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Abstract

We study germs of pairs of codimension one regular foliations in R
3. We show that

the discriminant of the pair determines the topological type of the pair. We also consider
various classifications of the singularities of the discriminant.

1 Introduction

We study in this paper germs (at the origin) of pairs of codimension one regular foliations in
R

3. We can assume that the foliations are the leaves of germs of differential 1-forms ω and
η. We seek to obtain local models of the pairs (ω, η) under two natural equivalence relations.
We say that two pairs (ωi, ηi), i = 1, 2, are smoothly (resp. topologically) equivalent if there
exists a germ of a diffeomorphism (resp. homeomorphism) of R

3, 0 that sends the leaves of
ω1 to those of ω2 and the leaves of η1 to those of η2. The smooth classification is treated
in §3 and is related to the classification of certain divergent diagrams. This means that the
models obtained in §3 are up to formal equivalence (the diffeomorphism above is replaced
by an invertible formal power series).

The topological classification is dealt with in §4. An important feature of the pair (ω, η)
is its discriminant D(ω, η) which is the locus of points where the 1-form ω is a multiple
of η. Alternatively, D(ω, η) is the locus of points where the 2-form ω ∧ η = 0. This is
generically a germ of a space curve. We show in §4 (Theorem 4.1) that the discriminant
determines the local topological type of the pair (ω, η), and obtain a complete list of discrete
topological models. More precisely, if the discriminant is transverse away from the origin to
the pair of foliations, then the topological type of the pair is determined by the number of
branches of the discriminant in each half region delimited by the leaf of ω (or η) through
the origin, provided this number does not exceed two. If there are three or more branches of
the discriminant in one of the half regions, then there is no discrete topological model of the
pair (Remark 4.2). This is a generalisation of the result in [13] for pairs of germs of regular
foliations in the plane.
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Because the discriminant plays a key role in the topological classification, it is of interest
to analyse its singularities. For this we require some notation. We can set, in the coordinates
system (x, y, z), w = df and η = dz, where f : R

3, 0 → R, 0 is a germ of a smooth function.
Then D(ω, η) is the zero fibre of the map-germ Fω,η : R

3, 0 → R
2 given by Fω,η(x, y, z) =

(fx(x, y, z), fy(x, y, z)).
Let En be the local ring of germs of functions R

n, 0 → R and mn its maximal ideal (which
is the subset of germs that vanish at the origin). Denote by E(n, p) the p-tuples of elements in
En. Let A = R×L = Diff(Rn, 0)×Diff(Rp, 0) denotes the group of right-left equivalence
which acts smoothly on mn.E(n, p) by (h, k).G = k ◦ G ◦ h−1. We have another group of
interest, namely the contact group K. The group K is the set of germs of diffeomorphisms
H = (h,H1) ∈ Diff(Rn+p, 0), with h ∈ Diff(Rn, 0). Then H acts on mn.E(n, p) as follows:
G = H.F if and only if H(x, F (x)) = (h(x), G(h(x))) (this means that the graphs of F and
G are diffeomorphic).

It is important to observe here that the action of the group K is a natural one to use when
one seeks to understand the singularities of the zero fibres of germs in mnE(n, p). Indeed, if
two germs are K-equivalent, then their zero fibres are diffeomorphic. The action of the group
A is finner than that of K. If two germs F and G are A-equivalent, that is G = k ◦ F ◦ h−1

for some (h, k) ∈ A, then the fibres G−1(c) and F−1(k−1(c)) are diffeomorphic, for any c
close to 0 ∈ R

p. So the group A preserves also the smooth structure of nearby fibres to the
zero fibre.

We carry out in §5 various classifications of map-germs R
3, 0 → R

2, 0. In §5.1 we give a
brief description of the singularities of the discriminant via an action on families of matrices.
When at least one foliation is regular, the action reduces to that of the contact group K
on m3.E(3, 2). However, when both foliations are singular at the origin, the bifurcations in
the discriminant curve in generic families of pairs of foliations are best described using the
family of matrices framework. (For related papers see [3, 6], and [15, 16] for applications to
implicit differential equations.)

As pointed out above, the key ingredient in the topological classification of the pairs
(df, dz) is the number of branches of the discriminant in each semi-space delimited by the
plane z = 0 (the leaf of dz through the origin). It is therefore natural to seek a classification
of the singularities of map-germs F : R

3, 0 → R
2, 0 under an action that preserves the smooth

type of the zero fibre of F as well as the leaf z = 0 of dz. This action is that of the subgroup
KV of K, where the changes of coordinates in the source preserve the variety V given by
z = 0. Clearly, such action preserves the number of branches, in each semi-space z > 0 and
z < 0, of the zero fibre of any map-germ R

3, 0 → R
2, 0. The classification of the KV -simple

map-germs (see Definition 2.3) is carried out in §5.2.
We also classify the simple singularities of the discriminant under an action that preserves

the foliation of dz. Let K∗ be the subgroup of K (and indeed of KV ) where the changes
of coordinates in the source preserve the horizontal planes (i.e., the foliation defined by
dz). In §5.3 we list the K∗-simple singularities of map-germs R

3, 0 → R
2, 0 and show that

these coincide with the KV -simple singularities. The action K∗ does not only preserves the
number of branches in each semi-space z > 0 and z < 0 of the zero fibre of any map-germ
R

3, 0 → R
2, 0, but also the contact of the zero fibre with the horizontal planes (see §5.3).

