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Abstract

We consider projections of a smooth and regular surface M in the Minkowski
3-space R3

1 along lightlike directions to a fixed transverse plane. The lightlike
directions in R3

1 can be parametrised by a circle on the lightcone and the resulting
1-parameter family of projections can be considered as viewingM along a special
“camera motion”. The associated 1-parameter families of contour generators and
apparent contours reveal some aspects of the extrinsic and intrinsic geometry of
M . We characterise geometrically the generic Ae-codimension ≤ 1 singularities
of a given projection and consider their bifurcations in the family of projections.
We show that the families of contour generators and apparent contours are
solutions of certain first order ordinary differential equations and obtain their
generic local configurations.

1 Introduction

We consider in this paper the projections of smooth and regular surfacesM embedded
in the Minkowski 3-space R3

1 along lightlike directions to a fixed transverse plane. The
singularities of projections are affine invariant ([3]) so do not depend on the metric in
R3. Therefore, from the singularity theory point of view, the situation here is identical
to that of surfaces in the Euclidean 3-space. The projections are members of a 1-
parameter family of maps from the surface to a plane. For a generic surface we expect
most projections to have stable singularities of (A) type fold or cusp and isolated
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projections in the family to have singularities of type swallowtails or lips/beaks (§3).
We also expect the family of projections to be anAe-versal unfolding of the swallowtails
and lips/beaks singularities.

We show that the family of projections along the lightlike directions picks up
information about the extrinsic and intrinsic geometry of M . The induced metric on
M may be degenerate at some points on M (this is indeed the case on any closed
surface in R3

1). We label the locus of such points the Locus of Degeneracy (LD). At
a point p ∈ M \ LD, there is a well defined shape operator. For a generic M , there
is a curve (which could be empty) in the Lorentzian part of M which separates M
into a region where at each point the shape operator has two eigenvectors, called the
principal directions, and a region where it has none. This curve is labelled the Lightlike
Principal Locus (LPL) and coincides with points where the unique principal direction
is lightlike ([14]).

The set of critical points of a projection is called a contour generator and its image
under the projection the apparent contour or profile of the projection. The contour
generators of the projections along the lightlike directions are located in the Lorentzian
part ofM and their envelope is precisely the LD ofM (Theorem 4.5). In the language
of computer vision (see for example [10]), the LD is the frontier of the family of
lightlike projections and the closure of the Lorentzian part of M is the visible part
of M under this family of projections or camera motion. Each point pt on the LD
belongs to a single contour generator of a projection Pt. The locus of points Pt(pt),
pt ∈ LD is labeled the image of the LD.

The locus of points where the projections along lightlike directions have a singu-
larity of type cusp or worse (the cusp generator curve, see [4]) is precisely the LPL
of M (§3). The images of such points trace the cusp curve of the apparent contours
in the plane of projections. It turns out that the envelope of the apparent contours is
the union of the image of the LD together with the cusp curve.

Another key result in this paper is that the families of contour generators and of
apparent contours are solutions of certain first order ordinary differential equations
(§4). (This is also valid for projections of surfaces in the Euclidean 3-space along a
given camera motion.) We then use the results in [6, 8, 12] to deduce the generic
local configurations of the families of contour generators and apparent contours. We
observe that the family of apparent contours in the Euclidean space are also studied
in [15] using divergent diagrams.

We recall in §2 some notions of the geometry of surfaces in the Minkowski 3-
space. In §3 we analyse the singularities of the projections and characterise them
geometrically. We obtain in §4 the local configurations of the families of contour
generators and apparent contours.
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2 Preliminaries

The Minkowski space (R3
1, ⟨, ⟩) is the vector space R3 endowed with the metric induced

by the pseudo-scalar product ⟨u,v⟩ = −u0v0 + u1v1 + u2v2, for any vectors u =
(u0, u1, u2) and v = (v0, v1, v2) in R3 (see for example [16], p55). We say that a non-
zero vector u ∈ R3

1 is spacelike if ⟨u,u⟩ > 0, lightlike if ⟨u,u⟩ = 0 and timelike if
⟨u,u⟩ < 0. The norm of a vector u ∈ R3

1 is defined by ∥u∥ =
√
|⟨u,u⟩|.

We have the following pseudo-spheres in R3
1 with centre p ∈ R3

1 and radius r > 0,

H2(p,−r) = {u ∈ R3
1 | ⟨u− p,u− p⟩ = −r2} (2-sheeted hyperboloid),

S2
1(p, r) = {u ∈ R3

1 | ⟨u− p,u− p⟩ = r2} (1-sheeted hyperboloid),
LC∗(p) = {u ∈ R3

1 | ⟨u− p,u− p⟩ = 0} (cone, called light cone).

We denote by H2(−r), S2
1(r) and LC

∗ the pseudo-spheres centred at the origin in
R3

1.
We consider embeddings i : M → R3

1 of a smooth and regular surface M . To
simplify notation, we shall identify i(M) with M and write i(M) = M . The set of
embeddings i is endowed with the Whitney C∞-topology. We say that a property is
generic if it is satisfied in a residual subset of embeddings of M in R3

1.
Let x : U ⊂ R2 → M ⊂ R3

1 be a local parametrisation of M . As our analysis of
the singularities of the projections is local in nature, we shall simplify notation further
and write x(U) =M . Let

E = ⟨xu,xu⟩, F = ⟨xu,xv⟩, G = ⟨xv,xv⟩

denote the coefficients of the first fundamental form of M with respect to x (the
subscripts denote partial derivatives). The integral curves of the lightlike directions
on M are the solution curves of the binary quadratic differential equation (BDE)

Edu2 + 2Fdudv +Gdv2 = 0. (1)

We identify the LD on M and its pre-image in U by x. Then the LD (in U) is
given by

LD = {(u, v) ∈ U | (F 2 − EG)(u, v) = 0}.

The LD is the discriminant curve of the BDE (1) (the discriminant curve of a BDE
is the set of points where the equation determines a unique solution direction). The
LD is also the locus of points where the surface is tangent to a light cone.

For a generic surface, and we shall assume this to be the case in this paper, the LD
is either empty or is a smooth curve that splits the surface locally into a Riemannian
and a Lorentzian region. If the unique lightlike direction at a given point on the LD is
transverse to the LD then the configuration of the lightlike curves is locally smoothly
equivalent to Figure 1 left, i.e., the curves consist of a family of cusps. The unique
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lightlike direction on the LD can be tangent to the LD at isolated points on this
set. We say in this case that the BDE (1) has a singularity. For a generic surface,
the singularities of the BDE (1) are well-folded (see for example [7] for terminology
and [23] for a survey paper on BDEs). This means that, at the singular point, the
configuration of the lightlike curves is locally topologically equivalent to one of the last
three cases in Figure 1.

Figure 1: Stable local topological configurations of the lightlike curves at points on
the LD from left to right: family of cusps, folded saddle, folded node and folded focus.

The following special local parametrisations simplify considerably the calculations
and make the algebraic conditions involved easier to interpret geometrically. (The
proof is standard and is omitted.)

Theorem 2.1 (1) At any point p on the Lorentzian part ofM there is a local parametri-
sation x : U → V ⊂ M of a neighbourhood V of p, such that for any p′ ∈ V , the
coordinate curves through p′ are tangent to the lightlike directions. Equivalently, there
exists a local parametrisation with E ≡ 0 and G ≡ 0 on U .

(2) Let p be a point on the LD of a generic surface M . Then there exists a local
parametrisation x : U → V ⊂ M of a neighbourhood V of p, such that for any
p′ = x(q′) ∈ V ∩ LD, the lightlike directions in Tp′M are parallel to xu(q

′), i.e.,
E = F = 0 on the LD.

