33}+2 q_{32}\right) .
\end{aligned}
$$

The result now follows by observing that the above conditions for the singularities of the height function $h_{v_{1}}$ can be expressed in terms of $\tau(0), \tau^{\prime}(0)$ and $\tau^{\prime \prime}(0)$ and these are as in the statement of the theorem.

Remark 2.4 Theorem 2.3 gives a geometric characterisation of $A_{i} A_{j}$-elliptic crosscaps when $i, j \leq 4$. The $A_{2} A_{2}$-cross-caps are generic, the $A_{2} A_{3}$-cross-caps are of codimension 1 and the $A_{2} A_{4}$ and $A_{3} A_{3}$-cross-caps are of codimension 2.

### 2.2 Singularities more degenerate than a cross-cap

We turn now to the remaining singularities in Table 1. We shall describe the singularities of the $P P S$ and those of the height functions along normal directions.

When $S$ has an $S_{k}, B_{k}$, or $C_{3}$ singularity, we can make changes of coordinates in the source and affine changes of coordinates in the target and parametrise it in the form

$$
\begin{equation*}
\phi(x, y)=\left(x, y^{2}+p(x), q(x, y)\right), \tag{3}
\end{equation*}
$$

where $p \in \mathcal{M}^{2}(x)$ and $q \in \mathcal{M}^{2}(x, y)$ ([7]; the result follows from the fact that $p(x, y)$ is an $\mathcal{R}$-versal unfolding of $y^{2}$, so is $\mathcal{R}_{+}$-equivalent to $y^{2}+p(x)$. The parametrisation (3) can also be used for the cross-cap). We set

$$
\begin{aligned}
p(x) & =p_{20} x^{2}+p_{30} x^{3}+p_{40} x^{4}+\ldots \\
q(x, y) & =q_{20} x^{2}+q_{22} y^{2}+\sum_{j=0}^{3} q_{3 j} x^{3-j} y^{j}+\sum_{j=0}^{4} q_{4 j} x^{4-j} y^{j}+\ldots
\end{aligned}
$$

Note that $q_{21}=0$ because the singularity of $\phi$ at the origin is worse than a cross-cap. Then the conditions for $\phi$ in (3) to have one the $\mathcal{A}$-types in Table 1 are as follows:

```
\(B_{1}=S_{1}: \quad q_{31} \neq 0, q_{33} \neq 0 ;\)
    \(B_{2}: \quad q_{31} \neq 0, q_{33}=0,4 q_{31} q_{55}-q_{43}^{2} \neq 0 ;\)
    \(B_{3}: \quad q_{31} \neq 0, q_{33}=0,4 q_{31} q_{55}-q_{43}^{2}=0\),
        \(2 q_{31}^{3} q_{77}-\left(2 q_{53} q_{55}+q_{43} q_{44}\right) q_{31}^{2}+\left(q_{43} q_{53}-q_{41} q_{55}\right) q_{43} q_{31}-q_{41} q_{43}^{2} \neq 0 ;\)
    \(S_{2}: \quad q_{31}=0, q_{33} \neq 0, q_{41} \neq 0\);
    \(S_{3}: \quad q_{31}=0, q_{33} \neq 0, q_{41}=0, q_{51} \neq 0 ;\)
    \(C_{3}: \quad q_{31}=0, q_{33}=0, q_{41} \neq 0, q_{43} \neq 0\).
```

At an $H_{k}$ or $P_{3}$-singularity of $S$, we can take a parametrisation of the surface in the form

$$
\begin{equation*}
\phi(x, y)=\left(x, x y+p(x, y), q_{20} x^{2}+q(x, y)\right), \tag{4}
\end{equation*}
$$

where $p, q \in \mathcal{M}^{3}(x, y)$. The singularities of $\phi$ are identified as follows:

$$
\begin{aligned}
H_{2}: & q_{33} \neq 0,3 p_{55} q_{33}^{2}-\left(4 p_{44} q_{44}+3 p_{33} q_{55}\right) q_{33}+4 p_{33} q_{44}^{2} \neq 0 \\
H_{3}: & q_{33} \neq 0,3 p_{55} q_{33}^{2}-\left(4 p_{44} q_{44}+3 p_{33} q_{55}\right) q_{33}+4 p_{33} q_{44}^{2}=0, \xi \neq 0 \\
P_{3}: & q_{33}=0, p_{33} q_{44}-p_{44} q_{33} \neq 0 .
\end{aligned}
$$

The expression $\xi$ depends on the 7 -jets of $p$ and $q$.
We start with the identification of the type of the singular point of the surface $S$.

Theorem 2.5 (1) Let $\phi$ be as in (3). Then the origin is either a hyperbolic point (if and only if $q_{20}-p_{20} q_{22} \neq 0$ ) or an inflection point (if and only if $q_{20}-p_{20} q_{22}=0$ ).
(2) Let $\phi$ be as in (4). Then the origin is either a parabolic point (if and only if $q_{20} \neq 0$ ) or an inflection point (if and only if $q_{20}=0$ ).

Proof For part (1), we make the affine change of coordinates in the target $k(X, Y, Z)=$ $\left(X, Y, Z-q_{22} Y\right)$, so that $j^{2}(k \circ \phi)=\left(x, y^{2}+p_{20} x^{2},\left(q_{20}-p_{20} q_{22}\right) x^{2}\right)$. The result follows by comparing $\left(y^{2}+p_{20} x^{2},\left(q_{20}-p_{20} q_{22}\right) x^{2}\right)$ with the normal forms in Table 2. Part (2) is immediate as $j^{2} \phi=\left(x, x y, q_{20} x^{2}\right)$.

Remark 2.6 It is worth observing that it follows from the above theorem that the singular point of a surface with a singularity of type $S_{k}, B_{k}$ or $C_{3}$ is never an elliptic or a parabolic point. Similarly, for a surface with a singularity of type $H_{k}$ and $P_{3}$, its singular point is never an elliptic or a hyperbolic point.

Theorem 2.7 If the singular point of $S$ is not an inflection point, the generic singularities of the PPS are as shown in Table 3. If the singular point of $S$ is an inflection point, the PPS has generically an $X_{1,0}$-singularity.