Normally, in classification works, listings of simple orbits or of orbits of certain codimen-
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sions are sought. We choose to list here the simple orbits of the actions under consideration
as our aim is to provide examples of the singularities of the discriminant D(ω, η) and of
topologically determined pairs (ω, η).

The paper is organised as follows. In §2 we give some preliminaries of concepts from
singularity theory. In §3 we classify pairs of regular foliations up to formal equivalence and
give a complete topological classification in §4. We deal with the various classifications of
the singularities of the discriminant in §5.

2 Preliminaries

As highlighted in the introduction, the discriminant of the pair of germs of foliations (ω, η)
in R

3 plays a key role in the topological classification of the pair. When not empty, the
discriminant is the zero fibre of a map-germ Fω,η : R

3, 0 → R
2, 0, so we consider various

classifications of the singularities of map-germ R
3, 0 → R

2, 0. For this, we need some standard
notation from singularity theory (see [2, 17] for survey articles). We present below some
concept using the group A, but these concepts are also valid for the other groups used in
the paper.

Given a map-germ F ∈ mn.E(n, p), θF denotes the set of germs of vector fields along F
(these are sections of the pull-back of the tangent bundle of the target manifold). We set
θn = θidRn,0

and θp = θidRp,0
, where idRn,0 and idRp,0 denote the germs of the identity maps

on R
n, 0 and R

p, 0 respectively. One can define the homomorphisms tF : θn → θp, with
tF (ψ) = DF.ψ, and wF : θn → θp, with wF (φ) = φ ◦ F .

The action of the group A on mn.E(n, p) is described in the introduction. The tangent
space to the A-orbit of F at the germ F is given by

LA(F ) = tF (mn.θn) + wF (mp.θp)
= mn.{Fx1

, . . . , Fxn
} + F ∗(mp).{e1, . . . , ep},

where Fxi
denotes partial derivatives with respect to xi (i = 1, . . . , n), e1, . . . , ep the standard

basis vectors of R
p considered as elements of E(n, p), and F ∗(mp) the pull-back of the maximal

ideal in Ep.
The extended tangent space to the A-orbit of F at the germ F is given by

LeA(F ) = tF (θn) + wF (θp)
= En.{Fx1

, . . . , Fxn
} + F ∗(Ep).{e1, . . . , ep}.

The codimension of the orbit of F is given by

d(F,A) = dimR(mn.E(n, p)/LA(F ))

and the codimension of the extended orbit is

de(F,A) = dimR(E(n, p)/LeA(F )) .

Let k ≥ 1 be an integer. We denote by Jk(n, p) the space of kth order Taylor expansions
without constant terms of elements of E(n, p) and write jkF for the k-jet of F . A germ F
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is said to be k − A-determined if any G with jkG = jkF is A-equivalent to F (notation:
G ∼ F ). The k-jet of F is then called a sufficient jet. (See for example [2, 5, 17] for finite
determinacy criteria.)

The classification (i.e., the listing of representatives of the orbits) of finitely determined
germs is carried out inductively on the jet level. The method used here is that of the complete
transversal ([4]) together with Mather’s Lemma ([12]), given below, where A1 denotes the
normal subgroup of A whose elements have 1-jets at 0 equal to the identity.

Proposition 2.1 (Complete transversal, [4]) Let G be a k-jet in Jk(n, p), and let T be a
vector subspace of the set Hk+1(n, p) of homogeneous jets of degree k + 1, such that

Hk+1(n, p) ⊂ T + L(Jk+1A1)(G) .

Then any (k + 1)-jet jk+1F with jkG = jkF is Jk+1A1-equivalent to G+ t for some t ∈ T .
(The vector subspace T is called the complete (k + 1)-transversal of G.)

Lemma 2.2 (Mather’s Lemma, [12]) Let G be a Lie group acting smoothly on a finite di-
mensional manifold X. Let V be a connected submanifold of X. Then V is contained in a
single orbit of G if and only if

1. for each x ∈ V , TxV ⊂ TxG(x) = LG(x);
2. dimTxG(x) is constant for all x ∈ V .

The notion of simple germs is defined in [1] as follows.

Definition 2.3 ([1]) Let X be a manifold and G a Lie group acting on X. The modality of a
point x ∈ X under the action of G on X is the least number m such that a sufficiently small
neighbourhood of x may be covered by a finite number of m-parameter families of orbits. The
point x is said to be simple if its modality is 0, that is, a sufficiently small neighbourhood
intersects only a finite number of orbits. The modality of a finitely determined map-germ is
the modality of a sufficient jet in the jet-space under the action of the jet-group.

The results on finite determinacy and complete transversal are stated above for the group
A and were initially proved for the groups L, R, C, K and A (see [17]). However, Damon
showed that these results are also valid for a larger class of subgroups of K and A, which he
called geometric subgroups of K and A ([7]). These are subgroups that satisfy some algebraic
properties that ensure that all the results on finite determinacy and versal unfoldings are
valid for the action of such subgroups on mn.E(n, p).