Pei [19] defined an RP 2-valued Gauss map on M . This is simply the map PN :
M → RP 2 which associates to a point p = x(q) the projectivisation of the vector
xu × xv(q), where “×” denotes the (Minkowski) vector product in R3

1. Away from
the LD, the RP 2-valued Gauss map can be identified with the de Sitter Gauss map
M → S2

1(1) on the Riemannian part of the surface and with the hyperbolic Gauss map
M → H2(−1) on its Lorentzian part. Both maps are given byN = xu×xv/||xu×xv||.
The map Ap = −dN p : TpM → TpM is a self-adjoint operator on M \LD. We denote
by

l = −⟨Nu,xu⟩ = ⟨N ,xuu⟩,
m = −⟨Nu,xv⟩ = ⟨N ,xuv⟩,
n = −⟨N v,xv⟩ = ⟨N ,xvv⟩

the coefficients of the second fundamental form on M \ LD. When Ap has real eigen-
values, we call them the principal curvatures and their associated eigenvectors the
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principal directions of M at p. (There are always two principal curvatures at each
point on the Riemannian part of M but this is not always true on its Lorentzian
part.) The lines of principal curvature, which are the integral curves of the principal
directions, are solutions of the BDE

(Gm− Fn)dv2 + (Gl − En)dvdu+ (Fl − Em)du2 = 0. (2)

The discriminant of the BDE (2) is labelled the Lightlike Principal Locus (LPL)
in [13, 14].

On the Riemannian part of a generic surface, the LPL consists of isolated points
labelled spacelike umbilic points (these are points where Ap is a multiple of the identity
map). At non spacelike umbilic points, there are always two orthogonal spacelike
principal directions.

On the Lorentzian part of a generic surface, we consider the parametrisation in
Theorem 2.1(1) so the LPL is given by ln = 0. One can deduce from this that the
LPL is either empty or is a smooth curve except at isolated points where it has Morse
singularities of type node. Such points are labelled timelike umbilic points (these are
also points where Ap is a multiple of the identity map). The LPL consists of points
where the principal directions coincide and become lightlike. There are two principal
directions at each point on one side of the LPL and none on the other.

One can extend the lines of principal curvature across the LD as follows ([14]). As
equation (2) is homogeneous in l,m, n, we can multiply these coefficients by ||xu×xv||
and substitute them in the equation by

l̄ = ⟨xu × xv,xuu⟩, m̄ = ⟨xu × xv,xuv⟩, n̄ = ⟨xu × xv,xvv⟩.

This substitution does not alter the pair of foliations on M \ LD. The new equation
is defined on the LD and defines the same pair of foliations associated to the de Sitter
(resp. hyperbolic) Gauss map on the Riemannian (resp. Lorentzian) part of M . The
extended lines of principal curvature are the solution curves of the BDE

(Gm̄− Fn̄)dv2 + (Gl̄ − En̄)dudv + (F l̄ − Em̄)du2 = 0. (3)

We observe that one of the principal directions at a point p on the LD is the unique
lightlike direction and the other is spacelike if p is not also on the LPL.

The Gaussian curvature K and the mean curvature H ofM at p = x(q) ∈M \LD
are defined as

K(q) = det(−dN p) =
ln−m2

EG− F 2
(q)

H(q) = 1
2
trace(−dN p) =

lG− 2mF + nE

2(EG− F 2)
(q).

The parabolic set of M \ LD is defined as the set of points where K(q) = 0, i.e.,
as the set of points x(q) where (ln −m2)(q) = 0. The closure of the parabolic set is
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given by the set of points x(q) with (l̄n̄− m̄2)(q) = 0. (We also call the parabolic set
the set of points in the parameter space where K(q) = 0.)

A direction u ∈ TpM , p ∈M \LD, is said to be asymptotic if ⟨dN p(u),u⟩ = 0. An
asymptotic curve is one whose tangent direction at all points is asymptotic. Asymp-
totic curves are given by the BDE

ndv2 + 2mdvdu+ ldu2 = 0.

These extend across the LD to curves given by the solutions of

n̄dv2 + 2m̄dvdu+ l̄du2 = 0.

Remarks 2.2 Suppose that M is a generic surface. Then, the LD and the LPL can
intersect at isolated points and the two curves meet tangentially at such points. These
points are exactly the folded singularities of the BDE (1) of the lightlike foliations
([14], see Figure 1).

The LPL and the parabolic set can intersect at isolated points on the Lorentzian
part of M and the two curves meet tangentially at such points. The curve H−1(0)
passes through such points and is transverse to both curves.

3 The singularities of the projections

We consider projections in R3
1 along lightlike directions. As the orthogonal plane

to a given lightlike direction contains the direction itself, the concept of orthogonal
projections does not make sense in this case. This is why, given a lightlike direction
v = (v0, v1, v2) ∈ LC∗ (see §2 for definition), we consider the projection along v to a
transverse plane which we fix to be

R2
+ = {(u0, u1, u2) ∈ R3

1 |u0 = 0}.

A point p ∈ R3
1 is then projected to the point

q = p− ⟨p, e0⟩
⟨v, e0⟩

v,

where (e0, e1, e2) denote the canonical basis in R3
1. We have v0 ̸= 0 as the vector v is

lightlike, so we can substitute v by the vector − 1
⟨v,e0⟩v = (1, v1

v0
, v2
v0
) and parametrise

the family of projections along the lightlike directions by

S1
+ = {v = (v0, v1, v2) ∈ LC∗ | v0 = 1}.

We parametrise the circle S1
+ by v(t) = (1, cos(t), sin(t)), t ∈ R. Given a surface

M in R3
1, we denote by P : M × R → R2

+ the family of lightlike projections of M to
R2

+, given by
P (p, t) = p+ ⟨p, e0⟩v(t).
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We denote by P t the map M → R2
+ given by P t(p) = P (p,v(t)). The singular set

(contour generator) of P t is denoted by Σt and its image (the discriminant or apparent
contour) by ∆t = P t(Σt).

It follows from [17] and from the fact that the family of lightlike projections P
on the ambient space R3

1 is a stable map that, for a residual set of embeddings of M
in R3

1, the family P is a generic family of mappings. (The term generic is defined
in terms of transversality to submanifolds of multi-jet spaces; see for example [11].)
This means, in particular, that for any t ∈ R and at any point p on a generic M , the
germ of the projection P t at p (which can be viewed as a map-germ R2, 0→ R2, 0) is
A-equivalent to one of the normal forms in Table 1. (Recall that two map-germs f, g
are A-equivalent if g = k ◦ f ◦h−1, where h, k are germs of diffeomorphisms.) We have
the following geometric characterisations of the singularities of P t.

Table 1: Ae-codimension ≤ 1 local singularities of map-germs R2, 0→ R2, 0 ([20]).

Name Normal form Ae-codimension
Immersion (u, v) 0
Fold (u, v2) 0
Cusp (u, uv + v3) 0
Swallowtail (u, uv + v4) 1
Lips/beaks (u, v3 ± u2v) 1

Theorem 3.1 Let M be a smooth and regular surface in R3
1.

(1) The projection P t is singular at p ∈ M if and only if v ∈ TpM . As a con-
sequence, P t is a local diffeomorphism on the Riemannian part of M ; at a point p
on the Lorentzian part of M there are two directions ti, i = 1, 2 in S1

+ for which P ti

is singular at p; at a point p on the LD there is a unique direction for which P t is
singular at p.

(2) Suppose that p is on the Lorentzian part of M . Then P t has a singularity at p
of type:

(i) cusp if and only if p ∈ LPL, v is the unique principal lightlike direction at p
and v is transverse to the LPL at p,

(ii) swallowtail if and only if p ∈ LPL, v is the unique principal lightlike direction
at p, v is tangent to the LPL at p and the LPL is not inflectional at p,

(iii) lips/beaks singularity if and only if p is on both the LPL and on the parabolic
set of M and the curve H−1(0) is transverse to the LPL at p (see Remark 2.2).

(3) If p ∈ LD but p /∈ LPL (i.e., p is not a folded singularity of the lightlike
curves), then P t has generically a fold singularity at p. Otherwise it has generically a
cusp singularity at p.