Table 3: The singularities of $\phi$ and of the PPS of $\phi\left(\mathbb{R}^{2}, 0\right)$.

| $\phi$ | $B_{1}^{ \pm}$ | $B_{2}$ | $B_{3}$ | $S_{2}$ | $S_{3}$ | $C_{3}$ | $H_{2}$ | $H_{3}$ | $P_{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $P P S$ | $D_{4}^{\mp}$ | $D_{5}$ | $D_{5}$ | $E_{7}$ | $J_{10}$ | $X_{1,0}$ | $D_{5}$ | $D_{5}$ | $J_{10}$ |

Proof The PPS is given by the vanishing of the function $\tilde{K}$ in (1). For the $S_{k}, B_{k}$ and $C_{3}$-singularities we take $\phi$ as in (3). Then,

$$
\begin{aligned}
j^{4} \tilde{K}= & 8\left(q_{20}-p_{20} q_{22}\right)\left(-q_{31} x^{2} y+3 q_{33} y^{3}\right)-4 p_{20} q_{31}^{2} x^{4} \\
& -8\left(q_{31}\left(3 q_{30}-p_{20} q_{32}-3 p_{30} q_{22}\right)+q_{41}\left(q_{20}-p_{20} q_{22}\right)\right) x^{3} y \\
& +8 q_{31}\left(2 p_{20} q_{33}-3 q_{31}\right) x^{2} y^{2}+8\left(3 q_{33}\left(3 q_{30}-p_{20} q_{32}-3 p_{30} q_{22}\right)\right. \\
& \left.+3 q_{43}\left(q_{20}-p_{20} q_{22}\right)-4 q_{31} q_{32}\right) x y^{3}+16\left(4 q_{44}\left(q_{20}-p_{20} q_{22}\right)-q_{32}^{2}\right) y^{4} .
\end{aligned}
$$

The proof is an exercise of recognition of singularities of functions. If $q_{20}-p_{20} q_{22}=0$ (that is, the origin is an inflection point, see Theorem 2.5), the 4 -jet of $\tilde{K}$ is generically a non-degenerate quartic, so the singularity is of type $X_{1,0}$.

Suppose that $q_{20}-p_{20} q_{22} \neq 0$.
The map-germ $\phi$ has an $S_{1}^{ \pm}\left(=B_{1}^{ \pm}\right)$-singularity if and only if $q_{31} q_{33} \neq 0$, so the PPS has a $D_{4}^{\mp}$-singularity.

At an $S_{2}$ singularity of $\phi, q_{31}=0$, and $q_{41} q_{33} \neq 0$. Then the coefficient of $x^{3} y$ in $\tilde{K}$ becomes $8\left(q_{20}-p_{20} q_{22}\right) q_{41}$, so the $P P S$ has an $E_{7}$-singularity.

At an $S_{3}$-singularity of $\phi, q_{31}=q_{41}=0$, and $q_{51} q_{33} \neq 0$. Working with the 6 -jet of $\tilde{K}$ we show that the $P P S$ has a singularity of type $J_{10}$.

If $\phi$ has a $B_{2}$-singularity, $q_{33}=0$ and $q_{31} \neq 0$ and $4 q_{31} q_{55}-q_{43}^{2} \neq 0$. The coefficient of $y^{4}$ in $\tilde{K}$ is not zero if and only if $4\left(q_{20}-p_{20} q_{22}\right) q_{44}-q_{32}^{2} \neq 0$. Therefore, the PPS has generically a $D_{5}$-singularity. (When $4\left(q_{20}-p_{20} q_{22}\right) q_{44}-q_{32}^{2}=0$, we get a $D_{6}$ singularity.) Observe that the condition to have a $D_{5}$-singularity is distinct from the condition $4 q_{31} q_{55}-q_{43}^{2}=0$ for the map-germ $\phi$ to have a $B_{\geq 3}$-singularity. Therefore, at a $B_{3}$-singularity the $P P S$ has also generically a $D_{5}$-singularity.

At a $C_{3}$-singularity, $q_{31}=q_{33}=0$ and $q_{41} q_{43} \neq 0$. The 3 -jet of $\tilde{K}$ is identically zero and its 4 -jet is generically a non-degenerate quartic. Therefore the singularity of the $P P S$ is of type $X_{1,0}$.

At an $H_{k}$-singularity of $S$, we can take $\phi$ as in (4). Then the singularity is of type $H_{\geq 2}$ if and only if $q_{33} \neq 0$. The 4 -jet of $\tilde{K}$ is given by

$$
\begin{aligned}
& 12 q_{20} q_{33} y x^{2}+4 q_{20} q_{32} x^{3}-9 q_{33}^{2} y^{4}+36 p_{33} q_{20} q_{33} y^{3} x \\
& +4\left(3 q_{33}\left(p_{31} q_{20}+3 q_{30}\right)+3 q_{20}\left(q_{43}-q_{31} p_{33}+p_{31} q_{33}\right)+q_{32}\left(q_{31}+2 p_{32} q_{20}\right)\right) y x^{3} \\
& +6\left(q_{33} q_{31}+2 p_{33} q_{20} q_{32}+2 q_{20}\left(2 q_{44}-q_{32} p_{33}+q_{33} p_{32}\right)+2 q_{33}\left(q_{31}+2 p_{32} q_{20}\right)\right) y^{2} x^{2} \\
& +\left(-q_{31}^{2}+4\left(p_{31} q_{20}+3 q_{30}\right) q_{32}+4 q_{20}\left(p_{31} q_{32}+q_{42}-q_{31} p_{32}\right)\right) x^{4} .
\end{aligned}
$$

We have a $D_{5}$-singularity if $q_{20} q_{33} \neq 0$. Note that the condition $q_{20}=0$ is that for the origin to be an inflection point (Theorem 2.5), and if it holds, the singularity of the $P P S$ is generically of type $X_{1,0}$. Suppose that $q_{20} \neq 0$. Then the $P P S$ has a $D_{5}$-singularity at an $H_{\geq 2}$-singularity of $\phi$. If $q_{33}=0$, we have a $P_{3}$-singularity of $\phi$ and the $P P S$ has generically a $J_{10}$-singularity.