We classify here the simple germs in mn.E(n, p) under the action of the geometric sub-
groups of K given in the introduction (references to proofs that such subgroups are geometric
are given in §5). We shall denote by m(X) the maximal ideal in En, where X are the coordi-
nates in R

n, 0. We consider the case n = 3 and p = 2 and denote by (x, y, z) the coordinates
in the source and by (u, v) the coordinates in target.
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3 Formal classification of pairs (ω, η)

We are interested in this section (and in the next) in classifying the pairs (ω, η). We can
attempt to obtain a classification up to smooth changes of coordinates in R

3, 0 and multipli-
cation by non zero functions. We can set, as before, η = dz and assume that the foliation of
ω is given by the level sets of a smooth function f . The smooth models of pair (df, dz) are
then given by the models of germs of functions f : R

3, 0 → R, 0 up to diffeomorphisms in the
source that preserve the horizontal planes (i.e., the leaves of η = dz). These diffeomorphisms
are in the form (φ1(x, y, z), φ2(x, y, z), φ3(z)) and form a subgroup G of the right group R.
We can also allow changes of coordinates in the target as these do not alter the structure of
the fibres of f and those of the function z. We can then classify germs of functions in m3 up
to A∗ = G × L-equivalence. However, the group A∗ is not a Damon geometric subgroup [7],
so the classification is in the formal category. (Basically, we show that there exists an integer
k such that ml

3 ⊂ LA∗(f) +ml+1
3 for any l > k. Because the group A∗ is not a geometric

subgroup, there is no version of the Preparation Theorem to guarantee that mk+1
3 ⊂ LA∗(f)

and conclude that f is finitely A∗-determined. All we can assert is that there are formal
power series ĥ and k̂ such that jkf = k̂ ◦ f ◦ ĥ−1.)

It is not difficult to show that the A∗-classification of the germs f ∈ m3.E(3, 1) is the

same as the classification of divergent diagrams (f, z) : R, 0 R
3, 0

f
oo z // R, 0 carried

out by [11]. Recall that a divergent diagram (f1, f2) : R
p, 0 R

n, 0
f1

oo
f2

// R
q, 0 is a pair

of map-germs f1 : R
n, 0 → R

p, 0 and f2 : R
n, 0 → R

q, 0 sharing the same source. Two

divergent diagrams (f1, f2), (g1, g2) : R
p, 0 R

n, 0
f1

oo
f2

// R
q, 0 are said to be equivalent

if there exist germs of diffeomorphisms h of R
n, 0, k1 of R

p, 0 and k2 of R
q, 0 such that the

following diagram commutes:

R
p, 0

f1
//

k1

��

R
n, 0

f2
//

h

��

R
q, 0

k2

��

R
p, 0

g1

// R
n, 0

g2
// R

q, 0

(More on divergent diagrams can be found for example in [8, 9, 11].) We have the
following result where we abuse notation and refer to A∗-formally finitely determined germs
of pairs (df, dz) when we mean the germ f is A∗-formally finitely determined.

Theorem 3.1 ([11]) The A∗-formally finitely determined germs of pairs of foliations in R
3

are the following:
1. (d(z + x), dz),
2. (d(z − x2 ± y2), dz),
3. (d(z − x3 + xz2k−1 + y2), dz), k ≥ 1,
4. (d(z − x3 ± xz2 + y2), dz),
5. (d(z − x3 + x(±z2k + λz5k−1) + y2), dz), k ≥ 2, λ ∈ R.

Remark 3.2 (1) Theorem 3.1 states that a necessary condition for the pair (df, dz) to be
A∗-formally finitely determined is that the surface f−1(0) has an A0, A1 or an A2 contact
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with its tangent plane at the origin. (The tangent plane can be parametrised by a germ
of a function φ : R

2, 0 → R
3, 0. The contact of f−1(0) with its tangent plane at the origin

is of type Ak if the germ f ◦ φ : R
2, 0 → R, 0 has a singularity which is R-equivalent to

±x2 ± yk+1.)
(2) The models 1 and 2 in Theorem 3.1 are in fact up to smooth changes of coordinates.

Dufour showed in [8] and [9] that model 3 in Theorem 3.1 with k = 1 is also up to smooth
changes of coordinates. These smooth models are also stable under deformations of the pair
(ω, η).

For the other cases, one can reduce by smooth changes of coordinates any N -jet of a pair
which is formally finitely determined (N large enough) to one of the pairs in Theorem 3.1
(3) with k ≥ 2, (4) or (5). This is an importante property and will be used when applying
the results in §5.

4 Topological classification of pairs (ω, η)

We consider in this section the topological classification of pairs (ω, η) of regular 1-forms in
R

3. We generalise the result in [13] that shows that under a mild hypothesis, the discriminant
of the germ of a pair of regular foliations in the plane determines the topological type of the
pair. We assume again that η = dz.

Theorem 4.1 Let (ω, dz) be a pair of germs, at the origin, of regular 1-forms in R
3. Suppose

that the discriminant D(ω, dz) consists of at most two branches in each semi-space z > 0
and z < 0 and is transverse, away from the origin, to the pair of foliations. Then the pair
(ω, dz) is locally topologically equivalent to one of the following:

(i) (dx, dz), if D(ω, dz) is empty or is an isolated point;
(ii) (d(z − x2 ± y2), dz), if D(ω, dz) has one branch in each semi-space;
(iii) (d(z − x3 + xz + y2), dz), if D(ω, dz) has two branches in one semi-space and none

in the other;
(iv) (d(z − x3 + xz2 + y2), dz), if D(ω, dz) has two branches in each semi-space.

Proof Case (i) is not difficult and shall be omitted. We can suppose that ω = df , where
f is a germ of a regular function. As the discriminant is transverse, away from the origin,
to the pair of foliations, it follows that away from the origin, the foliations have ordinary
tangency on the discriminant. (The transversality condition is satisfied if, for example, the
discriminant has a K∗-finitely determined singularity at the origin.) So the pair of 1-forms
is locally smoothly equivalent to (d(z − x2 ± y2), dz) at each point on the discriminant
D(df, dz) that is distinct from the origin. The contact type (elliptic if the pair is equivalent
to (d(z − x2 − y2), dz) and hyperbolic if it is equivalent to (d(z − x2 + y2), dz)) is of course
constant on each branch of the discriminant. Let (dg, dz) denotes a model pair in Theorem
4.1 and D(dg, dz) its discriminant.

