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Abstract

We study the flat geometry of orthogonal projections of a generic space curve
to planes. For a single projection, we do this by considering submersions on a
(singular) plane curve. This is an alternative method to the classification of
divergent diagrams carried out in [9]. We redraw the bifurcation diagrams of
the orthogonal projections of space curves adding the information about their
flat geometry. We also study the duals of the projected curves and the way they
bifurcate as the direction of projection varies locally in S2.

1 Introduction

In [9], J. J. Nuño-Ballesteros and F. Dias obtained a classification of the singularities
of orthogonal projections of a generic space curve γ : I → R3 which takes into account
the flat geometry of the projected plane curve α. They did this by classifying germs

of divergent diagrams (f, α): R, 0 f←− I, 0
α−→ R2, 0 up to smooth changes of

coordinates (see §4). When f is the height function h on α along its normal direction,
the equivalence relation between two such plane curve diagrams is denoted by Ah in
[9]. The Ah-singularities of α capture information about its flat geometry.

The classification in [9] is a refinement of that in [8] where David showed that
any orthogonal projection of a projection-generic γ can have singularities in only the
following ten A-classes: A0, A1, A2, A3, A4, A5, D4, D5, D6 and Ẽ7 (see [1] for notation).
With the additional information on the flat geometry of α, Nuño-Ballesteros and Dias
showed that the above classes split into several Ah-classes, totalling seventeen for
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Figure 1: Ah-Singularities of the orthogonal projection of a generic space curve [9].

generic space curves (Figure 1). A geometric characterisation of each of the Ah-classes
is given in [9] in terms of the geometry of the space curve γ and of the direction of
projection.

Divergent diagrams are hard to deal with as the group acting is not a geometric
subgroup ([7]). For plane curve diagrams treated in [9], a classification is obtained
by direct computations. We propose here an alternative method that avoids the use
of divergent diagrams. We follow the approach in [6] by fixing a model X for the
A-singularity of the plane curve α. Then a height function on α can be thought of as
a submersion on X (see [6] §3.4 for details). We classify submersions up to smooth
changes of coordinates that preserve the model curve X (Theorem 3.1). We have
then an action of a geometric subgroup of the contact group K and the singularity
theory classification techniques apply. We show in §4 how to relate our classification
in Theorem 3.1 to the results in [9].

The family of orthogonal projections of γ are parametrised by the sphere S2, and
for a generic γ, this family is an Ae-versal deformation of the singularities of α (see for
example [11] for the definition of an Ae-versal deformation). We redraw the bifurcation
diagrams of α adding the information about its flat geometry (Theorem 5.3).

The flat geometry of the curve α is mainly about its inflections which are obtained
by considering the dual curve of α. This dual curve is the discriminant of the family
of height functions on α. We give the singularities of the dual curve of α and the way
they bifurcate as the projection varies locally in S2 (Theorem 6.1).

2 Preliminaries

Let En be the local ring of germs of functions Rn, 0 → R and Mn its maximal ideal
(which is the subset of germs that vanish at the origin). Denote by E(n, p) the p-tuples
of elements in En. Let A = R× L = Diff(Rn, 0)×Diff(Rp, 0) denote the group of
right-left equivalence which acts smoothly on Mn.E(n, p) by (h, k).G = k ◦ G ◦ h−1.
The contact group K is the set of germs of diffeomorphisms of Rn×Rp, 0 which can be
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written in the form H(x, y) = (h(x), H1(x, y)), with h ∈ Diff(Rn, 0) and H1(x, 0) = 0
for x near 0. This means that π ◦H = h ◦ π where π : Rn ×Rp → Rn is the canonical
projection. Thus H is a fibred mapping over the diffeomorphism h and preserves the
0-section Rn × {0}. The set of germs of diffeomorphisms of Rn × Rp, 0 in the form
(I,H), where I is the germ of the identity map of Rn, 0, is denoted by C. The group
K is the semi-direct product of R and C, and we write K = Ro C. The group K acts
on Mn.E(n, p) as follows: G = H.F if and only if (x,G(x)) = H(h−1(x), F (h−1(x)));
see [12] for details. When p = 1, the group C is just the multiplication by germs of
functions in En.

It is important to observe that the action of the group K is a natural one to use
when one seeks to understand the singularities of the zero fibres of germs inMn.E(n, p).
Indeed, if two germs are K-equivalent, then their zero fibres are diffeomorphic. The
action of the group A is finer than that of K. If two germs F and G are A-equivalent,
that is G = k ◦ F ◦ h−1 for some (h, k) ∈ A, then the fibres G−1(c) and F−1(k−1(c))
are diffeomorphic, for any c close to 0 ∈ Rp.

The tangent space to the A-orbit of F at the germ F is given by LA·F =
Mn.{Fx1 , . . . , Fxn}+ F ∗(Mp).{e1, . . . , ep}, where Fxi denotes partial derivatives with
respect to xi (i = 1, . . . , n), e1, . . . , ep denote the standard basis vectors of Rp con-
sidered as elements of E(n, p), and F ∗(Mp) is the pull-back of the maximal ideal
in Ep. The extended tangent space to the A-orbit of F at the germ F is given by
LeA·F = En.{Fx1 , . . . , Fxn}+F ∗(Ep).{e1, . . . , ep}, and the codimension of the extended
orbit is de(F,A) = dimR(E(n, p)/LeA · F .

Let k ≥ 1 be an integer. We denote by Jk(n, p) the space of kth order Taylor
expansions without constant terms of elements of E(n, p) and write jkF for the k-jet
of F . A germ F is said to be k−A-determined if any G with jkG = jkF is A-equivalent
to F (notation: G ∼ F ). The k-jet of F is then called a sufficient jet.

Our goal in §3 is to classify functions on a plane curve C. This means that we
require that the diffeomorphisms in R2 preserve C. We follow the method in [6] and
recall some results from there. Let X, 0 ⊂ Rn, 0 be the germ of a reduced analytic
sub-variety of Rn at 0 defined by a polynomial h in R[x1, . . . , xn]. Following Definition
3.1 in [6], a diffeomorphism φ : Rn, 0 → Rn, 0 is said to preserve X if φ(X), 0 = X, 0
(i.e., φ(X) and X are equal as germs at 0). The group of such diffeomorphisms is a
subgroup of the group R and is denoted by R(X). We define K(X) to be the subgroup
of K given by K(X) = R(X) o C.

Let Θ(X) be the En-module of vector fields in Rn tangent to X and let Θ1(X) =
{ξ ∈ Θ(X) | j1ξ = 0} (i.e., Θ1(X) is the set of germs of vector fields in Θ(X) with
no constant or linear terms). Define Θ(X)·f = En.{ξf | ξ ∈ Θ(X)}. If f is a smooth
function, then we have the following tangent spaces to the K(X)-orbit of f at the germ
f : LK1(X)·f = Θ1(X)·f + f ∗(M2

1).En and LK(X)·f = Θ(X)·f + f ∗(M1).En.
The K(X)-codimension of f is defined as d(f,K(X)) = dimR(M2/LK(X) · f ).
The classification (i.e., the listing of representatives of the orbits) of K(X)-finitely
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determined germs is carried out inductively on the jet level. The method used here
is that of the complete transversal adapted in [6] for the R(X)-action. We have the
following result which is a version of Theorem 3.11 in [6] for the group K(X).