Proof (1) It is straightforward to check that P t is singular at p if and only if v(t)
is a tangent vector to M at p and the rest follows from the fact that there are 2/1/0
lightlike directions in TpM if p is in the Lorentzian/LD/Riemannian component of M .

7



(2) We take a local parametrisation x : U → R3
1 of M as in Theorem 2.1(1) and

suppose that
v(t) = αxu(u0, v0), α ̸= 0 (4)

at p0 = x(u0, v0). The LPL is given in this case by (ln)(u, v) = 0 and the branch of
interest is l(u, v) = 0 as the unique principal lightlike direction on this branch is along
xu and is also an asymptotic direction.

It follows from (1) that P t is singular if and only if

g(u, v) = ⟨v(t),N (u, v)⟩ = 0. (5)

(Here we drop the parameter t in g to simplify notation.) The singular set Σt is given
by g−1(0). Dropping the arguments of functions, we have Nu = −m

F
xu − l

F
xv and

N v = − n
F
xu − m

F
xv. Then gu = −αl and gv = −αm. Therefore the critical set Σt is

singular if and only if l = m = 0 at (u0, v0), equivalently, if and only if p is a point
of tangency of the LPL with the parabolic set (Remark 2.2). Using Saji’s recognition
criteria in [21], the singularity of P t at p is of type lips/beaks if and only if g has a
Morse singularity at (u0, v0). This occurs if and only if lumv − lvmu ̸= 0 at (u0, v0),
equivalently, if and only if H−1(0) is transverse to the LPL at p.

Suppose now that Σt is a regular curve parametrised by γ(s) = (u(s), v(s)) with
γ(0) = (u0, v0) and γ

′(0) = (−m, l).
The singularity of P t at p is a fold if and only if d

ds
P t(u(s), v(s))|s=0 ̸= 0 ([24]).

Using (4), we get Pu = xu + ⟨xu, e0⟩v(t) = 0 on Σt, so

dP t

ds
= v′(xv + ⟨xv, e0⟩v(t)) = l(xv + ⟨xv, e0⟩v(t)).

Thus, the singularity is a fold if and only if l ̸= 0 at (u0, v0), equivalently, if and only
if p /∈ LPL. If p ∈ LPL and v(t) is parallel to xu (i.e., v(t) is the unique lightlike
principal direction at p) then Σt is a regular curve if and only if m ̸= 0 at (u0, v0), i.e.,
p is not on the parabolic set of M . Suppose this to be the case. As gv = m ̸= 0, we
can take γ(s) = (s, v(s)). Then the singularity of P t at p is a cusp if and only if

d2P t

ds2
= v′′(xv + ⟨xv, e0⟩v(t))

is not zero at s = 0 ([24]). Now v′′ ̸= 0 if and only if guu ̸= 0, equivalently, if and
only if lu ̸= 0 at (u0, v0). This is precisely the condition for xu to be transverse to
the LPL at p. When lu = 0 at (u0, v0), P

t has a swallowtail singularity if and only if
d3P t

ds3
|s=0 ̸= 0 ([21]). Similar calculations to the above show that this is the case if and

only if luu ̸= 0 at (u0, v0). This is precisely the condition for the LPL (given by l = 0)
to have an ordinary contact with its tangent line at p.

(3) Here we take a local parametrisation of M as in Theorem 2.1(2) and take, as
in (4), v(t) = αxu at p0 = x(u0, v0). Then P

t is singular if and only if

ḡ(u, v) = ⟨v(t),xu × xv(u, v)⟩ = 0. (6)
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(Again, we drop here the parameter t in ḡ to simplify notation.) We have ḡu = −αl̄
and ḡv = −αm̄, so for a generic surface, the critical sets Σt are smooth curves (Σt is
singular at p if and only if p is a point of intersection of the following three curves: the
LD, the LPL and the closure of the parabolic set). Following similar calculations as in
(2), we have a fold singularity at points on the LD unless l̄ = 0 and this occurs exactly
at points of tangency of the LD with the LPL. These points are precisely the folded
singularities of the lightlike curves. At such points, the projection has generically a
cusp singularity. 2

Remark 3.2 Timelike umbilic points may occur at isolated points on the LPL of a
generic surface. If the local parametrisation of the surface is as in Theorem 2.1(1),
then a timelike umbilic point occurs when l = 0 and n = 0, so the LPL has generically
a Morse singularity of type A−

1 . At such points both asymptotic directions are lightlike
and we expect the lightlike projections along these directions to have a cusp singularity
and not worse.

We turn now to the family P . Of course for a generic M , the family P is an
Ae-versal deformation of the codimension 1 singularities of P t0 (which, according to
Theorem 3.1, occur on the Lorentzian part ofM). We give below the precise geometric
conditions for P to be an Ae-versal deformation of the singularities of P t0 . In view of
Remark 3.2, we assume that the point of interest is not a timelike umbilic point.

Theorem 3.3 The family of projections P is a versal unfolding of the swallowtail
singularity of P t0 at p0 ∈ LPL if and only if the LPL is a smooth curve at p0.
The family P is always an Ae-versal deformation of a lips/beaks singularity of P t0 at
p0 ∈ LPL.

Proof We follow the criteria in [18] for recognition of versal deformations of codi-
mension 1 singularities of map-germs from the plane to the plane. (The criteria in
[18] are for map-germs R3, 0 → R2, 0 but these apply to our case too.) Consider the
following sets

Σ1 = {(u, v, t) |P t is singular at (u, v)},
Σ1,1 = {(u, v, t) ∈ Σ1 |P t has a cusp singularity or worse at (u, v)}.

Then the family P is an Ae-versal deformation of the swallowtail singularity of
P t0 at (u0, v0) if and only if Σ1,1 is a smooth curve in Σ1. The set Σ1 is given by
g(u, v, t) = 0 and Σ1,1 by gu(u, v, t) = 0. Consider the map germ H = (g, gu) at
(u0, v0, t0) (so gu = guu = 0 and gt ̸= 0 at (u0, v0, t0)). We have, at (u0, v0, t0),

dH =

(
gu gv gt
guu guv gut

)
=

(
0 gv gt
0 guv gut

)
.
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Also, at (u0, v0, t0),

gut = ⟨v′,Nu⟩
= ⟨v′,−m

F
xu − l

F
xv⟩

= −m
F
⟨v′,xu⟩ (as l = 0)

= 0 (as xu = αv and ⟨v,v⟩ = 0⇒ ⟨v,v′⟩ = 0).

Thus, H is a regular map if and only if guv ̸= 0 at (u0, v0, t0). Equivalently, if and only
if lv ̸= 0 at (u0, v0), that is, if and only if the LPL is a smooth curve (we assumed p0
not to be a timelike umbilic point, so n ̸= 0).

The family P is a versal deformation of a lips/beaks singularity of P t0 if and only
if the family g is a versal deformation of the Morse singularity of gt0 . This is the case
if and only if gt ̸= 0. But this is always true as N is not a lightlike vector. 2

4 The contour generators and apparent contours

By varying t, we obtain a family of contour generators (Σt) in the closure of the
Lorentzian part of M (see Theorem 3.1) and a family of apparent contours (∆t) in
R2

+. We consider in this section the local configurations of these families. The points
of interest are on the LD and on the LPL as shown in Figure 2. We treat points on
the LD, points in the LD ∩ LPL and points on the LPL separately.

Riemannian region

LD

LPL

Parabolic setSwallowtail
singularity

The image of the 
LD is a cusp

Lips/beaks
singularity

Lorentzian region

Figure 2: Special curves and points on the surface picked up by the family of projec-
tions along lightlike directions.