(ii) Let h : D(ω, dz) → D(dg, dz) be an increasing homeomorphism with h(0) = 0.
One can show that the contact type of the foliations is the same on both branches of the
discriminant. Furthermore, the leaf L0 of ω through the origin has the same type of contact
with z = 0 as the other points on the discriminant, that is, L0 intersect the plane z = 0 at a
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single point in the elliptic case and in two curves in the hyperbolic case. We deal with the
two types of contact separately.

Suppose that the contact is elliptic. Suppose for simplicity that the points on D(ω, dz)
are local minima of f . Let L be a leaf of ω through q ∈ D(ω, dz), with πz(q) < 0, where πz(q)
is the orthogonal projection to the z-axis. Let L′ be the leaf of dg through h(q). There exists
a homeomorphism H : L → L′, with H(L ∩ {z = c}) = L′ ∩ {z = h(c)}, for all c ≥ πz(q).
Let U (resp. U ′) be the interior of the region delimited by L (resp. L′) and the plane z = c0
(resp. z = h(c0)), with c0 a small positive number (so U and U ′ contain the origin).

00

q

p

p1

p2

p3

L

ξ

D(ω, dz)
h(q)

K(p)

h(p1)

h(p2)

H(p3)

L′

ξ′

D(dg, dz)

Figure 1: Discriminant with one branch in each half-space (elliptic contact): pair of foliations
(left), and the model pair (right).

We consider on each plane z = c the gradient vector field of the restriction of f (resp. g)
to this plane and denote it by ξ (resp. ξ′). The fields ξ and ξ′ have a unique singularity of
type node at the point of intersection of the discriminant with z = c, c 6= 0. By continuity,
the origin is in the closure of very non singular integral curve of ξ (resp. ξ′) in z = 0. Recall
that the integral curves of ξ (resp. ξ′) are transverse to the traces of the foliation of ω = df
(resp. dg) on the plane z = c.

Given p ∈ U , let Lp be the leaf of ω containing p. This leaf intersects D(ω, dz) at a unique
point p1. The plane z = πz(p) intersects D(ω, dz) at a point p2. This plane intersects the leaf
Lp in a closed curve containing p. The flow of ξ provides a homeomorphism between this curve
and the curve L ∩ {z = πz(p)}, so the integral curve of ξ through p intersects L at a unique
point p3. The point p determines thus a unique triple (p1, p2, p3) ∈ D(ω, dz)×D(ω, dz)×L,
and vice-versa (Figure 1, left). We define K(p) as the point on the foliation dg determined by
the triple (h(p1), h(p2),H(p3)) ∈ D(dg, dz) ×D(dg, dz) × L′ by reversing the above process
(Figure 1, right). The map K : U → U ′ is clearly a homeomorphism that sends the pair of
foliations (ω, dz) to the model pair.

When the contact is hyperbolic, we consider three leaves of ω. Let L0 be the leaf through
the origin, L1 an inner leaf and L2 an outer leaf, i.e., one intersects D(ω, dz) on one branch
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and the other on the other branch; Figure 2. The region between the leaves L1 and L2

determines a neighbourhood of the origin. We define analogously three leaves L′
i, i = 0, 1, 2,

of dg. We then proceed as in the elliptic case using a homeomorphism H : L1 → L′
1 that

satisfies H(L1 ∩ {z = c}) = L′
1 ∩ {z = h(c)} for all c near zero.

0

L0 L1

L2

D(ω, dz)

Figure 2: Discriminant with one branch in each half-space, hyperbolic contact.

(iii) Suppose the discriminantD(ω, dz) has two branches on say, the upper half-space R
3
+,

and none in the R
3
−. Then one can show that the contact of the foliations is hyperbolic on

one branch, say D1, and elliptic on the other, say D2. Furthermore, each leaf that intersects
one branch intersects also the other branch. We construct the required homeomorphism in
pieces. We start with the upper-half space R

3
+ that contains the discriminant. Let L0 be the

leaf of ω through the origin, L1 an inner leaf and L2 an outer leaf of ω; Figure 4, left. We
choose a neighbourhood U of L0 in R

3
+ with boundary L1, L2 and the plane z = 0; Figure

4, left. We define analogously to leaves L′
i, i = 0, 1, 2, of dg.

We have a return map on each branch of the discriminant. Given a point q on D1,
the leaf of ω through q intersects D2 at q′. The leaf of dz through q′ intersects D1 at a
point α1(q). The map α1 : D1 → D1, with α1(0) = 0, is continuous and monotonous.
Similarly for the model pair (dg, dz), there exists return map α′

1 : D′
1 → D′

1. As we are
seeking a homeomorphism that preserves foliations, its restriction h : D1 → D′

1 has to
satisfy h ◦ α1 = α′

1 ◦ h. Such an h exists (see for example [14], pp 19-20).
Let H1 : L2 → L′

2 be a homeomorphism such that H1(L2 ∩ {z = c}) = L′
2 ∩ {z = h(c)},

for all c ≥ 0. We also need H1 to send two special curves on L2 to their analogue on L′
2.