Proposition 2.1 Let f : Rn, 0 → R, 0 be a germ of a smooth function and let
h1, . . . , hr be homogeneous polynomials of degree k + 1 with the property that

Mk+1
n ⊂ LK1(X)·f + sp{h1, . . . , hr}+Mk+2

n .

Then any germ g with jkg(0) = jkf(0) is K(X)-equivalent to a germ of the form
f(x) +

∑l
i=1 uihi(x) + φ(x), where φ(x) ∈ Mk+2

n . The vector subspace sp{h1, . . . , hr}
is called the complete (k + 1)-K(X)-transversal of f .

Corollary 2.2 If Mk+1
n ⊂ LK1(X)·f +Mk+2

n then f is k −K(X)-determined.

We also need the following result about trivial families.

Proposition 2.3 ([6]) Let F : Rn × R, (0, 0) → R, 0 be a smooth family of functions
with F (0, t) = 0 for t small. Let ξ1, . . . , ξp be vector fields in Θ(X) vanishing at 0 ∈ Rn

and let ∂F/∂t denote the germ ∂F/∂t(x, 0) of the initial speed. Then the family F is
k −R(X)-trivial (and hence k −K(X)-trivial) if

∂F/∂t ∈ 〈ξ1F, . . . , ξpF 〉+Mk+1
n ⊂ En+1.

For our case n = 2, we have the following result adapted from the result in [13],
see also Proposition 7.2 in [5].

Proposition 2.4 Let X, 0 be a plane curve with an isolated singularity, defined by
a weighted homogeneous map germ h : R2, 0 → R, 0 with weights w1 and w2. Then
Θ(X) = E2.{ξ1, ξ2}, where ξ1 = w1x∂/∂x + w2y∂/∂y (the Euler vector field) and
ξ2 = hy∂/∂x− hx∂/∂y.

3 Submersions on singular plane curves

Let C be a plane curve with a singularity of Ae-codimension ≤ 2, i.e., it has a defining
equation with a singularity of type A0, A1, A2, A3, A4, A5, D4, D5, D6 and Ẽ7. We take
the models of the defining equation of C as in Table 1 second column, and classify germs
of submersions of the plane up to K(C)-equivalence. We also use diffeomorphisms in
the source that preserve the curve C but do not come from integrating vector fields in
Θ(C).
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Table 1: Submersions on singular plane curves.

Name A−Model for C Submersions on C K(C)− codim

A0 y y + xk, k ≥ 1 k − 2

A1 xy y + xk, k ≥ 1 k − 1

A2 y2 − x3 x 0
y 1

A3 y(y − x2) x 0

y + ax2, a 6= 0,−1 2

y + εx2 + xk, k ≥ 3, ε = 0,−1 k − 1

A4 y2 − x5 x 0

y + x2 1

y + x3 2
y 3

A5 y(y − x3) x 0

y + x2 1

y + ax3 + x4, a 6= 0,−1 3

y + ax3, a 6= 0,−1 4

y + εx3 + xk, k ≥ 4, ε = 0,−1 k − 1

D4 y(y + x)(y − x) y + ax, a 6= ±1 1

y + εx + xk, ε = 0,±1, k ≥ 2 k − 1

D5 y(x2 − y3) y + xk, k ≥ 1 k − 1

x + y2 1
x 2

D6 y(x + y2)(x− y2) y + xk, k ≥ 1 k − 1

x + ay2 + y3 2

x + ay2, a 6= ±1 3

x± y2 + yk, k ≥ 4 k − 1

Ẽ7 xy(x + y)(x + λy) x + ay + x2, a 6= 0 1
x + ay, a 6= 0, 1, λ 2

x + εy + yk, k ≥ 2, ε = 0, 1, λ k − 1

y + xk, k ≥ 2 k − 1

Theorem 3.1 Any K(C)-finitely determined germ of a submersion f : R2, 0 → R, 0
on the plane curves in column 2 of Table 1 is equivalent, by changes of coordinates
that preserve these curves, together with multiplication by germs of functions, to one
of the germs in column 3 of Table 1.

Proof In all the proof, ξ1 and ξ2 are as in Proposition 2.4. To simplify notation we
write complete k-transversal for complete k−K(C)-transversal, equivalence for K(C)-
equivalence, k-determined for k − K(C)-determined, finitely determined for K(C)-
finitely determined, trivial for K(C)-trivial and codimension for K(C)-codimension.
We start with the Ak series where we have general results.
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A2m-singularity
If m = 0, C is regular and the classification reduces to that of functions on surfaces

with boundary [2]. Suppose that m ≥ 1 and take h(x, y) = y2 − x2m+1. Then
Θ(C) = 〈2x ∂

∂x
+ (2m + 1)y ∂

∂y
, 2y ∂

∂x
+ (2m + 1)x2m ∂

∂y
〉. We integrate the linear parts

of the vector fields in Θ(C) and obtain the following 1-jets of coordinate changes
in R(C): η1(x, y) = (e2αx, e(2m+1)αy) and η2(x, y) = (x + βy, y), α, β ∈ R. Let
j1f = ax + by. If a 6= 0, then we can eliminate b by η2 and multiply by 1/a to set
j1f = x. It is not difficult to show that f is 1-determined and has codimension 0.
If a = 0, we can set j1f = y. Suppose that jk−1f = y. Then ξ1f = (2m + 1)y,
ξ2f = (2m + 1)x2m and all the complete k-transversals are empty for k > 2m. A
complete k-transversal for 2 ≤ k ≤ 2m− 1 is y + λxk, which is equivalent to y + xk if
λ 6= 0. For f = y+xk, we have ξ1f = (2m+1)y+2kxk, ξ2f = 2kyxk−1 +(2m+1)x2m.
We have Mk+1

2 ⊂ LK1(C)·f +Mk+2
2 , so y + xk is k-determined. It has codimension

k − 1 (x, . . . , xk−1 generate a transverse vector space to LK(C) · f in M2).
A complete 2m-transversal to j2m−1f = y is given by y + λx2m, λ ∈ R. However,

x2m ∈ 〈ξ1(f), ξ2(f)〉, so by Proposition 2.3, the family y+λx2m is trivial along λ. The
germ y is 2m-determined and has codimension 2m− 1.

To summarise, a finitely determined germ of a submersion on C is equivalent to
one of the following germs: x, y + xk, 2 ≤ k ≤ 2m− 1 and y.