We stack the curves Σt (resp. ∆t) together to form a surface Σ (resp. ∆) in R2×R, 0
(we ignore the metric here). Let S denote Σ or ∆ and let ϕ : R2, 0 → R2 × R, 0 be a
local parametrisation of this surface. Let π : R2 × R, 0→ R2 be the projection to the
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first component and set k = π ◦ ϕ. The curves Σt or ∆t in the parameter space R2, 0
are the fibres of some germ of a function h. To obtain the configuration of the curves
Σt or ∆t in the plane R2, 0, one can consider the divergent mapping diagram (k, h)

(k, h) : R, 0 h←− R2, 0
k−→ R2, 0.

The above diagrams are studied by Dufour in [8]. Two germs (k, h), (k′, h′) of
divergent mapping diagrams are equivalent if the diagram

R, 0 h←− R2, 0
k−→ R2, 0

↓κ1 ↓κ2 ↓κ3

R, 0 h′
←− R2, 0

k′−→ R2, 0

commutes for some germs of diffeomorphisms κi, i = 1, 2, 3.

Theorem 4.1 ([8, 9]) There are six generic types of divergent mapping diagrams and
these are characterised as follows (Figure 3):

(1) k is a diffeomorphism, h is a submersion;
(2) k is a diffeomorphism, h has a Morse singularity;
(3) k has a fold singularity, h restricted to the singular set Sk of k is regular and

(k, h) : R2, 0→ R3, 0 is regular;
(4) k has a fold singularity, h|Sk

has a Morse singularity, and (k, h) is regular;
(5) k has a fold singularity, (k, h) is a cross-cap whose double points is transverse

at 0 to the direction {0} × R in R3;
(6) k has a cusp singularity and (k, h) is regular.

(1) (3)(2)

(4) (5) (6)

Figure 3: The generic types of divergent mapping diagrams.
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Remark 4.2 1. For a generic surface, the configuration in Figure 3(v) occurs neither
in the family of contour generators nor in the family of apparent contours of the
projections along the lightlike directions. Indeed, the generic singularities of P t are
as in Table 1, so Σt cannot have a cusp singularity. As for the apparent contours,
the “camera motion” we consider here is a special one and the cusp generator curve
is the LPL (Theorem 3.1(2)(i)), which is generically not an isolated point when it is
not empty. Therefore, the cusps on the apparent contours cannot occur on an isolated
single apparent contour as in Figure 3(v).

2. For a generic surface, the configuration in Figure 3(vi) does not occur in the
family of contour generators of the projections along the lightlike directions. We show
in Theorem 4.5 that the envelope of contour generators is the LD and this set is a
smooth curve when not empty.

The discriminants ∆t can form a family of cusps and this case is not covered by
the classification of generic divergent mapping diagrams. However, we show that the
curves Σt and ∆t are solutions of certain first order ordinary differential equations, so
we can proceed as in [12].

In [12], the authors studied germs of first order ordinary differential equations (or,
briefly, equations) with independent first integral. An equation is defined to be the
germ of the surface N = F−1(0), with F : PT ∗R2, z → R, 0 a germ of a smooth
function. Here the projectivised cotangent bundle PT ∗R2 of R2 is endowed with the
canonical contact structure given by the 1-form α = dy − pdx. The surface N is
supposed to be smooth in [12], so is locally the image of a germ of an immersion
f : R2, 0→ PT ∗R2, z. The equation is then represented by the germ f .

Let π : PT ∗R2 → R2 be the natural projection. Two germs of immersions (equa-
tions) f : R2, 0 → PT ∗R2, z and f ′ : R2, 0 → PT ∗R2, z′ are said to be equivalent if
there exist germs of diffeomorphisms ψ : R2, 0 → R2, 0 and ϕ : R2, π(z) → R2, π(z′)
such that ϕ̂ ◦ f = f ′ ◦ π, where ϕ̂ : PT ∗R2, z → PT ∗R2, z′ is the lift of ϕ.

Suppose that the equation f has a first integral, that is, there exists a germ of a
submersion µ : R2, 0→ R, 0 such that dµ ∧ f ∗α = 0. As the solutions of the equation
in the plane are the images under π ◦ f of the level sets of µ, it is natural to consider

the divergent mapping diagram R, 0 µ←− R2, 0
π◦f−→ R2, 0. Consider in general a

divergent mapping diagram (g, µ)

R, 0 µ←− R2, 0
g−→ R2, 0

where g is a smooth map germ and µ is a germ of a submersion. The diagram (g, µ)
is called an integral diagram ([12]) if there exists a germ of an immersion f : R2, 0→
PT ∗R2, z such that dµ ∧ f ∗α = 0 and g = π ◦ f . Then (g, µ) is said to be induced by
f . Suppose given two germs of equations f and f ′ with first integrals and with the set
of critical points of π ◦ f and π ◦ f ′ nowhere dense. Then f and f ′ are equivalent as
equations if and only if the diagrams (π◦f, µ) and (π◦f ′, µ′) are equivalent as mapping
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diagrams ([12, Proposition 2.8]). (The “if” part of [12, Proposition 2.8] remains true
if in the definition of f having a first integral one allows µ to have singularities. The
“only if” part holds when µ is a submersion.)

Theorem 4.3 ([12, Theorem B]) An integral diagram of generic type is equivalent to
one of the following integral diagrams (g, µ):

(1) Non-singular: g = (u, v), µ = v.
(2) Regular fold: g = (u2, v), µ = v − 1

3
u3.

(3) Clairaut fold: g = (u, v2), µ = v − 1
2
u.

(4) Regular cusp: g = (u3 + uv, v), µ = 3
4
u4 + 1

2
u2v + β ◦ g,

where β(x, y) is a germ of a smooth function with β(0) = 0 and βy(0) = ±1.
(5) Clairaut cusp: g = (u, v3 + uv), µ = v + β ◦ g,

where β(x, y) is a germ of a smooth function with β(0) = 0.
(6) Mixed fold: g = (u, v3 + uv2), µ = 1

2
v2 + β ◦ g,

where β(x, y) is a germ of a smooth function with β(0) = 0 and βx(0) = 1.
The configurations of the solutions of the associated equations are as shown in

Figure 4, (1)–(6).

The case when the surface N of the equation has a cross-cap singularity is stud-
ied in [6]. The generic model is the Clairaut cross-cap g = (u, 1

4
v2), µ = v − 1

2
u2

([6, Theorem 2.7]); see Figure 4(7).

(1) Non-singular (2) Regular fold (3) Clairaut fold (4) Regular cusp

(5) Clairaut cusp (6) Mixed fold (7) Clairaut cross-cap

Figure 4: Configurations of generic integral diagrams (1)–(6) and of the Clairaut cross-
cap (7).

Remark 4.4 It is worth observing that there are pairs (g, µ) which are generic as
mapping diagrams but not as integral diagrams and vice-versa (compare Figure 3 and
Figure 4).
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4.1 Configurations of Σt and ∆t on the LD

We start with the configurations of the contour generators Σt on M .

Theorem 4.5 (1) The envelope of the family of contour generators Σt is the LD.
(2) At a point of intersection of the LD with the closure of the parabolic set, the

contour generators Σt are solutions of a differential equation with an integral diagram
of type Clairaut cross-cap and their configuration is as in Figure 4(7). Away from
such points, they are solutions of a differential equation with an integral diagram of
type Clauraut fold and their configuration is as in Figure 4(3).

Proof (1) Let x : U → R3
1 be a local parametrisation of M . The contour generators

Σt of P
t are given by

ḡ(u, v, t) = ⟨v(t),xu × xv(u, v)⟩ = 0 (7)

(this is valid at points on the LD as well as at points on the Lorentzian part of M).
The envelope of Σt is given by

D = {(u, v) ∈ U | ∃t ∈ R with ḡ(u, v, t) =
∂ḡ

∂t
(u, v, t) = 0}.