These curves are as follows. For c > 0 fixed, one separatrix of the saddle singularity of the
vector field ξ on z = c intersects the leaf L2 at two points s1 and s2 (ξ is the gradient vector
field defined in (ii)); see Figure 3. The closure of the set of such points consists of two curves
in L2 ∩ {z ≥ 0}.

We split U into three regions as shown in Figure 3. The leaves through points in region
1© do not intersect the discriminant. Therefore we require an extra information to determine
the leaf that contains a given point in this region. To do so, we choose a segment of a curve
C (resp. C ′) in the plane z = 0 transverse to the traces of the foliation of ω = df (resp. dg)
in region 1© (resp. 1′©) and joining a regular point of L0 (resp. L′

0) to a point of L1 (resp.
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L′
1). Let k : C → C ′ be a homeomorphism (sending the point in L1 to the point in L′

1). Let
p be a point in region 1©. The leaf Lp of ω through p cuts C at a unique point p1 and the
horizontal plane through p cuts D1 at a unique point p2. The integral curve of the vector
field ξ through p determines a unique point p3 on L1. The triple (p1, p2, p3) ∈ C ×D1 × L2

determines p uniquely. The image K(p) is set to be the point in region 1′© determined by
the triple (k(p1), h(p2),H1(p3)) ∈ C ′×D′

1 ×L′
2. (If p belongs to the separatrix of the saddle

singularity of ξ, we define p3 to be s1 in Figure 3.)
A point p in region 2© (resp. 3©) determines a unique triple (p1, p2, p3) ∈ D1 ×D1 × L2,

where p1 and p2 are given by the intersection of D1 with the leaves of ω and dz through
p respectively, and p3 is given by the intersection of the integral curve of ξ through p with
L2 (see Figures 3 and 4). The point K(p) in region 2′© (resp. 3′©) is defined as the point
determined by the triple (h(p1), h(p2),H1(p3)) ∈ D′

1 × D′
1 × L′

2. It is clear that K is a
homeomorphism and extends to points in the plane z = 0.

p

s1

s2

p2

p3

L0

L1

L2

ξ
1©

2©

2©
3©

3©

Figure 3: Traces of the foliation ω on z = c, c > 0.

00

p p1

p2

p3

L0

L0 L1

L2L2

ξ

D1

D1

D2

D2

C

Figure 4: Discriminant with two branches in a half-space: a neighbourhood of L0 (left), and
the triple (p1, p2, p3) associated to a point p in region 3© (right).

In the lower semi-space R
3
− we consider a neighbourhood V determined by L0, L2 and
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the planes z = 0 and z = c1, c1 < 0 close to zero. Let l be a local homeomorphism
from the negative part of the z-axis to itself with l(0) = 0 and let H2 : L2 → L′

2 be a
homeomorphism such that H2(L2 ∩ {z = c}) = L′

2 ∩ {z = l(c)}, for all c ≤ 0, c close to
zero. The homeomorphism K is defined in the same way as in the upper-half space with h
replaced by l. Here we have two regions, one determined by L1 and L0 and the other by L0

and L2.
The case (iv) is similar to case (iii). 2

Remarks 4.2 (1) The observation in [13] (Section 3.2) still holds here for the case when
there are more than 2 branches of D(ω, dz) in one of the semi-spaces. Suppose for simplicity
that there are 3 branches Di, i = 1, 2, 3 of the discriminant. Then we obtain two return
maps αj : D1 → D1, j = 1, 2, one form travelling along the leaves of ω = df until reaching
D2 and back along the horizontal plane and the other until reaching D3 and back along the
horizontal plane. We have analogously return maps α′

j : D′
1 → D′

1 for the possible model
pair. A homeomorphism sending the pair of foliations to that of the possible model must
induce a homeomorphism h : D1 → D1 that conjugates simultaneously the pairs (α1, α

′
1)

and (α2, α
′
2). Such an h does not exist in general.

We can apply the classification results in Theorem 4.1 to the formal classification in
Theorem 3.1.

Corollary 4.3 Any pair (df, dz) which is formally equivalent to one of the pairs (1)-(5) in
Theorem 3.1 is topologically equivalent to, respectively,

1. (dx, dz),
2. (d(z − x2 ± y2), dz),
3. (d(z − x3 + xz + y2), dz),
4. (d(z − x3 + xz2 + y2), dz) for the (+) case and to (dx, dz) for the (−) case,
5. (d(z − x3 + xz2 + y2), dz) for the (+) case and to (dx, dz) for the (−) case.

Proof Recall that the first two models and the third for k = 1 are smooth models. For
the remaining cases, we can reduce the N -jet of (df, dz) for any large N to one of the models
in Theorem 3.1.

We need to count the number of branches of the discriminant in each semi-space z >
0 and z < 0 and show that the discriminant is transverse, away from the origin, to the
foliation dz. Take for example the case (5). We know that (df, dz) is smoothly equivalent to
(d(z − x3 + x(±z2k + λz5k−1) + y2 + g(x, y, z)), dz), for some germ of a smooth function g
with jNg ≡ 0 and N large enough. The discriminant is the zero fibre of

Fdf,dz(x, y, z) = (−3x2 + (±z2k + λz5k−1) + gx(x, y, z), 2y + gy(x, y, z)).