A2m−1-singularity
We start with the case m = 1 and take h(x, y) = xy. Then Θ(C) = 〈x ∂

∂x
+

y ∂
∂y
, x ∂

∂x
− y ∂

∂y
〉. The 1-jets coordinate changes in R(C) are η1(x, y) = (eαx, eαy) and

η2(x, y) = (eαx, e−αy), α ∈ R.
Let j1f = ax+ by. Suppose that a 6= 0 and b 6= 0. Then by changes of coordinates

(x, y) 7→ (−x, y) and (x, y) 7→ (x,−y) we can suppose that both a and b are positive.
These changes of coordinates preserve the curve C but do not come from vector fields
in Θ(C). We can now use the changes of coordinates η1 and η2 to set j1f = x+y. Then
ξ1f = x+ y and ξ2f = x− y, soM2

2 ⊂ LK1(C)·f +M3
2. Therefore f is 1-determined.

It has codimension zero.
Suppose that a = 0, then b 6= 0 and we can set j1f = y. For jk−1f = y, ξ1f = y

and ξ2f = −y. Using Proposition 2.1, any k-jet, k ≥ 2, with (k−1)-jet y is equivalent
to y + λxk. This is equivalent to y + xk if λ 6= 0. We write f = y + xk. Then
Mk+1

2 ⊂ LK1(C)·f +Mk+2
2 , so y + xk is k-determined. It has codimension k − 1.

If a 6= 0 and b = 0, then the change of coordinate (x, y) 7→ (y, x) which preserves
the curve C brings us back to the case a = 0 and b 6= 0.

When m ≥ 2, we take h(x, y) = y(y − xm). Then Θ(C) =< x ∂
∂x

+ my ∂
∂y
, (2y −

xm) ∂
∂x

+ myxm−1 ∂
∂y
〉 and the 1-jets of coordinate changes in R(C) are η1(x, y) =

(eαx, emαy) and η2(x, y) = (x+ βy, y), α, β ∈ R.
The 1-jets of submersions are equivalent to x or y and the germ x is 1-determined

and has codimension 0.
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Consider the case jk−1f = y. Then ξ1f = my, ξ2f = myxm−1. A complete k-
transversal, k ≥ 2, is given by y + λxk. If k 6= m, we can use η1 to set λ = ±1.
The germ y ± xk is k-determined and has codimension k − 1. If k = m then λ is
a parameter modulus. We write f = y + axm, so ξ1f = my + amxm and ξ2f =
m(2a + 1)yxm−1 − amx2m−1. Therefore all the complete k-transversals are empty
for k ≥ 2m − 1 and a 6= 0,−1. A complete k-transversal for m + 1 ≤ k ≤ 2m − 2 is
y+axm+λxk, which is equivalent to y+axm±xk if λ 6= 0. The germ f = y+axm±xk
is k-determined and has codimension k − 1.

A complete 2m− 1-transversal is given by f = y+ axm +λx2m−1, λ ∈ R. However,
by Proposition 2.3, this family is trivial along λ for a 6= 0,−1. Hence j2m−1f is
equivalent to y+axm. The germ y+axm is (2m−1)-determined and has codimension
2m− 2 for a 6= 0,−1.

For a = 0, the sufficient jets are equivalent to y±xk, k > m and have codimension
k − 1. If a = −1, the sufficient jets are equivalent to y − xm ± xk, k > m and have
also codimension k − 1.

D4-singularity
We take h(x, y) = y3 − yx2 = y(y − x)(y + x) for a D4-singularity, so Θ(C) =

〈x ∂
∂x

+ y ∂
∂y
, (3y2 − x2) ∂

∂x
+ 2xy ∂

∂y
〉 and the 1-jets of the coordinate changes in R(C)

are η1(x, y) = (eαx, eαy), α ∈ R.
Take j1f = ax+ by. Then we have the following orbits in the 1-jet space: x+ a′y

and y. The parameter a′ is a modulus. The germ f = x + ay (we write a for a′) is
1-determined and has codimension 1 when a 6= ±1. When a = ±1, the germs x ± y
(equivalent to y ± x) yield sufficient jets in the form y ± x + xk, k ≥ 2, which are
k-determined and have codimension k−1. Similarly for the 1-jet y. It yields sufficient
jets in the form y + xk, k ≥ 2, which is k-determined and has codimension k − 1.

D5-singularity
We take h(x, y) = yx2−y4 = y(x2−y3). Then Θ(C) = 〈3x ∂

∂x
+2y ∂

∂y
, (x2−4y3) ∂

∂x
−

2xy ∂
∂y
〉 and the 1-jets of coordinate changes inR(C) are η1(x, y) = (e3αx, e2αy), α ∈ R.

The 1-jets of submersions are equivalent to x+ y, x or y.
Consider the case f = x+ y. Then ξ1f = 3x+ 2y, ξ2f = x2 + 2xy − 4y3. It is not

hard to show that f is 1-determined and has codimension 0.
If jk−1f = x, then ξ1f = 3x and ξ2f = x2 − 4y3, so all complete k-transversals are

empty for k ≥ 4. A complete 2-transversal is x+ λy2, which is equivalent to x+ y2 if
λ 6= 0. The germ f = x + y2 is 2-determined and has codimension 1. If λ = 0, then
the germ x is 3-determined and has codimension 2.

The case jk−1f = y yields sufficient germs in the form y ± xk, k ≥ 2, which have
codimension k − 1.

D6-singularity
We take h(x, y) = yx2− y5 = y(x− y2)(x+ y2) so that Θ(C) = 〈2x ∂

∂x
+ y ∂

∂y
, (x2−
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5y4) ∂
∂x
− 2xy ∂

∂y
〉 and the 1-jets of the coordinate changes in R(C) are η1(x, y) =

(e2αx, eαy), α ∈ R. Then the 1-jets of submersions are equivalent to x+y, x or y. The
germ x + y is 1-determined and has codimension 0. We also obtain a family y + xk

which is k-determined and has codimension k − 1.
Suppose that jk−1f = x. Then ξ1f = 2x and ξ2f = x2 − 5y4, so all complete

k-transversals are empty for k ≥ 5. A complete 2-transversal is x + ay2, where a
is a modulus. Similar calculations to those above yield the following sufficient jets:
x+ ay2 + y3 of codimension 2 and x+ ay2 of codimension 3 provided a 6= ±1. When
a = ±1, we obtain the series x± y2 + yk, k ≥ 4 which has codimension k − 1.

Ẽ7-singularity
We take h(x, y) = xy(x+ y)(x+λy) so that Θ(C) = 〈x ∂

∂x
+ y ∂

∂y
, (x3 + 2(λ+ 1)x2 +

3λxy2) ∂
∂x
− (3x2y + 2(λ+ 1)xy2 + λy3) ∂

∂y
〉 and the 1-jets of the coordinate changes in

R(C) are η1(x, y) = (eαx, eαy), α ∈ R. Then the 1-jets of submersions are equivalent
to x+ ay or y (a is a modulus).

The complete 2-transversal for x+ay is x+ay+µx2 which gives two sufficient jets.
One is x+ay+x2, a 6= 0, and has codimension 1 and the other is x+ay, a 6= 0,±1, λ,
and has codimension 2. If a = 0,±1, λ, we get the following sufficient jets x+ εy+ yk,
k ≥ 2, ε = 0,±1, λ, which has codimension k − 1.