We set xu × xv(u, v) = (a, b, c). Then{
ḡ(u, v, t) = 0

∂ḡ
∂t
(u, v, t) = 0

⇐⇒
{
−a+ b cos(t) + c sin(t) = 0
−b sin(t) + c cos(t) = 0

which implies that xu × xv(u, v) = a(1, cos(t), sin(t)), so

xu × xv = av, a ̸= 0. (8)

That is, xu × xv(u, v) is a lightlike vector and therefore x(u, v) ∈ LD. Conversely, if
p = x(u, v) ∈ LD, xu × xv is a (non-zero) lightlike vector so ⟨xu × xv(u, v), e0⟩ ̸= 0.
We take v(t) = − 1

⟨xu×xv(u,v),e0⟩xu × xv(u, v) and this shows that (u, v) ∈ D.

(2) We define the map f : Σ→ PT ∗(U) = U × P1 by

f(u, v, t) = (u, v, [ḡu(u, v, t) : ḡv(u, v, t)]) ,

where ḡ is as (7). (The surface Σ is smooth for a generic surface M .) The canonical
contact structure on PT ∗(U) is given by the one-form θ = pdu+qdv, where (u, v, [p : q])
are the homogeneous coordinates of PT ∗(U). Since Σ = (ḡ)−1(0), we have d(ḡ)|Σ = 0.
Thus, we have

f ∗θ =

(
∂ḡ

∂u
du+

∂ḡ

∂v
dv

) ∣∣∣Σ =

(
d(ḡ)− ∂ḡ

∂t
dt

) ∣∣∣Σ = −∂ḡ
∂t
dt
∣∣∣Σ. (9)
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The above equation means that f ∗θ ∧ dt|Σ = 0. Here, we remark that the function
µ = t|Σ = πR|Σ, where πR : U × R→ R is the the canonical projection.

We consider points on the LD. We suppose, without loss of generality, that the
point of interest p0 is not a point of tangency of the LD with the LPL and take a
parametrisation of the surface as in Theorem 2.1. Then ḡu = −αl̄ ̸= 0 and ḡu = −αm̄
at p0 (α as in (4)), and the surface Σ can be parametrised by (u(v, t), v, t) for some
germ of a smooth function u(v, t). We take an affine chart in the projective line and
consider f as the map-germ

f(v, t) = (u(v, t), v, ψ(v, t)),

with ψ(v, t) = ḡv
ḡu
(u(v, t), v, t). We have (after dropping the arguments),

fv = (uv, 1, ψv) and fu = (ut, 0, ψt).

As p0 is on the LD, we have ḡ = ḡt = 0 at p0, so it follows from utḡu + ḡt = 0 that
ut = 0. Therefore, f is an immersion at p0 if and only if

ψt =
(utḡvu + ḡvt)ḡu − (utḡuu + ḡut)ḡv

ḡ2u
= 0.

We have,
ḡut = ⟨v′,xuu × xv + xu × xuv⟩,
ḡvt = ⟨v′,xuv × xv + xu × xvv⟩.

As ⟨v,v′⟩ = 0, v′ ∈ Tp0M (and is not a lightlike vector), so v′ = axu+ bxv with b ̸= 0.
Therefore,

ḡut = ⟨axu + bxv,xuu × xv + xu × xuv⟩ = −al̄ − bm̄
and

ḡvt = ⟨axu + bxv,xuv × xv + xu × xvv⟩ = −am̄− bn̄.
It follows that

ḡvtḡu − ḡutḡv = αb(l̄n̄− m̄2).

Therefore, f fails to be an immersion at p0 if and only if p0 is the point of in-
tersection of the LD with the closure of the parabolic set. At such points f(Σ) is
generically a surface with a cross-cap singularity. (The genericity condition depends
on the coefficients of the 3-jet of the parametrisation x.)

The function µ = t|Σ = πR|Σ is given by (v, t)→ t and is clearly a submersion.
We can now apply the results in [6, 12]. Away from the point of intersection of the

LD with the closure of the parabolic set the map f is an immersion. The map-germ
π ◦ f : Σ → R2 is a fold map (ut = 0 and utt = −ḡtt/ḡu = −1/α2l̄ ̸= 0), µ is regular
when restricted to the critical set of π ◦ f and (π ◦ f, µ) is a regular map. Therefore,
(π ◦ f, µ) is equivalent to an integral diagram of type Clairaut fold (Theorem 4.3(3)),
so the configuration of the family of contour generators is as in Figure 4(3).
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At points of intersection of the LD with the closure of the parabolic set, f(Σ) is
a cross-cap. The map-germ π ◦ f is a fold map and the restriction of µ to its critical
set has generically a Morse singularity. Also, (π ◦ f, µ) is a regular map. Therefore,
(π ◦ f, µ) is equivalent to an integral diagram of type Clairaut cross-cap ([6, Theorem
2.7]), so the configuration of the family of contour generators is as in Figure 4(7). 2

Example 4.6 We draw in Figure 5 examples of contour generators at points of the
LD using Maple. We take a surface patch parametrised by (x, x + f(x, y), y), with
f(x, y) = xy + y2 + x3 and (x, y) near the origin. Then the origin is a point on the
LD but not on the closure of the parabolic set and the contour generators are as in
Figure 5, left. We take f(x, y) = x2 + 2xy + y2 + x3 so that the origin is a point of
intersection of the LD with the closure of the parabolic set. The contour generators
are those in Figure 5, right.

Figure 5: Maple generated figures of contour generators at a generic point on the LD
left, and at a point of intersection of the LD with the closure of the parabolic set right.
The envelope (LD) is shown in grey.

We consider now the family of apparent contours. The singularity type of an indi-
vidual apparent contour and the way it changes in the family is well known. What we
seek is the configuration of the family of apparent contours in the plane of projection.
We consider the surface

∆ := {(x, y, t) ∈ R2 × R | (x, y) ∈ ∆t}.

As the family P is an Ae-versal unfolding of the singularities of a given member
P t0 of the family, it follows that the surface ∆ is a regular surface at a fold singularity
of P t0 , a cuspidaledge at a cusp or a lips/beaks singularity of P t0 , and a swallowtail
surface at a swallowtail singularity of P t0 , see Figure 6.

The locus of projections of points on the LD along the unique lightlike tangent
direction at such points is labelled the image of the LD. We define similarly the image
of the LPL, which is the cusp curve.
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Figure 6: The surface ∆ (from left to right) when the projection has respectively a
fold singularity, a cusp or lips/beaks singularity, a swallowtail singularity.

Theorem 4.7 (1) The envelope of the family of contours ∆t is the image of the LD
together with the cusp curve.

(2) The apparent contours are locally the solutions of a differential equation with
an integral diagram of type:

Clairaut fold: at images of generic points on the LD; Figure 4(3).
Clairaut cusp: at images of some isolated points on the LD; Figure 4(5).
Mixed fold: at images of the points of tangency of the LD with the LPL;

Figure 4(6).
Clairaut cross-cap: at images of the points of intersection of the LD with the

closure of the parabolic set; Figure 4(7).

Proof (1) Suppose, without loss of generality, that the critical sets are smooth
curves near a point p ∈ M (i.e., p is not on the closure of the parabolic set). We
can parametrise Σt, again without loss of generality, by (u(v, t), v) and the apparent
contours by

P̃ (v, t) = P (u(v, t), v, t) = x(u(v, t), v)) + ⟨x(u(v, t), v), e0⟩v(t).

A point (v, t) contributes to the envelope of the apparent contours if and only if

∂P̃

∂v
(v, t) ∥ ∂P̃

∂t
(v, t).

This is of course the case at points where the discriminant ∆t are singular (i.e., where
∂P̃
∂v
(v, t) = 0), so the cusp curve is part of the envelope of the apparent contours. We

have
∂P̃

∂v
(v, t) = uv(xu + ⟨xu, e0⟩v) + xv + ⟨xv, e0⟩v

∂P̃

∂t
(v, t) = ut(xu + ⟨xu, e0⟩v) + ⟨x, e0⟩v′
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We also have xu + ⟨xu, e0⟩v = P t
u and xv + ⟨xv, e0⟩v = P t

v and these two vectors

are parallel as (u(v, t), v) ∈ Σt. It follows that ∂P̃
∂v
∥ ∂P̃

∂t
if and only if ⟨x, e0⟩ = 0 or

v′ ∥ xv + ⟨xv, e0⟩v. The condition ⟨x, e0⟩ = 0 can be avoided by moving the plane of
projection away from the surface, so we shall assume that ⟨x, e0⟩ ≠ 0.