By the implicit function theorem, 2y + gy(x, y, z) = 0 yields y = φ(x, z) for some germ of
a smooth function φ. Now −3x2 + (±z2k + λz5k−1) + gx(x, φ(x, z), z) is K-equivalent to
−3x2 ± z2k, so the discriminant is an isolated point in the (−) case and a pair of tangential
curves parametrised by z in the (+) case. It is clear that these branches are transverse
to the horizontal planes (the foliation of dz). So we can apply Theorem 4.1 to obtain the
topological models. These are those given in (5) in the statement of the corollary. 2
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5 The singularities of the discriminant

We consider here various classifications of the singularities of the discriminant. We start
with the action under the contact group K.

5.1 Families of matrices

Let ω = a1(x, y, z)dx + b1(x, y, z)dy + c1(x, y, z)dz and η = a2(x, y, z)dx + b2(x, y, z)dy +
c2(x, y, z)dz, where ai, bi, ci, i = 1, 2, are germs, at the origin, of smooth functions. We
associate to the pair (ω, η) the family of matrices

A =

(

a1 b1 c1
a2 b2 c2

)

(x, y, z),

which is a map-germ A : R
3, 0 → M(2, 3), where M(n, p) is the set of n × p real matrices.

Then the discriminant of (ω, η) is the set of points (x, y, z) where all the 2 × 2 minors of
A vanish. Given the matrix A above and two other square matrices X ∈ M(2, 2) and
Y ∈ M(3, 3) whose entries are smooth functions in (x, y, z) and which are invertible at the
origin, we can consider the matrix valued function XAY . Clearly its 2× 2 minors vanish at
precisely the set of points where those of A vanish. Similarly, it is not hard to show that any
smooth changes of coordinates in the source, via a diffeomorphism φ, takes the zero set of
the 2 × 2-minors of A to that of A ◦ φ. All these changes of coordinates form a subgroup G
of the contact group K acting on the space of families of matrices. (The action of G can be
considered as an action on the entries of the matrices, so we get a subgroup of K acting on
m3.E(3, 6).) So one can classify the G-singularities of A and obtain the singularities of the
discriminant as well as their versal deformations. In the case of regular foliations, it is not
hard to show that the matrix A is G equivalent to

(

0 0 1
g1(x, y, z) g2(x, y, z) 0

)

,

for some germs of smooth functions g1 and g2. The action of the group G reduces to that of
the group K on the space of germs of mappings (g1, g2) : R

3, 0 → R
2, 0. A complete list of

the K-simple singularities of map-germs R
3, 0 → R

2, 0 can be found, for example, in [10].
The action of the group G does not preserve the foliations of ω and η. However, as pointed

out in the introduction, this approach deals well with the singularities of the discriminant
and its bifurcations, especially when both pairs are singular at the origin. Then one can
proceed as in [3, 6] and [15, 16].

5.2 KV -singularities of the discriminant

Here we classify map-germs in m(x, y, z).E(3, 2) under the action of the subgroup KV of K
which consists of diffeomorphisms H = (h,H1) ∈ K, where h preserves the variety V in the
source given by z = 0. The diffeomorphism h is in the form (φ1(x, y, z), φ2(x, y, z), zφ3(x, y, z)).
We obtain below all the KV -simple germs in m(x, y, z).E(3, 2).

The KV tangent space to the orbit of F ∈ m(x, y, z).E(3, 2) at F is given by
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LKV (F ) = m(x, y, z).{Fx, Fy} + E3.{zFz} + (E3.F
∗(m(u, v))).{e1 , e2}.

The group KV is a Damon geometric subgroup (see [7]). A result of Damon [7] states
that F is r −KV -determined if and only if there exists an integer l such that

mr+1(x, y, z).E(3, 2) ⊂ LKV (F ) +mr+l+1(x, y, z).E(3, 2).

The classification is carried out inductively on the jet level.
The 1-jets.

Write j1F = (a1x+ a2y + a3z, b1x+ b2y + b3z). If a1b2 − a2b1 6= 0, then j1F ∼ (x, y). If
a1b2 − a2b1 = 0 but one of the coefficients ai or bi, i = 1, 2, is not zero, then j1F ∼ (x, z) or
j1F ∼ (x, 0). If a1 = a2 = b1 = b2 = 0 then j1F ∼ (z, 0) or j1F ∼ (0, 0). So the orbits in
J1(3, 2) are

(x, y), (x, z), (x, 0), (z, 0)(ns) , (0, 0)(ns).

We use above the notation (ns) to indicate that a given jet leads to non-simple orbits
and will not be followed. Take for example the 1-jet (z, 0). Suppose that j1F = (z, 0). Then
any 2-jet over this 1-jet is equivalent to j2F = (z+h(x, y), g(x, y)), where h, g are quadratic
forms. These germs form a vector space W of dimension 6. Consider, in the 2-jets space,
the subgroup of KV that acts on the germs in W . The tangent space to the orbit of j2F is
generated by x∂j2F/∂x, y∂j2F/∂x, x∂j2F/∂y, y∂j2F/∂y and (h, 0). This has dimension 5,
so the orbit of j2F is not open in W . Therefore, we must have a modulus at the 2-jet level,
which shows that (z, 0) leads to non-simple germs. It follows that the 1-jet (0, 0) also leads
non-simple germs.

It is not hard to show that the germ (x, y) is 1 − KV -determined and is stable (i.e.,
de(F,KV ) = 0).