We consider now the height functions on $S=\phi\left(\mathbb{R}^{2}, 0\right)$.
Theorem 2.8 (1) Suppose that the origin is not an inflection point of $S$. When $S$ has an $S_{k}, B_{k}$ or $C_{3}$-singularity, there are two distinct normal directions $v_{i}, i=1,2$ at its singular point along which the height function $H_{v_{i}}$ has a singularity of type $A_{\geq 2}$. We say that the surface is of type $A_{k} A_{l}$ if $H_{v_{1}}$ has an $A_{k}$ and $H_{v_{2}}$ has an $A_{l}$-singularity.

The $S_{k}$-surfaces are always of type $A_{2} A_{\geq 2}$; the generic ones are of type $A_{2} A_{2}$ and the type $A_{2} A_{3}$ is of codimension 1.

The $B_{k}$ and $C_{3}$ surfaces are always of type $A_{\geq 2} A_{3}$. The generic ones are of type $A_{2} A_{3}$ and the type $A_{3} A_{3}$ is of codimension 1.

If $S$ has an $H_{k}$ (resp. $P_{3}$ )-singularity, there is a unique degenerate normal direction at its singular point along which the height function has a singularity of type $A_{2}$ (resp. generically of type $A_{3}$ ).
(2) If the singular point of $S$ is an inflection point, there is a unique degenerate normal direction at this point along which the height function has generically a $D_{4}$ singularity.

Proof (1) We take $\phi$ as in (3). If we set $v=(\alpha, \beta, \gamma)$, we get

$$
H_{v}(x, y)=\alpha x+\beta\left(y^{2}+p(x)\right)+\gamma q(x, y) .
$$

This height function is singular at the origin if and only if $\alpha=0$, that is, if and only if $v$ is in the normal plane to $S$ at the origin. For such $v$, the 2-jet of $H_{v}$ is

$$
\left(p_{20} \beta+q_{20} \gamma\right) x^{2}+\left(\beta+q_{22} \gamma\right) y^{2} .
$$

The singularity of $H_{v}$ is of type $A_{1}$ if and only if $\left(p_{20} \beta+q_{20} \gamma\right)\left(\beta+q_{22} \gamma\right) \neq 0$. It is of type $A_{k \geq 2}$ if $p_{20} \beta+q_{20} \gamma=0$ and $\beta+q_{22} \gamma \neq 0$ or vice-versa. Therefore, there are two distinct directions in the normal plane where the height function has a degenerate singularity of type $A_{k \geq 2}$ unless $p_{20} \beta+q_{20} \gamma=\beta+q_{22} \gamma=0$. The last two equations are satisfied if and only if $q_{20}-p_{20} q_{22}=0$, i.e., if and only if the origin is an inflection point. We suppose in this part of the proof that the origin is not an inflection point and deal with each degenerate direction separately.
(i) Suppose that $\beta+q_{22} \gamma \neq 0$ and $p_{20} \beta+q_{20} \gamma=0$. Then $v$ is parallel to $v_{1}=$ $\left(0,-q_{22}, 1\right)$ and the 3 -jet of $H_{v_{1}}$ is given by

$$
\left(q_{20}-p_{20} q_{22}\right) x^{2}+\left(q_{30}-q_{22} p_{30}\right) x^{3}+q_{31} x^{2} y+q_{32} x y^{2}+q_{33} y^{3} .
$$

At an $S_{k}$-singularity of $\phi, q_{33} \neq 0$, so the height function $H_{v_{1}}$ has a singularity of type $A_{2}$.

Suppose now that $q_{33}=0$, i.e., $\phi$ has a $B_{k}$ or a $C_{3}$-singularity. The relevant part of the 4 -jet of $H_{v_{1}}$ is

$$
\left(q_{20}-q_{22} p_{20}\right) x^{2}+q_{32} x y^{2}+q_{44} y^{4}
$$

and the singularity is of type $A_{3}$ if and only if the above expression is not a perfect square, that is, if and only if $4\left(q_{20}-q_{22} p_{20}\right) q_{44}-q_{32}^{2} \neq 0$. This is precisely the condition in the proof in Theorem 2.7 for the $P P S$ to have a $D_{5}$-singularity when $\phi$ has a $B_{k^{-}}$ singularity, and is distinct from the conditions determining $k$ in the $B_{k}$ series or the $C_{3}$-singularity. When $4\left(q_{20}-q_{22} p_{20}\right) q_{44}-q_{32}^{2}=0, H_{v_{1}}$ has a singularity of type $A_{\geq 4}$.
(ii) We suppose now that $p_{20} \beta+q_{20} \gamma \neq 0$ and $\beta+q_{22} \gamma=0$. We have a degenerate direction parallel to $v_{2}=\left(0,-q_{20}, p_{20}\right)$ and the 3 -jet of $H_{v_{2}}$ is given by

$$
-\left(q_{20}-p_{20} q_{22}\right) y^{2}+\left(p_{20} q_{30}-q_{20} p_{30}\right) x^{3}+p_{20} q_{31} x^{2} y+p_{20} q_{32} x y^{2}+p_{20} q_{33} y^{3} .
$$

Thus, $H_{v_{2}}$ has an $A_{2}$-singularity if and only if $p_{20} q_{30}-q_{20} p_{30} \neq 0$.
If $p_{20} q_{30}-q_{20} p_{30}=0$, by analysing the 4 -jet of $H_{v_{2}}$, we find that its singularity is of type $A_{3}$ if and only if $p_{20}^{2} q_{31}^{2}-4\left(q_{20}-q_{22} p_{20}\right)\left(q_{20} p_{40}-p_{20} q_{40}\right) \neq 0$.