If we write xv = (x, y, z), then xv + ⟨xv, e0⟩v = (0, y− x cos(t), z− x sin(t)). Thus
v′ ∥ xv + ⟨xv, e0⟩v if and only if −x + y cos(t) + z sin(t) = 0, that is, if and only if
⟨xv,v⟩ = 0. As xu + ⟨xu, e0⟩v is parallel to xv + ⟨xv, e0⟩v, if ⟨xv,v⟩ = 0 we also get
⟨xu,v⟩ = 0. Therefore ⟨xv,v⟩ = 0 is equivalent to xu × xv being parallel to v, which
is equivalent to p ∈ LD. (Observe that if p ∈ LD then v′ ∥ xv + ⟨xv, e0⟩v.)

(2) We deal with points on the LD \ LPL and points in LD ∩ LPL separately.
We start with the former. At such points, we take a parametrisation of Σ in the form
(u(v, t), v, t) (we have l̄ ̸= 0).

We denote by ξ(v, t) the direction of the intersection of the tangent plane TpM
with R2

+, where p = x(u(v, t), v). The direction ξ(v, t) is a tangent (or is a limiting

tangent) direction to ∆t at P̃ (v, t) (with P̃ as in part (1) of the proof). We have
ξ = λxu + µxv for some λ, µ ∈ R, and as it is also in R2

+, we can take it in the form

ξ = ⟨xv, e0⟩xu − ⟨xu, e0⟩xv.

(Observe that ξ is never zero.) We define the map h : Σ→ PT ∗(U) = U × P1 by

h(v, t) = (P (u(v, t), v), [ξ(v, t)]),

where P (u(v, t), v) = x(u(v, t), v) + ⟨x(u(v, t), v), e0⟩v(t). Then, for t fixed, the image
of the map-germ π ◦ h(−, t) is ∆t.

The map µ = t|Σ is a submersion, and the curves ht(v) = h(v, t) for t fixed are,
by construction, Legendrian curves. We need to check now when h is an immersion.
We write [ξ] = [ξ1 : ξ2] and suppose, without loss of generality, that ξ1 ̸= 0. Then
we take an affine chart and write h(v, t) = (P (u(v, t), v), (ξ2/ξ1)(v, t)). We have, after
dropping the arguments,

hv = (uvPu + Pv, (
ξ2
ξ1
)v) and ht = (utPu + Pt, (

ξ2
ξ1
)t).

At a point p0 on the LD, uvḡu + ḡv = 0, ḡu = −αl̄ and ḡv = −αm̄, so uv = −m̄/l̄.
We also have ut = 0 (see proof of Theorem 4.5).

Differentiating P gives Pu = xu + ⟨xu, e0⟩v = xu + ⟨xu, e0⟩(− 1
⟨xu,e0⟩xu) = 0, and

Pt = ⟨x, e0⟩v′ ̸= 0 (we take ⟨x, e0⟩ ̸= 0). Differentiating ξ with respect to t yields

ξt = ⟨utxuv, e0⟩xu + ⟨xv, e0⟩(utxuu)− ⟨utxuu, e0⟩xv − ⟨xu, e0⟩(utxuv),

and this is the zero vector at p0 as ut = 0, so (ξ2/ξ1)t = 0 at p0. Therefore, at p0,

hv = (Pv, (
ξ2
ξ1
)v) and ht = (Pt, 0).
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The vectors Pt and Pv are parallel at p0, so h is an immersion if and only if
(ξ2/ξ1)v ̸= 0. We have (ξ2/ξ1)v = 0 if and only if (ξ2)vξ1 − (ξ1)vξ2 = 0, that is, if and
only if

⟨ξv, ξ⊥⟩ = 0,

where ξ⊥ is an orthogonal vector to ξ in R2
+. It is not difficult to show that the vector

v−e0 is an orthogonal vector to ξ in R2
+. Thus, h fails to be an immersion if and only

if ⟨ξv,v − e0⟩ = 0. We have,

ξv = ⟨uvxuv + xvv, e0⟩xu + ⟨xv, e0⟩(uvxuu + xuv)
−⟨uvxuu + xuv, e0⟩xv − ⟨xu, e0⟩(uvxuv + xvv).

As v = αxu, ⟨xu,xu⟩ = ⟨xu,xv⟩ = 0 and xu = γxu × xv on the LD (αγ ̸= 0),

⟨ξv,v − e0⟩ = α⟨xv, e0⟩(uv⟨xuv,xu⟩+ ⟨xuv,xu⟩)
−α⟨xu, e0⟩(uv⟨xuv,xu⟩+ ⟨xvv,xu⟩)
−uv⟨xuv, e0⟩⟨xu, e0⟩ − ⟨xvv, e0⟩⟨xu, e0⟩
−uv⟨xuu, e0⟩⟨xv, e0⟩ − ⟨xuv, e0⟩⟨xv, e0⟩
+uv⟨xuu, e0⟩⟨xv, e0⟩+ ⟨xuv, e0⟩⟨xv, e0⟩
+uv⟨xuv, e0⟩⟨xu, e0⟩+ ⟨xvv, e0⟩⟨xu, e0⟩

= −α⟨xu, e0⟩(uv⟨xuv,xu⟩+ ⟨xvv,xu⟩)
+α⟨xv, e0⟩(uv⟨xuv,xu⟩+ ⟨xuv,xu⟩)

= −αγ⟨xu, e0⟩(− m̄
l̄
m̄+ n̄) + αγ⟨xv, e0⟩(− m̄

l̄
l̄ + m̄)

= −αγ
l̄
⟨xu, e0⟩(l̄n̄− m̄2).

It follows that h fails to be an immersion at precisely the points of intersection
of the LD with the closure of the parabolic set. At such points, the image of h is
generically a surface with a cross-cap singularity. (The genericity condition depends
on the coefficients of the 3-jet of the parametrisation x.)

The function µ = t|Σ is given by (v, t)→ t and is clearly a submersion.
We consider the projection π ◦ h = P̃ . Away from the LPL, its critical set is the

set of points (v, t) such that x(u(v, t), v) ∈ LD and xu(u(v, t), v) ∥ v(t). This is the
projection of the inverse image of H = (ḡ, ḡt) : R3, 0 → R2, 0 to the (v, t) plane. The
map H is regular as ḡuḡtt ̸= 0, so H−1(0) is a smooth curve which can be parametrised
in the form (u(v), v, t(v)). Following standard calculations, we find that

u′ = −m̄
l̄

and t′ = −m̄
2 − l̄n̄
l̄β2

where we set xu × xv = βxu. The tangent direction to the discriminant curve
δ(v) = (π ◦ h)(v, t(v)) of the map-germ π ◦ h (which is the image of the LD) is
along δ′(t) = P̃v(v, t(v))+ t′(v)P̃t(v, t(v)) = (λ+ t′(v)⟨x, e0⟩)v′(t(v)), where λ satisfies
xv + ⟨xv, e0⟩v = λv′ (so λ = ⟨xv,v

′⟩ and is distinct from zero). This is the zero
direction if and only if λ + t′(v)⟨x, e0⟩ = 0. This can occur at isolated points on the
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LD, and these points are distinct from the points of intersection of the LD with the
closure of the parabolic set. At such points the projection π ◦ h has generically a cusp
singularity and the map (π ◦ h, µ) is a regular map. Therefore, (π ◦ h, µ) is equivalent
to an integral diagram of type Clairaut cusp (Theorem 4.3(5)) and the configuration
of the family of apparent contours is as in Figure 4(5).