The complete k-transversal for y is y+µxk, which can be taken to y+ xk with the
coordinate change. This is k-determined and has codimension k − 1. 2

4 Comparison of Theorem 3.1 with results in [9]

Let Rr, 0r denote r copies of the germ R, 0 of the real line. Following [9], given a multi-
germ of plane curves α : Rr, 0r → R2, 0 with limiting orthogonal directions vi at αi(0i),
the multi-germ hα : Rr, 0r → Rr, 0r of height functions on α along v = (v1, ..., vr) is
given by hi(t) = αi(t) · vi, i = 1, . . . , r. The following definition is given in [9].

Two plane curves singularities α, β : Rr, 0r → R2, 0 are said to be Ah-equivalent if
there are germs of diffeomorphisms h,H,K such that the following diagram commutes

Rr, 0r
hα←− Rr, 0r

α−→ R2, 0
↓h ↓H ↓K

Rr, 0r
hβ←− Rr, 0r

β−→ R2, 0

A classification of general divergent diagrams Rr, 0r
h← Rr, 0r

α→ R2, 0 is

given in [9]. This is then used to obtain an Ah-classification of plane curves sin-
gularities, and in particular, those of orthogonal projections of space curves.

It is shown in [9] that an orthogonal projection of a generic space curve (see Defi-
nition 5.2) has only the Ah-singularities listed in the second column of Table 2. The
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Table 2: Submersions which recover the Ah-classes of projections of space curves.
A-class Ah-class Parametrisation Submersion

A0 A02 (t, t2) y + x2

A03 (t, t3) y + x3

A04 (t, t4) y + x4

A1 A122 (t, t2); (s2, s) y + x2;x+ y2

A123 (t, t2); (s3, s) y + x2;x+ y3

A124 (t, t2); (s4, s) y + x2;x+ y4

A133 (t, t3); (s3, s) y + x3;x+ y3

A2 A23 (t2, t3) y

A3 A322 (t,−t2); (s, s2) y + ax2; y + bx2,
a, b 6= 0,−1, a 6= b

A323 (t,−t2); (s, s3) y + ax2; y + x3

a 6= 0,−1

A4 A44 (t2, t4 + t5) y + x2

A5 A522 (t, t2); (s, s2 + s3) y + x2; y + x2

D4 D4222 (t, t2); (s2, s); (u− u2, u+ u2) y + x2; y − x+ x2; y + x+ x2

D4223 (t, t2); (s3, s); (u− u2, u+ u2) y + x3; y − x+ x2; y + x+ x2

D5 D523 (t2, t3 + t4); (s2, s) y + x2;x

D6 D6222 (t,−t2); (s2, s); (u, u2 + u3) y + x2;x+ y3;
x+ ay2, a 6= ±1

Ẽ7 Ẽ72222 (t, t2 + t3); (s2 + cs3, s); y + x2;x+ y2

(u− u2, u+ u2); (v − v2, λv − v2) x− y + x2;x− λy + y2
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symbols for Ah-classes is introduced in [9] and refers to the intersection number of
each branch of the plane curve with its tangent line. For example, the notation A123

means that the curve has an A1-singularity and one of its branches has intersection
number equal to 2 with its tangent line while the other branch has intersection number
equal to 3 with its tangent line. It is shown in [9] that for generic space curves, the
symbol of the Ah-class of its projection determines the Ah-class. This fact allows us
to recover all the results in [9] on the Ah-singularities of projections of generic space
curves using Theorem 3.1. We give in the fourth column of Table 2 the associated
submersions in Theorem 3.1 on the A-model of the singularity of the projected curve.
For multi-germs, we associate to each branch a submersion that captures the contact
of the branch with its tangent line.

Remark 4.1 For mono-germs, we can recover all the Ah-classification results in [9]
using the classification in Theorem 3.1. Consider for example the ramphoid cusp given
by C : y2 − x5 = 0 (A4-singularity). There are three Ah-classes in this A-class ([9]),
namely (t2, t4 + t5), (t2, t5 + t6) and (t2, t5). In Theorem 3.1, we have four germs
of submersions on C. The fibre x = 0 of the germ x is transverse to C, so is not
related to the Ah-classification (which deals only with height functions along limiting
normal directions). Consider the germ y + x2 and set Y = y + x2. Then y = Y − x2
and substituting in C we obtain (Y − x2)2 − x5 = Y 2 − 2x2Y + x4 − x5 = 0. A
parametrisation for this curve is precisely (t2, t4 + t5). Similarly, the submersion y+x3

gives the Ah-class (t2, t5 + t6) and the submersion y gives the Ah-class (t2, t5).
For multi-germs, some symbols determine theAh-class. This is the case for example

at an A1 and D4 singularities. Then we can pair each branch of an Ah-model curve
with a submersion from Theorem 3.1. In general, we could have several Ah-classes of
a multi-germ singularity which cannot be distinguished by the intersection number of
each branch with its tangent line. In those cases, the classification in Theorem 3.1
does not allow us to recover the results in [9].

5 The family of orthogonal projections

The family of orthogonal projections in R3 is given by

Π : R3 × S2 → TS2

(p, v) 7→ (v,Πv(p))

where Πv(p) = p − (p · v)v. Given a space curve γ : I → R3, where I is an open
interval in R, we denote by P the restriction of Π to γ. Thus, the family of orthogonal
projections P : I × S2 → TS2 on γ is given by

P (t, v) = (v, Pv(γ(t)))

10



with Pv(t) = Πv(γ(t)) = γ(t) − (γ(t) · v)v. The following is a statement of a result
in [8] for the family of orthogonal projections. (In [8] is considered the 3-parameter
family of projections from points in R3 to a plane.)

Theorem 5.1 ([8]) There is a residual subset Ω ⊂ C∞(I,R3) such that if γ ∈ Ω,
then it is an embedding and for any v ∈ S2, Πv ◦ γ has only singularities of type
A0, . . . , A5, D4, D5, D6 and Ẽ7.

The curves in Ω are called projection-generic ([8]). The following definition is given
in [9]. (The condition (0) in Definition 5.2 is not stated in [9]. We add it here for
completion.)

Definition 5.2 ([9], Definition 4.2) A space curve γ ∈ C∞(I,R3) is said to be generic
if it is projection-generic and satisfies the following conditions.

(0) If τ(t) = 0 at some t ∈ I, then τ ′(t) 6= 0.
(1) Assume that the secant line l to γ at two points γ(ti), i = 1, 2, is contained in

the osculating planes O(ti), for any i = 1, 2. Then, τ(ti) 6= 0 for any i = 1, 2.
(2) Let l be a cross tangent to γ at γ(ti) for any i = 1, 2, tangent in γ(t1). Then

γ(4)(t1) 6⊂ O(t1).
(3) Let l be a trisecant line to γ at three points γ(ti), i = 1, 2, 3. If l ⊂ O(t1), then

τ(t1) 6= 0 and l 6⊂ O(ti), for any i = 2, 3.
(4) Let l be a trisecant line to γ at three points γ(ti), i = 1, 2, 3. If l is contained

in a bitangent plane π to γ at two of these points, then π does not osculate at
none of the three points and γ(3)(ti) is not contained in the bitangent plane.