We turn now to the $H_{k}$ and $P_{3}$-singularities and take $\phi$ as in (4). Then, $j^{2} H_{v}(x, y)=$ $v_{2} x y+v_{3} q_{20} x^{2}$, so there is a unique direction $v=(0,0,1)$ along which $H_{v}$ has a singularity more degenerate than $A_{1}$. We have $H_{v}(x, y)=q_{20} x^{2}+q(x, y)$. As the
origin is supposed not be an inflection point, $q_{20} \neq 0$, so the singularity of $H_{v}$ is precisely of type $A_{2}$ when $q_{33} \neq 0$, i.e., when $\phi$ has a singularity of type $H_{k}$. It is generically of type $A_{3}$ at a $P_{3}$-singularity of $\phi$.
(2) Suppose now that the origin is an inflection point, so $q_{20}-p_{20} q_{22}=0$, and denote by $v\left(=v_{1}=v_{2}\right)$ the unique degenerate normal direction. Then the 3-jet of $H_{v}$ is given by

$$
\left(-q_{22} p_{30}+q_{30}\right) x^{3}+q_{33} y^{3}+q_{31} x^{2} y+q_{32} x y^{2} .
$$

This is a singularity of type $D_{4}$ unless the above cubic has a repeated root.
When the height function on $S$ is degenerate along two distinct normal directions (Theorem 2.8), we can split the $P P S$ of $S$ into two components, with each component related to one of the degenerate normal directions. The following result clarifies the high degeneracy of the singularities of the $P P S$ in Theorem 2.7.

We denote by $\mathcal{L}_{i}$ the component of the PPS associated to the height function $H_{v_{i}}$, $i=1,2$ on $S$, where $v_{i}$ are as in the proof of Theorem 2.8.

Theorem 2.9 The component $\mathcal{L}_{2}$ of the PPS is always a smooth curve.
The component $\mathcal{L}_{1}$ has a singularity of type $A_{k}$ when $S$ has an $S_{k}$-singularity, $k=1,2,3$. At a $B_{\geq 2}$-singularity of $S$, its singularity is of type $A_{2}$ (the singularity can become an $A_{3}$ in codimension $1 B_{k}$-surfaces), and at a $C_{3}$-singularity of $S$ it is generically of type $D_{4}$.

The smooth curve $\mathcal{L}_{2}$ is transverse to the tangent directions of $\mathcal{L}_{1}$ at an $S_{1}, B_{k}$ and $C_{3}$ singularities. The transversality fails at the $S_{\geq 2}$-singularities.

Proof We parametrise the directions near $v_{1}=\left(0,-q_{22}, 1\right)$ by $\left(\alpha, \beta-q_{22}, 1\right)$, so the (modified) family of height functions on $S$ is given by

$$
H^{1}(x, y, \alpha, \beta)=\alpha x+\left(-q_{22}+\beta\right)\left(y^{2}+p(x)\right)+q(x, y)
$$

The component $\mathcal{L}_{1}$ of the PPS is the set of points $(x, y)$ for which there exists $(\alpha, \beta)$ such that

$$
\begin{array}{rlrl}
H_{x}^{1} & =\alpha+2\left(q_{20}-q_{22} p_{20}\right) x+\text { h.o.t } & & =0 \\
H_{y}^{1} & =2 \beta y+q_{31} x^{2}+2 q_{32} x y+3 q_{33} y^{2}+\text { h.o.t } & & =0 \\
\left(H_{x y}^{1}\right)^{2}-H_{x x}^{1} H_{y y}^{1} & =-4\left(q_{20}-q_{22} p_{20}\right)\left(q_{32} x+3 q_{33} y+\beta\right)+\text { h.o.t } & =0 .
\end{array}
$$

We are assuming here that the origin is not an inflection point (see Theorem 2.8). The first (resp. third) equation gives $\alpha$ (resp. $\beta$ ) as functions in $(x, y)$. Substituting these in the second equation gives an equation with a 2 -jet $q_{31} x^{2}-3 q_{33} y^{2}$.

If $q_{31} q_{33} \neq 0$, i.e., $\phi$ has an $S_{1}$-singularity, $\mathcal{L}_{1}$ has an $A_{1}$-singularity.
If $q_{33} \neq 0$ and $q_{31}=0$, i.e., $\phi$ has an $S_{k}$-singularity, the relevant part of the equation of $\mathcal{L}_{1}$ is given by $-3 q_{33} y^{2}+q_{41} x^{3}$. Thus, this component has an $A_{2}$-singularity at an $S_{2}$-singularity of $\phi$ and an $A_{3}$-singularity at an $S_{3}$-singularity of $\phi$.

If $q_{33}=0$ and $q_{31} \neq 0$, i.e., $\phi$ has an $B_{k}$-singularity, then a similar calculation to the above shows that $\mathcal{L}_{1}$ has an $A_{2}$-singularity unless $4\left(q_{20}-q_{22} p_{20}\right) q_{44}-q_{32}^{2}=0$, where the singularity becomes of type $A_{3}$ (or worse).

When $q_{33}=q_{31}=0, \phi$ has a $C_{3}$-singularity and $\mathcal{L}_{1}$ has generically a singularity of type $D_{4}$.

For the component $\mathcal{L}_{2}$ of the $P P S$, we assume without loss of generality that $p_{20} \neq 0$ and parametrise the directions near $v_{2}=\left(0,-q_{20}, p_{20}\right)$ by $\left(\alpha, \beta-q_{20}, p_{20}\right)$. Thus, the (modified) family of height functions on $S$ is given by

$$
H^{2}(x, y, \alpha, \beta)=\alpha x+\left(-q_{20}+\beta\right)\left(y^{2}+p(x)\right)+p_{20} q(x, y)
$$

The component $\mathcal{L}_{2}$ of the PPS is the set of points $(x, y)$ for which there exists $(\alpha, \beta)$ such that

$$
\begin{array}{rlrl}
H_{x}^{2} & =\alpha+\text { h.o.t } & & =0 \\
H_{y}^{2} & =-2\left(q_{20}-q_{22} p_{20}\right) y+\text { h.o.t } & & =0 \\
\left(H_{x y}^{2}\right)^{2}-H_{x x}^{2} H_{y y}^{2} & =-4\left(q_{20}-q_{22} p_{20}\right)\left(3\left(p_{20} q_{30}-q_{20} p_{30}\right) x+p_{20} q_{31} y+\beta p_{20}\right)+\text { h.o.t } & =0 .
\end{array}
$$

The first (resp. third) equation gives $\alpha$ (resp. $\beta$ ) as functions in $(x, y)$. Substituting these in the second equation gives $y=f(x)$, with $f(0)=f^{\prime}(0)=0$. Therefore the component $\mathcal{L}_{2}$ is always a smooth curve. Its tangent direction at the origin is along $(1,0)$ and this is transverse to the tangent directions of the of $\mathcal{L}_{1}$ at an $S_{1}, B_{k}$ and $C_{3}$-singularities. The transversality fails at the $S_{\geq 2}$-singularities.