Suppose now that the image of the LD is not singular. The map h is an immersion
and π ◦h has fold singularities at points on the LD which are not in the closure of the
parabolic set. Thus, (π ◦ h, µ) is equivalent to an integral diagram of type Clairaut
fold (Theorem 4.3(3)) and the configuration of the family of apparent contours is as in
Figure 4(3). At points of intersection of the LD with the closure of the parabolic set,
h(Σ) is a surface with a cross-cap singularity. The map-germ π ◦ h is a fold map and
the restriction of µ to its singular set has a Morse singularity. Therefore, (π ◦ h, µ) is
equivalent to an integral diagram of type Clairaut cross-cap ([6, Theorem 2.7]), so the
configuration of the apparent contours is as in Figure 4(7).

We consider now points on the LD ∩ LPL and proceed as in the previous case.
However, here l̄ = 0 so we take a parametrisation of Σ in the form (u, v(u, t), t). The
map h : Σ→ PT ∗(U) = U × P1 is now given by

h(u, t) = (P (u, v(u, t)), [ξ(u, t)]).

The function µ = t|Σ is a submersion and the curves ht(u) = h(u, t) for t fixed
are, by construction, Legendrian curves. We need to check when h is an immersion.
Differentiating as above in an affine chart, we get

hu = (Pu + vuPv, (
ξ2
ξ1
)u) and ht = (Pt + vtPv, (

ξ2
ξ1
)t).

At a point p0 in LPL ∩ LD, ḡu + vuḡv = 0, and ḡu = −αl̄ = 0 (point on the LPL),
so vu = 0. Similarly, ḡt + vtḡv = 0, and ḡt = 0 (point on the LD), so vt = 0. Also, we
have Pu = xu + ⟨xu, e0⟩v = 0 and Pt = ⟨x, e0⟩v′ ̸= 0 (we take ⟨x, e0⟩ ̸= 0), so

hu = (0, 0, (
ξ2
ξ1
)u) and ht = (Pt, (

ξ2
ξ1
)t).

These two vectors are linearly dependent at p0 if and only if (ξ2/ξ1)u = 0 at p0, that
is, if and only if ⟨ξu,v − e0⟩ = 0 (see argument above). We have vu = 0 at p0, so

ξu = ⟨xuv + xvvvu, e0⟩xu + ⟨xv, e0⟩(xuu + vuxuv)
−⟨xuu + vuxuv, e0⟩xv − ⟨xu, e0⟩(xuv + vuxvv)

= ⟨xuv, e0⟩xu + ⟨xv, e0⟩xuu − ⟨xuu, e0⟩xv − ⟨xu, e0⟩xuv.
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Thus,
⟨ξu,v − e0⟩ = ⟨xv, e0⟩⟨xuu,v⟩ − ⟨xu, e0⟩⟨xuv,v⟩

−⟨xuv, e0⟩⟨xu, e0⟩ − ⟨xv, e0⟩⟨xuu, e0⟩
+⟨xuu, e0⟩⟨xv, e0⟩+ ⟨xu, e0⟩⟨xuv, e0⟩

= α⟨xv, e0⟩⟨xuu,xu⟩ − α⟨xu, e0⟩⟨xuv,xu⟩
= αγ⟨xv, e0⟩l̄ − αγm̄⟨xu, e0⟩
= −αγm̄⟨xu, e0⟩,

where, as before, v = αxu and xu = γxu × xv (with αγ ̸= 0). For a generic surface,
the point p0 ∈ LD ∩ LPL is not in the closure of the parabolic set, i.e., m̄ ̸= 0,
so the above expression is not zero. Therefore, h is an immersion. The image of
(π ◦ h, µ)(u, t) = (P (u, v(u, t), t), t) is ∆ which is a cuspidal edge. The singular set
of the map-germ π ◦ h consists of the singular set of ∆ together with another curve
meeting it transversally (so the singular set has an A−

1 -singularity). The fibre of µ
at p0 is tangent to the singular set of ∆. It is not hard to show that these are the
geometric criteria for (π ◦ h, µ) to be equivalent to an integral diagram of type mixed
fold (Theorem 4.3(6)), so the configuration of the apparent contours is as in Figure
4(7). 2

Example 4.8 We use Maple to draw a family of apparent contours at p0 ∈ LD∩LPL.
We proceed as in Example 4.6 and take f(x, y) = xy+x3+x4. The contour generators
and the apparent contours are drawn in Figure 7.

Figure 7: Maple generated figures of the contour generators left and of the apparent
contours right at a point of intersection of the LD (in grey) with the LPL (in thick
black). The cusp curve and the image of the LD are omitted in the figure on the right
to make the apparent contours more visible.
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4.2 Configurations of Σt and ∆t at points on the LPL

We start with the configurations of the contour generators Σt at points on the LPL
(and away from the LD).

Theorem 4.9 The contour generators are solutions of a first order ordinary differ-
ential equation at points on the LPL. The associated integral diagram is of type
Non-singular if the point is not parabolic; Figure 4(1)). If the point is parabolic, the
associated integral diagram is not generic as an integral diagram but is generic as a
divergent mapping diagram and has the type (2) of Theorem 4.1 (Figure 3(2)).

Proof We follow the proof of Theorem 4.5(2). Here we can consider the function g in
(5) instead of ḡ as the point p0 in consideration is in the Lorentzian part of the surface.
We have gt ̸= 0 at p0, so we can parametrise Σ locally in the form (u, v, ψ(u, v)). Then
the map-germ f : Σ→ U × P1 is given by

f(u, v) = (u, v, [gu(u, v, ψ(u, v)) : gv(u, v, ψ(u, v))]) ,

and clearly π ◦ f is a submersion. The map-germ µ = t|Σ is ψ(u, v). The point p0
is on the LPL, so l = 0, that is ψu = 0 at p0. We have ψv = 0 at p0 if and only if
m = 0 at p0, equivalently, if and only if p0 is a parabolic point. Therefore, if p0 is not
a parabolic point, ψ is a submersion so the integral diagram is of type Non-singular
(Theorem 4.3(1)) and the configuration of the contour generators is as in Figure 3(1).
(This is also the configuration at a swallowtail singularity of the projection. At such
points the LPL is tangent the contour generator at p0, Theorem 3.1(2(ii)).)

For a generic surface, the map µ = ψ has a Morse singularity at a parabolic point
(this is a necessary and sufficient condition for the projection to have a lips/beaks
singularity). Thus, the diagram (π◦f, µ) is equivalent as a divergent mapping diagram
to the case (2) of Theorem 4.1. The configurations of the contour generators are as
in Figure 3(2). We have the closed loops configuration at the lips singularity of the
projection P and the other configuration at the beaks singularities. As µ is not a
submersion, (π ◦ f, µ) is not generic as an integral diagram. 2

We consider now the configurations of the family of apparent contours at points
on the image of the LPL.

Theorem 4.10 At the image of a point p0 on the LPL, the apparent contours are
solutions of a differential equation with an integral diagram of type

Regular fold: if the lightilke projection has cusp singularity at p0 (Figure 4(2)).
Regular cusp: if the lightilke projection has swallowtail singularity at p0. Both in-

stances of Figure 4(4) occur.

If the lightilke projection has a lips/beaks singularity at p0, the integral diagram of
the differential equation is neither generic as an integral diagram nor as a divergent
mapping diagram. The configurations of the apparent contours are as in Figure 9.
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Proof We follow the same steps of the proof of Theorem 4.7(2) and parametrise
Σ locally in the form (u, v, ϕ(u, v)) (as in the proof of Theorem 4.9 above). Then
h : Σ → U × P1 is given by h(u, v) = (P (u, v, ψ(u, v)), [ξ(u, v)]) and is locally an
immersion (the arguments are similar to those in the proof of Theorem 4.7(2)).