The 2-jets.
• Suppose that j1F = (x, z). So we can write F (x, y, z) = (x + h(x, y, z), z + k(x, y, z))

for some germs of smooth functions h, k with zero 1-jets. We can set F = (x, z + g(x, y))
by changes of coordinates in KV . Writing g(x, y) = xg1(x, y) + g2(y) we can eliminate the
term xg1(x, y) by a change of coordinates in KV . Therefore, any germ with 1-jet (x, z)
is KV -equivalent to one in the form (x, z + g2(y)). The germ (x, z + g2(y)) is KV -finitely
determined if and only if ord(g2(y)) is finite. In this case it is KV -equivalent to (x, z + yk),
where k = ord(g2(y)). It follows from the definition that de(F,KV ) = k − 2.

• Suppose that j1F = (x, 0). A complete 2-transversal is given by (x, a1y
2 +a2yz+a3z

2).
If a1 6= 0 then the 2-jet is equivalent to (x, y2) or (x, y2 ± z2). The germ (x, y2 ± z2) is 2-
KV -determined. If a1 = 0 and a2 6= 0 then the 2-jet is equivalent to (x, yz). If a1 = a2 = 0
and a3 6= 0 then the 2-jet is equivalent to (x, z2).

The 3-jets.
• Suppose that j2F = (x, y2). Then F is KV -equivalent to (x, y2 + g(z)) for some germ g

with a zero 2-jet. The germ (x, y2 + g(z)) is KV -finitely determined if and only if ord(g(z))

12



Table 1: Normal forms of KV -simple map-germs R
3, 0 → R

2, 0.

Normal form F de(F,KV ) #branches

(x, y) 0 1, 1
(x, z + yk), k ≥ 2 k − 2 0, 2 (k even)

1, 1 (k odd)
(x, y2 + zk), k ≥ 2 k − 1 0, 0 (k even)

0, 2 (k odd)
(x, y2 − z2k), k ≥ 1 2k − 1 2, 2
(x, yz + yk), k ≥ 3 k − 1 2, 2 (k even)

1, 3 (k odd)
(x, z2 + y3) 3 1, 1

is finite. In this case it is KV -equivalent to (x, y2 ± zk) where k = ord(g(z)). Moreover,
de(F,KV ) = k − 1.

• Suppose that j2F = (x, yz). A complete k-transversal can be written in the form
(x, yz+g(y)), where g is a polynomial with a zero 2-jet. We obtain the series F = (x, yz+yk),
k ≥ 3 of KV -finitely determined germs, with de(F,KV ) = k − 1.

• Suppose that j1F = (x, z2). A complete 3-transversal is given by (x, z2 + ay2z + by3).
If b 6= 0 then we can set b = 1 by a change of scale. We can then apply Mather’s Lemma
to eliminate the term (0, y2z). The germ (x, z2 + y3) is 3-KV -determined with codimension
3. If b = 0, one can consider a 4-transversal and show that we have a modulus at the 4-jet
level. Therefore we have no more simple germs.

We summarise the classification below.

Theorem 5.1 The KV -simple map-germ R
3, 0 → R

2, 0 are given in Table 1.

In Table 1, #branches indicates the number of branches of the zero-fibre of the normal
form F in the semi-spaces z > 0 and z < 0. This number is calculated as follows. Take, for
example, the normal form F = (x, z2 + y3). Then F−1(0, 0) is the cusp z2 + y3 = 0 in the
plane x = 0. So there is one branch of F−1(0, 0) in each semi-space z > 0 and z < 0.

Corollary 5.2 The KV -simple singularities of the discriminant D(df, dz) of pairs (df, dz)
are given in Table 1. Only those pairs whose discriminant is equivalent to a germ in Table
1 which has a number of branches ≤ 2 in each semi-space bounded by z = 0 have a discrete
topological model. The topological models are given in Theorem 4.1.

Corollary 5.3 Any pair (df, dz) which is formally equivalent to one of the pairs (1)–(5) in
Theorem 3.1 has a discriminant which is KV -equivalent to, respectively,

1. (1, 0),
2. (x, y),
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3. (x2 + z2k−1, y) ∼ (x, y2 + z2k−1),
4. (x2 ∓ z2, y) ∼ (x, y2 ∓ z2),
5. (x2 ∓ z2k, y) ∼ (x, y2 ∓ z2k).
All the formally finitely determined pairs have therefore a discrete topological type. The

topological models can be deduced from Theorem 4.1 by looking at the number of branches of
the germs (2)–(5) above in Table 1.

Proof The proof follows by a straightforward calculation. 2

5.3 K∗-singularities of the discriminant

One can study the singularities of the discriminant up to some action that preserves its
contact with the leaves of the foliations. The motivation for this is the following.

We first observe that the discriminant is transverse to the leaves of ω and η at a point p
if and only if ω and η have an elliptic or hyperbolic contact at p, that is, (ω, η) is equivalent
to (d(z − x2 ± y2), dz) (the equivalence here is by smooth changes of coordinates and mul-
tiplication by non zero functions, see Theorem 3.1 and Remarks 3.2). The discriminant has
an ordinary tangency with the leaves of the foliations at p if and only if (ω, η) is equivalent
to (d(z − x3 + xz + y2), dz). (When the discriminant is smooth, it can be parametrised by
a germ of some map φ : R, 0 → R

3, p. A leaf at p of one of the foliations is the zero set of
a germ of some function g : R

3, p → R, 0. The discriminant has an ordinary tangency at p
with the leaf g−1(0) if the function g ◦ φ satisfies g(0) = g′(0) = 0 and g′′(0) 6= 0.)