Remark 2.10 The results in Theorem 2.9 explain the high degeneracy of the singularities of the $P P S$ when it has two components. Each component has a given singularity type and the two components are transverse except for the $S_{\geq 2}$-surfaces; see Table 4 where "tg" is for tangency and " H " is for transversality between the components $\mathcal{L}_{1}$ and $\mathcal{L}_{2}$. Note that the case of an isolated point $X_{1,0}$-singularity does not occur on the PPS.

Table 4: The generic structure of the $P P S$ and of its two components.


## 3 Projections of surfaces in $\mathbb{R}^{4}$ to 3 -spaces

The geometry of surfaces in $\mathbb{R}^{4}$ is studied, for instance, in $[4,5,10,11,13,14,15,19,21]$. Given a point $p \in M$ consider the unit circle in $T_{p} M$ parametrised by $\theta \in[0,2 \pi]$. The set of the curvature vectors $\eta(\theta)$ of the normal sections of $M$ by the hyperplane $\langle\theta\rangle \oplus N_{p} M$ form an ellipse in the normal plane $N_{p} M$, called the curvature ellipse ([14]). Points on the surface are classified according to the position of the point $p$ with respect to the ellipse ( $N_{p} M$ is viewed as an affine plane through $p$ ). The point $p$ is called elliptic/parabolic/hyperbolic if it is inside/on/outside the ellipse.

The curvature ellipse is the image of the unit circle in $T_{p} M$ by a map formed by a pair of quadratic forms $\left(Q_{1}, Q_{2}\right)$. This pair of quadratic forms is the 2-jet of the 1-flat map $F: \mathbb{R}^{2}, 0 \rightarrow \mathbb{R}^{2}, 0$ (i.e. without constant or linear terms) whose graph, in orthogonal co-ordinates, is locally the surface $M$. As the contact of the surface with lines and planes is affine invariant [3], an alternative approach for studying the geometry of surfaces in $\mathbb{R}^{4}$ is given in [4]. It uses the pencil of the binary forms determined by the pair $\left(Q_{1}, Q_{2}\right)$. Each point on the surface determines a pair of quadratics

$$
\left(Q_{1}, Q_{2}\right)=\left(a x^{2}+2 b x y+c y^{2}, l x^{2}+2 m x y+n y^{2}\right)
$$

A binary form $A x^{2}+2 B x y+C y^{2}$ is represented by its coefficients $(A, B, C) \in \mathbb{R}^{3}$, where the cone $B^{2}-A C=0$ corresponds to perfect squares. If the forms $Q_{1}$ and $Q_{2}$ are independent, they determine a line in the projective plane $\mathbb{R} P^{2}$ and the cone a conic. This line meets the conic in $0 / 1 / 2$ if $\delta(p)<0 /=0 />0$, with

$$
\delta(p)=(a n-c l)^{2}-4(a m-b l)(b n-c m) .
$$

A point $p$ is said to be elliptic/parabolic/hyperbolic if $\delta(p)<0 /=0 />0$. The set of points $(x, y)$ where $\delta=0$ is called the parabolic set of $M$ and is denoted by $\Delta$. If $Q_{1}$ and $Q_{2}$ are dependent, the rank of the matrix $\left(\begin{array}{ccc}a & b & c \\ l & m & n\end{array}\right)$ is 1 provided either of the forms is non-zero; the corresponding points on the surface are referred to as inflection points. (All the above notions agree with those defined using the curvature ellipse.)

We consider the action of $\mathcal{G}$ (see introduction) on the pairs of binary forms ( $Q_{1}, Q_{2}$ ). The $\mathcal{G}$-orbits and the characterisation of the corresponding point on the surface are as those given in Table 2.

The geometrical characterisation of points on $M$ using singularity theory is first obtained in [15] via the family of height functions $H: M \times S^{3} \rightarrow \mathbb{R}$, with $H(p, w)=p \cdot w$

The height function $H_{w}(p)=H(p, w)$ is singular if and only if $w \in N_{p} M$. It is shown in [15] that elliptic points are non-degenerate critical points of $H_{w}$ for any $w \in N_{p} M$. At a hyperbolic point, there are exactly two directions in $N_{p} M$, labelled binormal directions, such that $p$ is a degenerate critical point of the corresponding height functions. The two binormal directions coincide at a parabolic point. A hyperplane orthogonal to a binormal direction is called an osculating hyperplane.

The direction of the kernel of the Hessian of the height functions along a binormal direction is an asymptotic direction associated to the given binormal direction ([15]). The asymptotic directions are labelled conjugate directions in [14], and are defined as the directions along $\theta$ such that the curvature vector $\eta(\theta)$ is tangent to the curvature ellipse (see also $[10,15]$ ). Thus, if $p$ is not an inflection point, there are $2 / 1 / 0$ asymptotic directions at $p$ depending on $p$ being a hyperbolic/parabolic/elliptic point. If $p$ is an inflection point, then every direction in $T_{p} M$ is asymptotic ([15]). The configurations of the asymptotic curves at inflection points of imaginary type (where the parabolic set $\Delta$ has an $A_{1}^{+}$-singularity) are given in [10], and the configurations at inflection points of real type (where $\Delta$ has an $A_{1}^{-}$-singularity) and at other points on the curve $\Delta$ are given in [5].

Asymptotic directions can also be described as in [17] and [4] via the singularities of the members of the family of projections $P$ on $M$ to hyperplanes. The family of orthogonal projections in $\mathbb{R}^{4}$ is given by $P: \mathbb{R}^{4} \times S^{3} \rightarrow T S^{3}$ with

$$
P(p, v)=(v, p-(p \cdot v) v) .
$$

We denote the second component of $P$ by $P_{v}(p)=p-(p \cdot v) v$. For $v$ fixed, the projection can be viewed locally at a point $p \in M$ as a map-germ $P_{v}: \mathbb{R}^{2}, 0 \rightarrow \mathbb{R}^{3}, 0$. For a generic surface, the germ $P_{v}$ has only local singularities of $\mathcal{A}_{e}$-codimension $\leq 3$ in Table 1. (This is why we considered in $\S 2$ only surfaces with singularities as in Table 1.)