Away from the parabolic and swallowtail points, the map π ◦ h is a fold map and
the function µ = ψ(u, v) is a submersion, so (π ◦ h, µ) is equivalent to an integral
diagram of type regular fold (Theorem 4.3(2)) and the configuration of the apparent
contours is as in Figure 4(2).

At a swallowtail singularity of the projection, π◦h is a cusp map and µ = ψ(u, v) is a
submersion (p0 is not a parabolic point). Therefore, (π◦h, µ) is equivalent to an integral
diagram of type regular cusp (Theorem 4.3(4)). We have two possible configurations of
the apparent contours in Figure 4(4) (determined by the sign βy(0) = ±1 in Theorem
4.3(4)). It is shown in [22] that the two configurations are determined geometrically
by what is here the cusp curve and of the apparent contour ∆t0 which passes through
the cusp of the cusp curve. The configuration is as in Figure 4(4), left, if the cusp
curve and ∆t0 are in the same semi-plane delimited by the limiting tangent line to ∆t0

and as in Figure 4(4), right, if they are in different semi-planes.
We take a local parametrisation of the surface M as in Theorem 2.1 (1). We have

g(u, v) = ⟨v(t0),N (u, v)⟩, and we take l = lu = 0 and luu ̸= 0 at (u0, v0), with p0 =
x(u0, v0). Thus, the critical set Σt0 can be parametrised by (u, v1(u)) with v

′
1(u0) = 0.

Now ∆t0(u) = x(u, v1(u)) + ⟨x(u, v1(u)), e0⟩v(t0). We know that this curve has a
singularity A-equivalent to (u3, u4). At (u0, v0), we have ∆

′′′
t0
= v′′′1 (xv + ⟨xv, e0⟩v(t0))

and ∆
(4)
t0 = v

(4)
1 (xv + ⟨xv, e0⟩v(t0)) + v′′′1 (xuv + ⟨xuv, e0⟩v(t0)).

We also have xuv + ⟨xuv, e0⟩v(t0) = m(N + ⟨N , e0⟩v(t0)) at (u0, v0). We set

w1 = xv(u0, v0) + ⟨xv(u0, v0), e0⟩v(t0)
w2 = N (u0, v0) + ⟨N (u0, v0), e0⟩v(t0)

as the basis of a new coordinate system in the plane of projection. Then

∆t0(u) = ( 1
3!
v′′′1 (u0)(u− u0)3 + 1

4!
v
(4)
1 (u0)(u− u0)4 + h.o.t)w1

+m(u0, v0)(
3
4!
v′′′1 (u0)(u− u0)4 + h.o.t)w2.

A short calculation shows that v′′′1 (u0) = −(luu/lv)(u0, v0), so the position of the curve
∆t0 with respect to the w1-axis (which is along its limiting tangent direction) is de-
termined by the sign of

−mluu
lv

(u0, v0). (10)

We turn now to the image of the LPL (the cusp curve). The LPL is the projection
to the (u, v)-plane of the set of points (u, v, t) such that g = gu = 0. The solution of
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this system of equations form a smooth curve (u, v2(u), t(u)) in R3. The cusp curve is
then parametrised by

γ(t) = x(u, v2(u)) + ⟨x(u, v2(u)), e0⟩v(t(u)).

We have γ′(u0) = 0 so γ(u) = 1
2!
γ′′(u0)(u− u0)2 + 1

3!
γ′′′(u0)(u− u0)3 + h.o.t with

γ′′(u0) = v′′2(u0)w1 + t′′(u0)⟨x(u0, v0), e0⟩v′(t0).

We are seeking the position of γ with respect to the w1-axis. This is determined
by the position of the vector γ′′(u0) with respect to the w1-axis, which in turn is
determined by the sign of ⟨γ′′(u0),w2 − (⟨w2,w1⟩/⟨w1,w1⟩)w1⟩.

We have

v′′2(u0) = −
luu
lv

(u0, v0) and t
′′(u0) = −

lv(u0, v0)v
′′
2(u0)

⟨x(u0, v0), e0⟩⟨N (u0, v0),v′(t0)⟩
,

so the sign we are seeking is the same as that of

− luu
lv

(
⟨N , e0⟩
⟨xu, e0⟩

F − (1− ⟨N , e0⟩⟨xv,v
′⟩

⟨N ,v′⟩⟨xv, e0⟩
)lv

)
(11)

evaluated at (u0, v0). Clearly, the product of the expression in (10) with that in (11)
can have positive or negative sign, so both configurations in Figure 4(4) can occur.
(See Example 4.11 for a Maple plot of examples of these configurations.)

At a lips/beaks singularity of the projection, the image of (π ◦ h, µ) is ∆ so is
cuspidal-edge (in particular, Theorem 4.1 does not apply to this case). The function
µ = ψ(u, v) has a Morse singularity (not a submersion, in particular, Theorem 4.3 does
not apply to this case). Here, we have sections of the cuspidal edge by the smooth
fibres of µ, with µ restricted to the singular set of the cuspidal edge having a Morse
singularity. This is studied in [2], and we get the usual lips and beaks transitions. But
we need to consider the projections of the sections to the plane and find how these are
stacked together. We proceed as follows.

The apparent contours are the images of the level sets of µ = ψ(u, v) by the map-
germ

P̃ (u, v) = P (u, v, ψ(u, v)) = x(u, v) + ⟨x(u, v), e0⟩v(ψ(u, v))
We have P̃u = ψu⟨x, e0⟩v′ and P̃v = xv + ⟨xv, e0⟩v+ψv⟨x(u, v), e0⟩v′, so the map

P̃ is singular if and only if ψu = 0, that is, if and only if gu = 0 (equivalently, if and
only if x(u, v) ∈ LPL). The LPL is a smooth curve and can be parametrised in the
form (u(v), v). The vector P̃v is not zero along the LPL, so the map P̃ is a fold map.
Observe that the critical sets of the projections P t are tangent to the kernel of the
map P̃ .

The problem of the configuration of the images of the level sets of ψ by the map P̃
can then be formulated as follows. We take σ(u, v) = (u, v2) as a model of a fold map
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with the axis v = 0 as the set of its fixed points. We then classify germs of functions
f : R2, 0 → R, 0 up changes of coordinates in the source that preserve the involution
σ and any changes of coordinates in the target. These changes of coordinate form the
group AZ2 = RZ2 × L which acts on the set of germs f . The germs of functions f of
interests are those of submersions or of Morse functions. Also, we want the regular
fibres of f to have vertical tangents along the fixed set of the involution σ, so we can
write f(u, v) = v2h(u, v) for some germ of a smooth function h.

Using the standard classification techniques from singularity theory (see for ex-
ample [1]), we find that the AZ2-finitely determined germs of interest are u + v3 and
u2 ± v2 + v3. Applying the involution σ to the fibres of u2 ± v2 + v3 gives the model
of the configurations of the apparent contours at a lips/beaks singularity, Figure 9.
(Observe that in Figure 9 there is a segment of a curve where the apparent contours
are tangential. The configurations in Figure 9 are distinct from those of the folded
saddle and focus in Figure 1.) Applying the involution σ to the fibres of u + v3 gives
a family of cusps which is the model at images of points on the LPL which are not
swallowtail or lips/beaks singularities of the projection. 2

Example 4.11 Consider a surface parametrised in the form (1+x−y, x+y, f(x, y)),
with (x, y) near the origin. We take f(x, y) = y2 + x3 + xy2 for the case of the
lips singularity and f(x, y) = y2 + x3 − xy2 for the beaks (see Figure 9). For the
swallowtail singularity we take f(x, y) = xy+y2+x2y+x4 for case 1; Figure 8, center,
and f(x, y) = xy + y2 − x2y − x4 for case 2; Figure 8, right.

Figure 8: Maple generated figures of ontour generators and apparent contours at a
swallowtail singularity. The cusp curve is omitted in the last two figures to make the
apparent contours more visible.
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