(5) Let l be a quadrisecant line to γ at four points γ(ti), i = 1, 2, 3, 4. Then,
l 6⊂ O(ti) and l ‖ γ(3)(ti) at most in two points.

It is shown in [9] that the subset of generic curves is residual in C∞(I,R3). It is
also shown in [9] that given a generic space curve γ, for any v ∈ S2, Pv = Πv ◦ γ has
only the Ah-singularities in column 2 of Table 2. (Condition (0) in Definition 5.2 is
added to make it apparent why the A05-singularities are excluded. An A05-singularity
occurs at t ∈ I if and only if τ(t) = τ ′(t) = 0.)

Let w be a unit vector in TvS
2, so w is given by w ·v = 0 and w ·w = 1. We denote

by
∆ = {(v, w) ∈ S2 × S2 | v · w = 0}.

Given (v, w) ∈ ∆, the height function on the curve Pv(t) along the vector w is
given by

Hv,w(t) = Pv(t) · w = (γ(t)− (γ(t) · v)v) · w = γ(t) · w.

This is precisely the height function on the curve γ along the direction w. The
family H : I × ∆ → R has parameters in ∆, which is a 3-dimensional manifold.

11



However, it is trivial along the parameter v. This is why the generic singularities that
appear in the members of the family of height functions of a projected space curve
are those of Re-codimension ≤ 2. (For example, this is why we can exclude the A05-
singularities and why we need the term t4 in the generic parametrisation (t2, t4 + t5)
of the ramphoid cusp.)

Given a generic space curve, the family P is an Ae-versal unfolding of the singu-
larities of the projections along any fixed direction v0 ∈ S2 (see [11] for terminology).
The A-bifurcation diagrams in Pv(t) as v varies near v0 are well known ([10, 14]). We
redraw these diagrams and include in them the information about the flat geometry
of Pv(t).

We consider a modified family of projections which is affine equivalent to P , so the
flat geometry of the projected curve is preserved. If the singularity is a local one, we
write γ(t) = (γ1(t), γ2(t), γ3(t)) and project along directions (

√
1− v22 − v23, v2, v3) near

(1, 0, 0) to the fixed plane (0, v2, v3). (See the proof of Theorem 5.3 for the multi-local
singularities.) The modified family of projections is given by

P̃ : I × R2, 0 → R2, 0
(t, (v2, v3)) 7→ (γ2(t)− γ1(t)v2, γ3(t)− γ1(t)v3)

The A-bifurcation set Bif(P̃ ,A) of P̃ is the set of (v2, v3) ∈ R2, 0 for which
P̃(v2,v3)(t) = P̃ (t, (v2, v3)) has a singularity of Ae-codimension ≥ 1 at some t. We

consider the modified family of height functions H̃ : R × R2 × S1, (0, (0, 0), w0) → R,
given by H̃(t, (v2, v3), ω) = P̃ (t, (v2, v3)) · ω. We are interested in the inflections of
the curve P̃(v2,v3)(t). These are captured by the contact of P̃(v2,v3)(t) with lines and

occur when h(t) = H̃(t, (v2, v3), ω) has an A2-singularity at some t for some ω ∈ S1,
or equivalently, when κ(t) = 0, where κ is the curvature of P̃(v2,v3)(t). We define the

K-bifurcation set Bif(H̃,K) of H̃ as the set of parameters (v2, v3) for which there
exists ω ∈ S1 such that κ(t) = κ′(t) = 0 (i.e., h has an A3-singularity) or for which
there exist t, s, t 6= s, with P̃(v2,v3)(t) = P̃(v2,v3)(s) and κ(s) = 0 (i.e., h has a multi-

local singularity of type A0A2). Finally, we define the Ah-bifurcation set of P̃ as
Bif(P̃ ,Ah) = Bif(P̃ ,A) ∪Bif(H̃,K).

Theorem 5.3 Let γ be a generic space curve γ (as in Definition 5.2). The Ah-
bifurcations in P̃ at a singularity with an empty Bif(H̃,K) are the same as those in
([10, 14]). The Ah-bifurcations in P̃ at a singularity with a non-empty Bif(H̃,K) are
as shown in Figures 2–5.

Proof We deal with the cases where Bif(H̃,K) is not empty. The cases in Figure 1
with empty Bif(H̃,K) are: A02 , A03 , A122 , A322 , D4222 , D6222 , Ẽ72222 (notation as in
Figure 1 and Table 2). Out of the remaining cases, the codimension 1 singularities
are the case A04 with a birth/vanishing of two A03-singularities in the bifurcation, the
case A23 with a vanishing of an A122-singularity and a birth of two A03-singularities
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Figure 2: Bifurcations of the ramphoid cusp (the stratification of the parameter space
in the middle). The dots represent the points of inflection.

in the bifurcation and the case A123 with an A122-singularity and an A03-singularity
on both sides of the bifurcation. We treat in some details the cases A44 and A124 and
state the results for the remaining cases.

A44-singularity (the ramphoid cusp)
We make changes of coordinates in the source and affine changes of coordinates

in R3 so that j5γ(t) = (φ(t), t2, t4 + t5), with j1φ = t. Then j5P̃(v2,v3)(t) = (t2 −
φ(t)v2, t

4 + t5 − φ(t)v3). The family P̃ is an Ae-versal unfolding of the ramphoid
cusp and the family H̃ is clearly an Ke-versal unfolding of all the singularities of its
members. The components of Bif(P̃ ,A) are the following (and are diffeomorphic to
their corresponding components of the bifurcation set of the model in [10, 14]):

– The A44-stratum, which consists of the origin and where P̃(0,0)(t) has a ramphoid
cusp.

– The A23 (cusp)-stratum: P̃(v2,v3)(t) has a cusp singularity. Now P̃(v2,v3)(t) is
singular if and only if (v2, v3) = (2t+h.o.t., (4t3 +5t4)(1+h.o.t.)) ( 4© and 10© in Figure
2).

– The A322-stratum: P̃(v2,v3)(t) has a multi-local singularity where two pieces of
the curve have an ordinary tangency at a given point. We know from [10, 14] that
this stratum is diffeomorphic to half a line. To find its parametrisation, we use the
fact that having an A322-singularity is equivalent to the curve γ having a bitangent
plane. This means that there exists w ∈ S2 such that h(t, w) = γ(t) · w has two
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singularities at the same level. That is, h(t, w)− d = (t− t1)2(t− t2)2h̃(t, w) for some
smooth function h̃(t, w). The direction of projection is along (a, b, c) = γ(t2) − γ(t1)
and the A322-stratum in the (v2, v3)-plane is given by ( b

a
, c
a
). To obtain the initial

terms of the parametrisation of the A322-stratum, we take w = (w1, w2, 1) and equate
the coefficients of the 5-jets of h(t, w) − d and (t − t1)

2(t − t2)
2h̃(t, w) as functions

in t. From that we get t2 = −t1 − t21 + h.o.t and this gives the initial terms of the
A322-stratum as (v2, v3) = (−t2 + h.o.t,−t4 + h.o.t) ( 14© in Figure 2).