These points of tangency, that we denote as in [13] by 31, are isolated and can be counted.
We assume, without loss of generality, that η = dz and ω = df , where f is a germ of a smooth
function. The points of tangency are characterised by the fact that the tangency of the two
leaves z = 0 and f−1(0) is worse than elliptic or hyperbolic. This is the case if and only if
z = 0, fx = fy = fxxfyy − f2

xy = 0. So the maximum number of such points that can appear
in a deformation of the pair is given by

#31 = dimR(E3/
〈

z, fx, fy, fxxfyy − f2
xy

〉

) = dimR(E2/
〈

gx, gy, gxxgyy − g2
xy

〉

),

where g(x, y) = f(x, y, 0). This number is a smooth invariant of the pair (df, dz), that is,
two smoothly equivalent germs of pairs of 1-forms have the same number #31. It is therefore
of interest to classify the singularities of the discriminant up to an equivalence that preserve
the leaves of the foliation ω or η.

Recall that the discriminant is the zero fibre of map germ Fω,η : R
3, 0 → R

2, 0, so we
are seeking a classification of the singularities of map-germs R

3, 0 → R
2, 0 under the action

of the subgroup K∗ of the contact group K, where the changes of coordinates in the source
preserve the horizontal planes (i.e., the leaves of η). The changes of coordinates in the source
are in the form (φ1(x, y, z), φ2(x, y, z), φ3(z)). (We observe that the K∗-action preserves the
contact of any germ in m(x, y, z).E(3, 2) with the horizontal planes. Also if Fω,η has a finitely
K∗-determined singularity, then the discriminant is transverse, away from the origin, to the
foliation of dz which is one of the conditions required in Theorem 4.1.)

The group K∗ is a Damon geometric subgroup (see [7]). We give below a classification
of the simple orbits of the action of K∗ on m(x, y, z).E(3, 2). The K∗ tangent space to the
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orbit of F ∈ m(x, y, z).E(3, 2) at F is given by

LK∗(F ) = m(x, y, z).{Fx, Fy} +m(z).{Fz} + F ∗m(u, v).E(3, 2).

A result of Damon [7] states that F is r − K∗-determined if and only if there exists an
integer l such that

mr+1(x, y, z).E(3, 2) ⊂ LK∗(F ) +mr+l+1(x, y, z).E(3, 2).

Observe that if two germs F and G are K∗-equivalent then they are KV -equivalent, so two
K∗-equivalent germs lie in the same KV -orbit. In particular, if a germ F is not KV -simple,
then it is not K∗-simple.

The classification is carried out inductively on the jet level.

The 1-jets.
The same calculation in §5.2 shows that the K∗-orbits at the 1-jet level coincide with the

KV -orbits, i.e., are given by

(x, y), (x, z), (x, 0), (z, 0)(ns) , (0, 0)(ns).

The 1-jet (x, y) is also 1- K∗-determined and is stable.

The 2-jets.
• Suppose that j1F = (x, 0). (The 1-jet (x, z) is a subcase of this one.) We can

write F = (x + h(x, y, z), k(x, y, z)) for some germs of functions h, k with zero 1-jets. A
change of coordinates in the source reduces F to (x, k1(x, y, z)). We can write k1(x, y, z) =
xk2(x, y, z) + g(y, z) and eliminate the term xk2(x, y, z) by changes of coordinates in K∗.
Therefore, any germ with 1-jet (x, 0) is K∗-equivalent to one in the form (x, g(y, z)). We
still denote by K∗ the subgroup of K acting on the set of germs of functions g(y, z) ∈
m(y, z).E(2, 1), with the diffeomorphisms in the source preserving the horizontal lines z = c.
We have the following result.

Proposition 5.4 A map-germ F (x, y, z) = (x, g(y, z)) is r − K∗-determined (resp. simple)
if and only if the function germ g(y, z) is r−K∗-determined (resp. simple). For such finitely
determined germs we have de(F,K

∗) = de(g,K
∗).

Proof We observe that

LK∗(F ) = m(x, y, z).{(1, 0)} + (m(x).E3).{(0, 1)} + {(0, ξ) : ξ ∈ LK∗(g)}.

The result then follows by applying Damon’s determinacy result in [7]. 2

A K∗-classification of germs g(y, z) ∈ m(y, z).E(2, 1) is given in [13]. The simple germs
of this action are those in Table 2, see [13]. (We include in the last column in Table 2 the
invariant #31 mentioned at the beginning of this section. It coincides with the number #31

associated to F (x, y, z) = (x, g(y, z)).) We have therefore the following result.
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Table 2: K∗-simple function-germs R
2, 0 → R, 0.

Normal form g de(g,K
∗) #31

y 0 0
z + yk, k ≥ 2 k − 2 k − 1
y2 + zk, k ≥ 2 k − 1 k
yz + yk, k ≥ 3 k − 1 k
z2 + y3 3 4

Theorem 5.5 A map-germ R
3, 0 → R

2, 0 is K∗-simple if and only if it is KV -simple. So
the K∗-simple germs are also those given in Table 1.

Remark 5.6 (Families of pairs of 1-forms). Let (df, dz) be a pair of germs of regular fo-
liations in R

3, 0 and suppose that the discriminant D(df, dz) has a finitely K∗-determined
singularity. Suppose further that a generic deformation of the pair yields a versal defor-
mation of the discriminant. So only K∗-stable singularities of the discriminant will appear
in the deformation. This means that the discriminant is either transverse to the leaves of
dz or has ordinary contact with one of the leaves. Therefore, the local models that are
present in a generic deformation of the pair are (d(z + x), dz), (d(z − x2 ± y2), dz), and
(d(z − x3 + xz + y2), dz), and these are all smooth local models.
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