The projection $P_{v}$ is singular at $p$ if and only if $v \in T_{p} M$. The singularity is a cross-cap unless $v$ is an asymptotic direction at $p$. The codimension 2 singularities occur generically on curves on the surface and the codimension 3 ones at special points on these curves (see Figure 3 for their configurations at non inflection points). The $H_{2}$-curve coincides with the $\Delta$-set ([4]). The $B_{2}$-curve of $P_{v}$, with $v$ asymptotic, is also the $A_{3}$-set of the height function along the binormal direction associated to $v$ ([4]). This curve meets the $\Delta$-set tangentially at isolated points ([5]). At inflection points the $\Delta$-set has a Morse singularity and the configuration of the $B_{2}$ and $S_{2}$-curves there is given in [4].

Let $M$ be a smooth surface in $\mathbb{R}^{4}$ and let $\psi: U \subset \mathbb{R}^{2} \rightarrow \mathbb{R}^{4}$ be a local parametrisation of $M$. To simplify notation, we write $M=\psi(U)$ and still denote by $P$ the restriction of $P$ to $M$. Thus, the family of orthogonal projections $P: U \times S^{3} \rightarrow T S^{3}$ on $M$ is given by $P((x, y), v)=\left(v, P_{v}(\psi(x, y))\right)$.

Let $w$ be a unit vector in $T_{v} S^{3}$, so $w \cdot v=0$ and $w \cdot w=1$. We denote by

$$
\mathcal{D}=\left\{(v, w) \in S^{3} \times S^{3} \mid v \cdot w=0\right\} .
$$

Given $(v, w) \in \mathcal{D}$, the height function on the projected surface $P_{v}(M)$ along the vector $w$ is given by

$$
H_{(v, w)}(x, y)=P_{v}(x, y) \cdot w=(\psi(x, y)-(\psi(x, y) \cdot v) v) \cdot w=\psi(x, y) \cdot w .
$$



Figure 2: Special curves and points on generic surfaces in $\mathbb{R}^{4}$ away from inflection points.

This is precisely the height function on $M$ along the direction $w$. In particular,
Remark 3.1 The height function $H_{(v, w)}$ on $P_{v}(M)$ along the direction $w$ has the same singularities as the height function $H_{w}$ on $M$ along $w$.

The family $H: U \times \mathcal{D} \rightarrow \mathbb{R}$ has parameters in $\mathcal{D}$ which is a 5-dimensional manifold. However, it is trivial along the parameter $v$. Thus, the generic singularities that can appear in $H_{(v, w)}$ are those of $\mathcal{K}_{e}$-codimension $\leq 3$.

For $v$ fixed, $w$ varies in a 2 -dimensional sphere, so for a generic $M$ and for most directions $v$, the height function on $P_{v}(M)$ has $\mathcal{K}$-singularities of type $A_{1}^{ \pm}, A_{2}$ and $A_{3}^{ \pm}$, and these are versally unfolded by varying $w$. For isolated directions $v$, we expect the following singularities: $A_{4}, D_{4}^{ \pm}$and an $A_{2}$ or an $A_{3}$-singularity which is not versally unfolded by the family $H_{v}$. We denote the later by $N V A_{2}$ and $N V A_{3}$.

We recover in this section geometric information about the surface $M$ from the geometry of the surface $P_{v}(M)$. In [18] we considered the $\mathcal{K}$-singularities of the preimage on $M$ of the parabolic set of $P_{v}(M)$. We called this pre-image the $v-P P S$. The generic singularities that appear on the $v-P P S$ can be of high codimension. The results in $\S 2$ explain where the high degeneracy comes from (Theorem 2.9 and Table 4).

We take the point $p$ of interest on $M$ to be the origin in $\mathbb{R}^{4}$, and take the surface locally at $p$ in Monge form $\psi(x, y)=\left(x, y, f^{1}(x, y), f^{2}(x, y)\right)$, with

$$
\begin{aligned}
& f^{1}(x, y)=Q_{1}(x, y)+\sum_{i=0}^{3} c_{3 i} x^{3-i} y^{i}+\sum_{i=0}^{4} c_{4 i} x^{4-i} y^{i}+\text { h.o.t. } \\
& f^{2}(x, y)=Q_{2}(x, y)+\sum_{i=0}^{3} d_{3 i} x^{3-i} y^{i}+\sum_{i=0}^{4} d_{4 i} x^{4-i} y^{i}+\text { h.o.t. }
\end{aligned}
$$

where the pair of quadratics $\left(Q_{1}, Q_{2}\right)$ is one of the normal forms in Table 2.

### 3.1 Projecting along a non-tangent direction

Suppose that $v \in S^{3}$ is not a tangent direction at $p \in M$. We write $v=v_{T}+v_{N}$ where $v_{T}$ is the orthogonal projection of $v$ to the tangent space $T_{p} M$ and $v_{N}$ is its orthogonal projection to the normal space $N_{p} M$. Since $v_{N} \neq 0$, the surface $P_{v}(M)$ is smooth at $P_{v}(p)$.