The components of Bif(H̃,K) are the following:
– The A04-stratum: the height function on P̃(v2,v3)(t) has an A3-singularity (equiv-

alently, P̃(v2,v3)(t) has a higher order inflection at some point t). This stratum is given
by v3 = 0 ( 2© and 8© in Figure 2).

– The A123-stratum: the height function on P̃(v2,v3)(t) has a multi-local singularity

of type A0A2-singularity. This means that there exist s, t, s 6= t, such that P̃(v2,v3)(t) =

P̃(v2,v3)(s) and κ(s) = 0. We get thus the following system

γ2(t)− γ1(t)v2 = γ2(s)− γ1(s)v2, (1)

γ3(t)− γ1(t)v3 = γ3(s)− γ1(s)v3, (2)

(γ′2(s)− γ′1(s)v2)(γ′′3 (s)− γ′′1 (s)v3)− (γ′′2 (s)− γ′′1 (s)v2)(γ
′
3(s)− γ′1(s)v3) = 0. (3)

Equations (1) and (2) give

v2 =
γ2(t)− γ2(s)
γ1(t)− γ1(s)

and v3 =
γ3(t)− γ3(s)
γ1(t)− γ1(s)

(4)

while equation (3) simplifies to

γ′2(s)γ
′′
3 (s)−γ′′2 (s)γ′3(s) + (γ′′1 (s)γ′3(s)−γ′1(s)γ′′3 (s))v2 + (γ′1(s)γ

′′
2 (s)−γ′′1 (s)γ′2(s))v3 = 0. (5)

We substitute in equation (5) v2 and v3 by their expressions from (4) and write the
new equation in the form

F (s, t) =
G(s, t)

γ1(t)− γ1(s)
= 0,

where
G(s, t) = (γ′2(s)γ

′′
3 (s)− γ′′2 (s)γ′3(s))(γ1(t)− γ1(s))

−(γ′1(s)γ
′′
3 (s)− γ′′1 (s)γ′3(s))(γ2(t)− γ2(s))

+(γ′1(s)γ
′′
2 (s)− γ′′1 (s)γ′2(s))(γ3(t)− γ3(s)),

which can be written in a determinant form

G(s, t) =

∣∣∣∣∣∣
γ1(t)− γ1(s) γ2(t)− γ2(s) γ3(t)− γ3(s)

γ′1(s) γ′2(s) γ′3(s)
γ′′1 (s) γ′′2 (s) γ′′3 (s)

∣∣∣∣∣∣.
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(We thank Terry Wall for telling us that G is a determinant and for providing us with
a shorter argument, which we reproduce below, for finding a parametrisation of the
A123-stratum. Wall also observed that it is no accident that we get a determinant.
Its vanishing represents the condition that the vectors γ(s)− γ(t), γ′(s) and γ′′(s) are
coplanar, i.e., there is a plane through γ(t) and having intersection number at least 3
with the curve at γ(s): projecting from a point on the line joining γ(t) and γ(s) thus
gives an inflexional tangent at the image of γ(s) which coincides with the image of
γ(t).)

We expand γi(t)− γi(s) = (t− s)γ′i(s) + (t− s)2γ′′i (s)/2 + (t− s)3γ′′′i (s)/6 + h.o.t.
Subtracting (t− s) times the second row and (t− s)2/2 times the third from the first,
we see that G(s, t) is divisible by (t − s)3. Dividing the first row by this gives a row

whose terms of least order are (γ′′′1 (0)/6 + (t+ 3s)γ
(4)
1 (0)/24, 0, t+ 3s). The 1-jet of the

new determinant is then 2(t + 3s). Thus, G(s, t) = 0 has a trivial solution t = s and
another solution which can be parametrised by (s, t(s)). The solution s = t gives the
cusp stratum and the solution (s, t(s)) yields a parametrisation of the A123-stratum.
We have t(s) = −3s+ h.o.t and this gives v2 = −2s+ h.o.t and v3 = −20s3 + h.o.t, so
v3 = 5

2
v32 + h.o.t ( 6© and 12© in Figure 2).

We obtain a stratification of the parameter space (v2, v3) determined byBif(P̃ ,Ah).
On each stratum the projections have equivalent Ah-singularities (see the central di-
agramme in Figure 2). We can now draw the bifurcations in the family of projected
curves as the direction of projection varies locally in S2; see Figure 2.

A124-singularity
We suppose that the two pieces of curves are given by γ1(t) = (t, γ12(t), γ13(t))

with j2γ12 = t2, γ13(0) = γ′13(0) = 0, and γ2(s) = (γ21(s), s, γ23(s)) with j4γ21 = s4

and γ23(0) = 1. The modified family of projections along the directions (v1, v2, 1) to
the (v1, v2)-plane is given by the bi-germ α; β with

α(t) = (α1(t), α2(t)) = (t− γ13(t)v1, γ12(t)− γ13(t)v2),
β(s) = (β1(s), β2(s)) = (γ21(s)− γ23(s)v1, s− γ23(s)v2).

The family P̃ = α; β is an Ae-versal unfolding of the A124-singularity at (v1, v2) =
(0, 0), and Hα̃ and Hβ̃ are clearly Ke-versal unfoldings of all their singularities. The

bifurcation set Bif(P̃ ,Ah) = Bif(H̃,K) as the component Bif(P̃ ,A) is empty. Its
1-dimensional strata are the following.

– The A04-stratum: we require the curvature κβ of β and its derivative to vanish.
We consider the map-germ F : R3, 0→ R2, 0 given by F (s, v1, v2) = (κβ, κ

′
β)(s, v1, v2).

It has maximal rank at the origin if and only if γ′′23(0) 6= 0. This condition is equivalent
to κγ2(0) 6= 0, so is satisfied for generic space curves. Then it follows by the implicit
functions theorem that the A04-stratum is a smooth curve. It is not difficult to show
that it is given by v1 = 0 ( 2© and 4© in Figure 3 left).
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Figure 3: Bifurcations of an A124-singularity left and of an A133-singularity right.

– The A123-stratum: we require αi(t) = βi(s), i = 1, 2, and κβ(s) = 0. We
consider the map-germ F : R4, 0 → R3, 0 given by F (s, t, v1, v2) = (α1 − β1, α2 −
β2, κβ)(s, t, v1, v2). It has maximal rank at the origin if and only if γ′′23(0) 6= 0 (which
is true for generic space curves; see above). Then it follows by the implicit functions
theorem that the A123-stratum is a smooth curve given by v1 = 12

γ′′23(0)
v22 +h.o.t ( 6© and

8© in Figure 3 left). The bifurcations in the family of projected curves as the direction
of projection varies locally in S2 are drawn in Figure 3 left.

A133-singularity
We use the same setting as for the A124-singularity and take γ1(t) = (t, γ12(t), γ13(t))

with j3γ12 = t3, γ13(0) = γ′13(0) = 0 and γ2(s) = (γ21(s), s, γ23(s)) with j3γ21 = s3

and γ23(0) = 1. Then Bif(P̃ ,Ah) = Bif(H̃,K) and consists of the A123-stratum.
For generic space curves, this is given by two smooth and transverse curves v2 =
1
6
γ′′23(0)v1 + h.o.t. and v1 = −1

6
γ′′23(0)v2 + h.o.t.; see Figure 3 right for the bifurcations.

(As pointed out above, γ′′23(0) 6= 0 means the curve κγ2(0) 6= 0.)

A323-singularity
We take γ1(t) = (t, γ12(t), γ13(t)) with j2γ12 = t2 and γ13(0) = γ′13(0) = 0. We

also take γ2(s) = (s, γ22(s), γ23(s)) with j3γ22 = s3 and γ23(0) = 1. Then Bif(P̃ ,A)
consists of the origin and the A322-stratum which is given by v2 = v31 + h.o.t. ( 3© and
5© in Figure 4 left). The Bif(H̃,K) consists of the A123-stratum which is given by
v2 = −v21 + h.o.t. ( 7© and 9© in Figure 4 left).

A522-singularity
We take γ1(t) = (t, γ12(t), γ13(t)) with j2γ12 = t2, γ13(0) = γ′13(0) = 0 and γ2(s) =

(s, γ22(s), γ23(s)) with j3γ22 = s2 + s3 and γ23(0) = 1. Then Bif(P̃ ,A) consists of the
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Figure 4: Bifurcations of an A323-singularity left and A522-singularity right.

origin and the A322-stratum which is given by (v1, v2) = (−3
2
s2 + h.o.t.,−2s3 + h.o.t.)

( 3© and 5© in Figure 4 right). As for Bif(H̃,K), the curvatures of both α and β do not
vanish near the origin, so this component of the bifurcation set is empty. See Figure
4 right and compare with that in [10].

D523-singularity
We take γ1(t) = (γ11(t), γ12(t), γ13(t)) with j2γ11 = t2, j4γ12 = t3 + t4, γ13(0) =

γ′13(0) = 1 and γ2(s) = (γ21(s), s, γ23(s)) with j2γ21 = s2, γ23(0) = γ′23(0) = 0. Then
we have a D523-singularity at t = s = 0 if and only if γ′′′11(0) 6= 4. The Bif(P̃ ,A)
consists of the origin, the A23-stratum which is given by v2 = 3

4
v21 + h.o.t ( 2© and

8© in Figure 5 left), the A322-stratum which is given by v1 = −v22 + h.o.t ( 6© and 10©
in Figure 5 left), and the the D4222-stratum which is given by v1 = v2 + h.o.t with
v2 > 0 ( 4© in Figure 5 left). The Bif(H̃,K) consists of the A123-stratum given by
(v1, v2) = (t2 + (1

6
γ′′′11(0)− 1)t3 + h.o.t.,−3t2 + (3

2
γ′′′11(0)− 5)t3 + h.o.t.) which is a cusp

as γ′′′11(0) 6= 4 ( 12© and 14© in Figure 5 left).

D4223-singularity
Here we have a tri-germ and we take the three pieces of curves given by γ1(t) =

(t, γ12(t), γ13(t)), γ2(s) = (γ21(s), s, γ23(s)) and γ3(u) = (γ31(u), γ32(u), γ33(u)) with the
following setting: j2γ12 = t2, γ13(0) = γ′13(0) = 0, j3γ21 = s3, γ23(0) = 1, γ′23(0) = 0,
j2γ31 = u − u2, j2γ32 = u + u2, γ33(0) = −1, γ′33(0) = 0. The modified family of
projections along the directions (v1, v2, 1) to the (v1, v2)-plane is given by α; β; δ with

α(t) = (α1(t), α2(t)) = (t− γ13(t)v1, γ12(t)− γ13(t)v2),
β(s) = (β1(s), β2(s)) = (γ21(s)− γ23(s)v1, s− γ23(s)v2),
δ(u) = (δ1(u), δ2(u)) = (γ31(u)− γ33(u)v1, γ32(u)− γ33(u)v2).
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Figure 5: Bifurcations of a D523-singularity left and of a D4223-singularity right.

The A123-stratum consists of two branches. It follows by the implicit functions
theorem that one is given by v2 = 1

6
γ′′23(0)v1 + h.o.t ( 3© and 9© in Figure 5 right) and

the other is given by v2 = (1 + 1
12
γ′′23(0))v1 + h.o.t ( 7© and 13© in Figure 5 right). The

D4222-stratum is also a smooth curve given by v2 = 2v1 + h.o.t ( 5© and 11© in Figure 5
right). The three strata meet transversally at the origin if and only if γ′′23(0) 6= 12 (i.e.,
if and only if κγ2(0) 6= 6). This is an additional condition on the space curve to those
in Definition 5.2. It can be shown using the standard transversality techniques that
the set of space curves in Definition 5.2 with this extra condition at a D4223-singularity
of a projection is also residual in C∞(I,R3). 2

Remark 5.4 The results in Theorem 5.3 (and Theorem 6.1) are specific to the family
of projections of space curves. Ideally, we would like to have a theory of versal defor-
mations that captures both the A and Ah-singularities of plane curves and state that
the family of projections of space curves is versal in general. This is an open question.

6 Bifurcations in the dual of the projected curve

Let α be a plane curve and consider the family of height functions h : I × S1 → R,
given by h(t, u) = α(t) · u. The discriminant of the family h is

D := {(u, h(t, u)) ∈ S1 × R | ∂h
∂t

(t, u) = 0}

and can be viewed as the dual of the curve α, see for example [4]. We consider the
dual of the (modified) projection P̃v(t) of the space curve γ and the way it bifurcates
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as the direction of projection varies locally in S2. We consider the modified family of
height functions given by H̃(t, (v, ω)) = P̃v(t) · ω.

For v fixed, the discriminant of the family H̃v(t, ω) = P̃v(t) · ω is the dual of
the projected curve P̃v(t). It is also the fibre π−1(v) of the projection π : D(H̃) ⊂
S1 × R × S2 → S2 of the discriminant of the family H̃. The family H̃ is a versal
unfolding of the singularities of Ke-codimension ≤ 2 which appear in its members. We
thus have models, up-to diffeomorphisms, of the discriminant of H̃. A natural attempt
to obtain models of the dual of the curve P̃v(t) is to study sections of D(H̃). However,
the map π is degenerate (of infinite codimension; more details are given below). We
proceed by analysing separately each case in Figure 1.

The Ah-class of the dual of P̃v(t) with v fixed can be obtained using the results in
[15]. It follows from [15] that A02 , A322 , A44 , and A522 are self-dual while we have dual
pairs A03 and A23 , A04 and E64 (a swallowtail), A323 and E723 (a tangency between a
cusp and a regular branch). Thus, the dual of an A02 is a smooth curve, the dual of an
A03 is a cusp, the dual of an A04 is a swallowtail and undergoes swallowtail transitions.
The multi-germs with transverse branches dualise to disjoint curves (this includes all
the A1ij -singularities, the D4222 , D4223 and Ẽ72222 singularities in Figure 1). For the A322

and A522-singularities, the dual curves have the same contact as the curves themselves
([3]). It is not hard to show that we obtain the same bifurcations as those of the original
bi-germ (for the A322 see for Figure 4 left around the strata 3© and 5©, and for the
A522-singularity see Figure 4 right). The D6222-singularity dualises to a disjoint union
of a smooth branch and two tangential branches (i.e., an A322-singularity). Therefore,
we need to consider only the bifurcations in the dual of P̃v(t) when P̃v(t) is in one of
the following Ah-class in Figure 1: A23 , A44 and A323 .