Proposition 3.2 The height function $H_{(v, w)}$ on $P_{v}(M)$ is singular at $P_{v}(p)$ if and only if $w \in N_{p} M$. For a generic surface, the singularity of $H_{(v, w)}$ at $P_{v}(p)$ is of type
\(\left.\begin{array}{ll}A_{2}: \& if p is a hyperbolic or parabolic point and w=v_{N}^{\perp} is a binormal direction, <br>

where v_{N}^{\perp} is the orthogonal direction to v_{N} in N_{p} M .\end{array}\right\}\)| $w=v_{N}^{\perp}$ is a binormal direction, $p$ is on the $B_{2}$-curve and $v$ is away from |
| :--- |
| $A_{3}:$ |
| a circle of directions $C$ in the sphere $w^{\perp} \in \mathcal{D}$. Then the $v-P P S$ is a |
| regular curve. |

Proof The identification of the singularities of $H_{(v, w)}$ follows from Remark 3.1. To analyse the structure of the $v-P P S$, we follow the method in [2] (see also [3]) and consider (locally) the family of Monge-Taylor maps $\theta: M \times S^{3} \rightarrow V_{k}$, where $V_{k}$ denotes the vector space of polynomials in $x$ and $y$ of $2 \leq$ degree $\leq k$. The family $\theta$ is constructed as follows. Given a point $q$ on $M$ near $p$, we choose an orthonormal coordinate system in $v^{\perp} \subset \mathbb{R}^{4}$ so that $\theta_{v}(M)$ is given locally at $P_{v}(q)$ in Monge form $\left(x, y, f_{v}(x, y)\right)$. We take $\theta(q, v)$ to be the Taylor polynomial of degree $k$ of $f_{v}$ at the origin.

The singularities of interest are determined by the 3 -jet of $f_{v}$, so we shall work in $V_{3}$. The set of functions in $V_{3}$ that have an $A_{\geq 2}$-singularity form a smooth variety of codimension 1 , denoted by the $A_{2}$-set. Following similar arguments in [2], there is a residual set of embeddings of $M$ in $\mathbb{R}^{4}$ such that the map $\theta$ is transverse to the $A_{2}$-set. The intersection of the image of $\theta$ with the $A_{2}$-set is then a smooth manifold of dimension 4. Therefore, near ( $p, v_{0}$ ) its pre-image is a smooth manifold $W$ of dimension 4 in $M \times S^{3}$. The $v-P P S$ are the sections of this manifold by the sets $v=$ constant. By Thom's transversality theorem, for a generic set of embeddings of $M$ in $\mathbb{R}^{4}$, the projection $\pi: W \subset M \times S^{3},\left(p, v_{0}\right) \rightarrow S^{3}, v_{0}$ is $\mathcal{A}$-stable. Thus, the models of the $v-P P S$ are obtained by considering the fibres of $\mathcal{A}$-stable map-germs $\mathbb{R}^{4}, 0 \rightarrow \mathbb{R}^{3}, 0$. These are $(x, y, z) ;\left(x, y, z^{2} \pm w^{2}\right) ;\left(x, y, z^{3}+x z+w^{2}\right) ;\left(x, y, z^{4}+x z^{2}+y z \pm w^{2}\right)$, where $(x, y, z, w)$ denote the coordinates in $\mathbb{R}^{4}$. The fibres of these maps (which are models
of curves in $M$, so are plane curves) have singularities of type, respectively, $A_{0}, A_{1}$, $A_{2}$ and $A_{3}$. The specific conditions for these to occur can be found in [18].

### 3.2 Projecting along a tangent direction

Theorem 3.3 Suppose that $v$ is a tangent direction at $p \in M$. Then the point $p$ on $M$ is an elliptic/hyperbolic/parabolic or an inflection point if and only if the singular point $P_{v}(p)$ of $P_{v}(M)$ is, respectively, an elliptic/hyperbolic/parabolic or an inflection point.

Proof Suppose that $v=a \psi_{x}+b \psi_{y}$, with $b \neq 0$. We make the affine change of coordinates $(X, Y, Z, W) \rightarrow(b X-a Y, a X+b Y, Z, W)$ in the target so that $P_{v}(x, y)=(b x-$ $a y, 0, f^{1}(x, y), f^{2}(x, y)$ ), which we simplify to $P_{v}(x, y)=\left(b x-a y, f^{1}(x, y), f^{2}(x, y)\right)$. The result follows by observing that $\left(j^{2} f^{1}\left(\frac{1}{b}(x+a y), y\right), j^{2} f^{2}\left(\frac{1}{b}(x+a y), y\right)\right)$ is $\mathcal{G}$ equivalent to $\left(j^{2} f^{1}(x, y), j^{2} f^{2}(x, y)\right)$. (The case $b=0$ follows similarly.)

It follows from Theorem 2.2 and Theorem 3.3 that if $v$ is a tangent but not an asymptotic direction at $p \in M$, the surface $P_{v}(M)$ has a hyperbolic/elliptic/parabolic cross-cap at $P_{v}(p)$ if and only if $p$ is an elliptic/hyperbolic/parabolic point (see also [18] for an alternative proof). We have more information on such cross-caps.

Proposition 3.4 Suppose that $v \in T_{p} M$ but is not an asymptotic direction at $p$.
(i) If $p$ is a hyperbolic point, then $P_{v}(M)$ is a surface with an elliptic cross-cap of type $A_{2} A_{2}$ if $p$ is not on the $B_{2}$-curve. If it is, the elliptic cross-cap becomes of type $A_{2} A_{3}$ and at isolated points on this curve it can be of type $A_{2} A_{4}$ or $A_{3} A_{3}$.
(ii) If $p$ is a parabolic point, then $P_{v}(M)$ is in general an $A_{2}$-parabolic cross-cap and becomes an $A_{3}$-parabolic cross-cap if $p$ is the point of tangency of the $B_{2}$-curve with the parabolic set $\Delta$.

Proof The type of the cross-cap is determined by the singularities of the height function $H_{\left(v, w_{i}\right)}$ on $P_{v}(M)$ at $P_{v}(p)$ along the binormal directions $w_{i}, i=1,2$. The result follows from Remark 3.1 that these are the same as the singularities of the height function $H_{w_{i}}$ on $M$ at $p$.

In (i), the $A_{2} A_{4}$ cross-cap occurs at special points on the $B_{2}$-curve where the height function has an $A_{4}$-singularity, and these are distinct in general from the $B_{3}$ and $C_{3}$-points. The $A_{3} A_{3}$ cross-cap occurs at the point of intersection of two $B_{2}$-curves associated to the two binormal directions.