Theorem 6.1 The bifurcations in the duals of the curves P̃v(t) as v varies locally in
S2 are as shown in Figure 6 at an A23-singularity (cusp), Figure 7 left at an A44-
singularity (ramphoid cusp), and Figure 7 right at an A323-singularity.

Proof A23-singularity (cusp)
We take γ(t) = (γ1(t), γ2(t), γ3(t)), with j1γ1 = t, j2γ2 = t2 and j2γ3 = t3. Then

H̃(t, v2, v3, ω) = (γ2(t)− γ1(t)v2)ω1 + (γ3(t)− γ1(t)v3)ω2

where ω = (ω1, ω2). The function H̃(0,0)(t, ω) is singular for any ω ∈ S1. Therefore

S1×{0} is part of the discriminant H̃(0,0)(t, ω). The singularity is of type A1 if ω1 6= 0
and of type A2 otherwise. Near ω = (0, 1), we take a chart (w, 1) of S1 and consider
H̃(t, w)(v2,v3) = (γ2(t)− γ1(t)v2)w + (γ3(t)− γ1(t)v3). At (v2, v3) = 0,

H̃ ′(t, w)(0,0) = γ′2(t)w + γ′3(t) = t(2w + 3t+ h.o.t.).

The solution t = 0 of H̃ ′(t, w)(0,0) = 0 gives the component S1 × {0} of the dual of

P̃v(t) and the solution 2w + 3t + h.o.t. = 0 gives a smooth curve parametrised by
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Figure 6: Bifurcation of the cusp singularity (left) and of its dual (right).

(−3/2t + h.o.t.,−1/2t3 + h.o.t.), where we identify locally S1 with the real line (see
Figure 6 right, central figure).

The A2-singularity of H̃(0,0)(t, ω) at ω = (0, 1) is of codimension 1 and the family

H̃(t, 0, v3, w) is a versal deformation of this singularity, so its discriminant is a cuspidal-
edge. However the sections of this cuspidal-edge with planes v3 = constant are not
generic as the plane v3 = 0 contains the singular set of the cuspidal-edge. We have

H̃(t, 0, v3, w) = γ3(t) + γ2(t)w − γ1(t)v3,

so H̃ ′(t, 0, v3, w) = γ′3(t)+γ′2(t)w−γ′1(t)v3 = 0 gives w = w(t) = − 1
γ′2(t)

(γ′3(t)−γ′1(t)v3).
We then get a parametrisation of the dual curve in the chart (w, 1) of S1 in the form

(− 1

γ′2(t)
(γ′3(t)− γ′1(t)v3), γ3(t)−

γ2(t)

γ′2(t)
(γ′3(t)− γ′1(t)v3)− γ1(t)v3).

This is singular if and only if w′(t) = 0. This equation has two solutions if v3 < 0
and none if v3 > 0. The singularities of the dual are of cusp type, i.e., are A-equivalent
to (t2, t3). We observe that the dual curve in the above chart goes to infinity as t tends
to 0. We sketch in Figure 6 (right) the bifurcations in the dual curve in an affine chart
of S1 × R and represent S1 in a thick curve.

A44-singularity (ramphoid cusp)
We take, as in the proof of Theorem 5.3, j5γ(t) = (φ(t), t2, t4 + t5) with j1φ = t.

At ω = (0, 1), the height function on the projected curve has an A3-singularity. The
dual of P̃(0,0) consists of S1×{0} (drawn locally in thick in 1© Figure 7) together with
another curve (its “proper” dual) given by (−2t2− 5

2
t3 +h.o.t,−t4− 3

4
t5 +h.o.t). This

has a singularity A-equivalent to (t2, t5). (We observe that the proper dual curve of
a ramphoid cusp which is Ah-equivalent to (t2, t5) has a singularity A-equivalent to
(t3, t5), i.e., an E8-singularity, [15].) We obtain a stratification of the (v2, v3)-plane
determined by the following codimension ≥ 1 strata which are the same curves as for
their corresponding singularities of the projections: the origin (the A44-stratum for
P̃ ); the A3-stratum (A04-stratum for P̃ , 2© and 6© in Figure 7 left) where the height
function has an A3-singularity; the A1A1-stratum (A322-stratum for P̃ , 10© in Figure 7
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Figure 7: Bifurcation of the dual of an A44 left and of an A323 right.

left); the dual of an A23 which we denote by Â23 ( 4© and 8© in Figure 7 left). We can
prove that the family of height functions is a versal deformation of the singularities on
the codimension 1 strata, so we have the standard pictures of the bifurcations of the
discriminant as we cross these strata. For instance, we have the swallowtail transitions
as we cross the A3-stratum ( 2© and 6© in Figure 7 left). We can also show that we
have another singularity (cusp) on the dual curve on the A3-stratum, so we have a
maximum of three cusps that can appear in the bifurcation of the dual of a ramphoid
cusp (Figure 7 left).

A323-singularity
With the same setting as in the proof of Theorem 5.3 the families of height functions

on these curves are given by h1(t, v2, v3, w) = wα1(t) + α2(t) and h2(t, v2, v3, w) =
wβ1(s) + β2(s). Now ∂h1/∂t = 0 gives w = −α′2(t)/α′1(t) = (γ′12(t) − γ′13(t)v2)/(1 −
γ′13(t)v1), and similarly ∂h2/∂t = 0 gives w = −β′2(t)/β′1(t) = (γ′22(s)− γ′23(s)v2)/(1−
γ′23(s)v1), so the dual curves are parametrised by

α̂(t) = (wα(t), wα(t)α1(t) + α2(t)), with wα(t) = −α
′
2(t)

α′1(t)
,

β̂(s) = (wβ(s), wβ(s)β1(s) + β2(s)), with wβ(s) = −β
′
2(s)

β′1(s)
.

At v1 = v2 = 0, we get a bi-germ (−2t+h.o.t.,−t2+h.o.t.); (−3s2+h.o.t.,−2s3+h.o.t.),
which is a cusp with a smooth curve tangent to the cusp (i.e., an E7-singularity). We
expect a transverse intersection of the two curves on some stratum in S1 × R (i.e., a
D523-singularity). This happens when α̂(t) = β̂(s) = 0 and β̂′(s) = 0. Now β̂′(s) = 0
implies w′β(s) = β′2(s) = 0, which in turn implies that v2 = 0. We can check that the
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two curves α̂ and β̂ do indeed intersect at the cusp of β̂ when v2 = 0. The curves α
and β have ordinary tangency along the A322-stratum. As the dual curves have the
same contact ([3]), the A322-stratum is the same for both the curves and their duals.
The bifurcations in the dual curves as (v2, v3) varies near the origin are given in Figure
7 right. 2
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