Remark 3.5 With the conditions of Proposition 3.4, the $v-P P S$ has a Morse singularity of type $A_{1}^{-}$when $p$ is a hyperbolic point. When $p$ is on the $\Delta$-curve, the $v-P P S$ has an $A_{2}$-singularity if $p$ is not on the $B_{2}$-curve and has an $A_{3}$-singularity if it is. The $v-P P S$ is studied in [18] by considering the singularities of the function $\tilde{K}$ in (1). We
observe that the normal to the surface $P_{v}(M)$ does not have a limit as we approach its singular point. It is of interest to find a way of extending the Monge-Taylor map ([2]) in the proof of Proposition 3.2 to such cases.

When projecting along an asymptotic direction at $p$ (so $p$ is not an elliptic point), the generic singularities of $P_{v}$ are as those in Table 1 which are more degenerate than a cross-cap. Suppose that $p$ is not an inflection point. The generic singularities of the $P P S$ in Table 3 also occur in the $v-P P S$. However, when $p$ is on the $B_{2}$-curve, there are isolated points when a $D_{6}$-singularity occurs on the $v-P P S$ (with $v$ the binormal direction associated to the $B_{2}$-curve). These points are precisely those where the height function along $v$ has an $A_{4}$-singularity. For the remaining singularities of $P_{v}(M)$ of a generic $M$, the singularities of the $v-P P S$ are as in Table 3 (see also Table 4 for the componentes of the $v-P P S)$.

## References

[1] V. I. Arnold, Critical points of functions on a manifold with boundary, the simple Lie groups $B_{k}, C_{k}, F_{4}$ and singularities of evolutes. 1978 Russ. Math. Surv. 33, 99.
[2] J. W. Bruce, Generic reflections and projections. Math. Scand. 54 (1984), 262-278.
[3] J. W. Bruce, P. J. Giblin and F. Tari, Families of surfaces: height functions, Gauss maps and duals. Pitman Res. Notes Math. Ser. 333 (1995), 148-178.
[4] J. W. Bruce and A. C. Nogueira, Surfaces in $\mathbb{R}^{4}$ and duality. Quart. J. Math. Oxford Ser. Ser. 49 (1998), 433-443.
[5] J. W. Bruce and F. Tari, Families of surfaces in $\mathbb{R}^{4}$. Proc. Edinb. Math. Soc. 45 (2002), 181-203.
[6] J. W. Bruce and J. M. West, Functions on a crosscap. Math. Proc. Cambridge Philos. Soc. 123 (1998), 19-39.
[7] F. S. Dias and F. Tari, On the geometry of the cross-cap in the Minkowski 3space. Preprint, 2012, available from http://www2.icmc.usp.br/~faridtari/Publications.html
[8] T. Fukui and M. Hasegawa, Fronts of Whitney umbrella a differential geometric approach via blowing up. Journal of Singularities, 4 (2012), 35-67.
[9] R. Garcia, J. Sotomayor and C. Gutierrez, Lines of Principal Curvature around Umbilics and cross-caps, Tohoku Math. J. 52 (2000), 163-172.
[10] R. Garcia, D. K. H. Mochida, M. C. Romero-Fuster and M. A. S. Ruas, Inflection points and topology of surfaces in 4-space. Trans. Amer. Math. Soc. 352 (2000), 3029-3043.
[11] R. Garcia, L. F. Mello and J. Sotomayor, Principal mean curvature foliations on surfaces immersed in $\mathbb{R}^{4}$. EQUADIFF 2003, 939-950, World Sci. Publ., Hackensack, NJ, 2005.
[12] C. G. Gibson, Singular points of smooth mappings. Volume 25, Pitman Research Notes in Mathematics, 1979.
[13] C. Gutierrez, I. Guadalupe, R. Tribuzy and V. Guíñez, Lines of curvatures on surface in $\mathbb{R}^{4}$. Bol. Soc. Bras. Mat. 28 (1997), 233-251.
[14] J. A. Little, On the singularities of submanifolds of heigher dimensional Euclidean space. Annli Mat. Pura et Appl. (4A) 83 (1969), 261-336.
[15] D. K. H. Mochida, M. C. Romero-Fuster and M. A. S. Ruas, The geometry of surfaces in 4-space from a contact viewpoint. Geometria Dedicata 54 (1995), 323332.
[16] D. Mond, On the classification of germs of maps from $\mathbb{R}^{2}$ to $\mathbb{R}^{3}$. Proc. London Math. Soc. 50 (1985), no. 2, 333-369.
[17] D. M. Q. Mond, Classification of certain singularities and applications to differential geometry. Ph.D. thesis, The University of Liverpool, 1982.
[18] J. J. Nuño-Ballesteros and F. Tari, Surfaces in $\mathbb{R}^{4}$ and their projections to 3spaces. Roy. Proc. Edinburgh Math. Soc. 137A (2007), 1313-1328.
[19] A. Ramírez-Galarza and F. Sánchez-Bringas, Lines of curvatures near umbilic points on immersed surfaces in $\mathbb{R}^{4}$. Annals of Global Analysis and Geometry 13 (1995), 129-140.
[20] F. Tari, On pairs of geometric foliations on a cross-cap. Tohoku Math. J. 59 (2007), 233-258.
[21] F. Tari, Self-adjoint operators on surfaces in $\mathbb{R}^{n}$. Differential Geom. Appl. 27 (2009), 296-306.
[22] C. T. C. Wall, Classification of unimodal isolated singularities of complete intersections. Singularities, Part 2 (Arcata, Calif., 1981), 625-640, Proc. Sympos. Pure Math., 40, Amer. Math. Soc., Providence, RI, 1983.
[23] J. M. West, The differential geometry of the crosscap. Ph.D. thesis, The University of Liverpool, 1995.

Instituto de Ciências Matemáticas e de Computação - USP, Avenida Trabalhador sãocarlense, 400 - Centro, CEP: 13566-590 - São Carlos - SP, Brazil.
Emails: Raul.Oset@uv.es, faridtari@icmc.usp.br


[^0]:    *Partially supported by FAPESP grant 2010/01501-5, DGCYT and FEDER grant no. MTM200908933.
    ${ }^{\dagger}$ Partially supported by FAPESP grant 2011/21240-4.
    2010 Mathematics Subject classification 57R45, 53A05, 53A15.
    Key Words and Phrases. Projections, Singular surfaces in $\mathbb{R}^{3}$, Surfaces in $\mathbb{R}^{4}$.

