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Projections of timelike surfaces in the de Sitter space

Shyuichi Izumiya and Farid Tari

Abstract

We study in this paper projections of embedded timelike hypersurfaces M in Sn
1 along geodesics.

We deal in more details with the case of surfaces in S3
1 , characterise geometrically the singularities

of the projections and prove duality results analogous to those of Shcherbak for central
projections of surfaces in RP 3.

1. Introduction

We study in this paper the contact of timelike hypersurfaces in the de Sitter space Sn1
with geodesics. The contact is measured by the singularities of projections along geodesics to
transverse sets. There are three types of geodesics in Sn1 , spacelike, timelike and lightlike ([13]).
In the case of spacelike and timelike geodesics we project, respectively, to orthogonal hyperbolic
and elliptic de Sitter hyperquadrics. For a lightlike geodesic, we project to a transverse space
as the orthogonal space contains the geodesic. We give in section 3 the expressions for the
families of projections along the three types of geodesics.

Given a point p on a timelike hypersurface M ⊂ Sn1 , there is a well defined unit normal
vector e(p) ∈ Sn1 to M at p; see [4] and section 2. If M is orientable, then e(p) is globally
defined. However, it is always locally defined and our investigation here is local in nature. We
have the (de Sitter) Gauss map

E : M → Sn1
p 7→ e(p)

with the property that its differential map (the Weingarten map)−dEp is a self-adjoint operator
on TpM ([4]). As M is timelike, the restriction of the pseudo-scalar product in the Minkowski
space to TpM is also a pseudo scalar product. Therefore, −dEp does not always have real
eigenvalues. When these are real, we call the associated eigenvectors the principal directions
of M at p. For timelike surfaces in S3

1 there is a curve, labelled the lightlike principal locus in
[7, 10] (LPL for short), that separates regions on M where there are two distinct principal
directions and regions where there are none. On the LPL there is a unique double principal
direction. One can also define the concept of an asymptotic direction on a surface M in Sn1 .
We say that v ∈ TpM is an asymptotic direction at p ∈M if 〈dEp(v), v〉 = 0, see section 2 for
details.

We show in section 4 that the singularities of the projections of surfaces in S3
1 along the three

types of geodesics capture some aspects of the extrinsic geometry of the surface related to the
Gauss map E. Indeed, the singularity at p ∈M of a given projection is of type cusp or worse
if and only if the tangent to the geodesic at p is an asymptotic direction (Theorems 4.2 and
4.3). We characterise geometrically in section 4 all the generic singularities of the projections
along geodesics. For instance the LPL is picked up as the locus of points where the projections
along the lightlike geodesics have singularities of type cusp. The projections also pick up special
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points on the LPL (Theorem 4.3), namely the singular points of the configuration of the lines
of principal curvature.

The first author introduced duality concepts between hypersurfaces in the pseudo spheres
in the Minkowski space [4, 5]; see section 6 for details. We use these concepts to prove in
section 5 duality results between some surfaces associated to a timelike surface M ⊂ S3

1 and
special curves on the dual surface M∗ of M . The results are analogous to those of Shcherbak
in [16] for central projections of surfaces in RP 3, and to those of Bruce-Romero Fuster in [2]
for orthogonal projections of surfaces in the Euclidean space R3.

The work in this paper is part of a project on projections of submanifolds embedded in the
pseudo-spheres in the Minkowski space Rn1 via singularity theory. We dealt in [8] with the
contact of (hyper)surfaces with geodesics in the hyperbolic space (see also [11]) and in [9] with
their contact with horocycles.

2. Preliminaries

We start by recalling some basic concepts in hyperbolic geometry (see for example [14]
for details). The Minkowski (n+ 1)-space (Rn+1

1 , 〈, 〉) is the (n+ 1)-dimensional vector space
Rn+1 endowed by the pseudo scalar product 〈x,y〉 = −x0y0 +

∑n
i=1 xiyi, for x = (x0, . . . , xn)

and y = (y0, . . . , yn) in Rn+1
1 . We say that a vector x in Rn+1

1 \ {0} is spacelike, lightlike or
timelike if 〈x,x〉 > 0, = 0 or < 0 respectively. The norm of a vector x ∈ Rn+1

1 is defined by
‖x‖ =

√
|〈x,x〉|. Given a vector v ∈ Rn+1

1 and a real number c, a hyperplane with pseudo
normal v is defined by

HP (v, c) = {x ∈ Rn+1
1 | 〈x, v〉 = c}.

We say that HP (v, c) is a spacelike, timelike or lightlike hyperplane if v is timelike, spacelike
or lightlike respectively. We have the following three types of pseudo-spheres in Rn+1

1 :

Hyperbolic n-space : Hn(−1) = {x ∈ Rn+1
1 | 〈x,x〉 = −1},

de Sitter n-space : Sn1 = {x ∈ Rn+1
1 | 〈x,x〉 = 1},

(open) lightcone : LC∗ = {x ∈ Rn+1
1 \ {0} | 〈x,x〉 = 0}.

We also define the lightcone (n− 1)-sphere

Sn−1
+ = {x = (x0, . . . , xn) | 〈x,x〉 = 0, x0 = 1}.

A hypersurface given by the intersection of Sn1 with a spacelike (resp. timelike) hyperplane
is called an elliptic hyperquadric (resp. hyperbolic hyperquadric).

A smooth embedded hypersurface M in Sn1 is said to be timelike if its tangent space TpM at
any point p ∈M is a timelike vector space. Some aspects of the extrinsic geometry of timelike
hypersurfaces in Sn1 are studied in [4, 7, 10].

Let M be a timelike hypersurface embedded in Sn1 . Given a local chart i : U →M , where
U is an open subset of Rn−1, we denote by x : U → Sn1 such embedding, identify x(U) with
U through the embedding x and write M = x(U). Since 〈x,x〉 ≡ 1, we have 〈xui

,x〉 ≡ 0, for
i = 1, . . . , n− 1, where u = (u1, . . . , un−1) ∈ U. We define the spacelike unit normal vector e(u)
to M at x(u) by

e(u) =
x(u) ∧ xu1(u) ∧ . . . ∧ xun−1(u)
‖x(u) ∧ xu1(u) ∧ . . . ∧ xun−1(u)‖

,

where ∧ denotes the wedge product of n vectors in Rn+1
1 (see for example [14]). The de Sitter

Gauss map is defined in [4] by

E : M → Sn1
p 7→ e(p)
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At any p ∈M and v ∈ TpM, one can show that DvE ∈ TpM, where Dv denotes the covariant
derivative with respect to the tangent vector v. The linear transformation Ap = −dE(p) is called
the de Sitter shape operator. Because the surface M is timelike, the restriction of the pseudo
scalar product in Rn1 to M is a pseudo scalar product. Therefore, the shape operator Ap does
not always have real eigenvalues. When these are real, we call them the principal curvatures
of M at p and the corresponding eigenvectors are called the principal directions.

We now review some concepts of the extrinsic geometry of embedded timelike surfaces M
in S3

1 (so n = 3 above). We denote by (u, v) the coordinates in U ⊂ R2. The first fundamental
form of the surface M at a point p is the quadratic form Ip : TpM → R given by Ip(v) = 〈v, v〉 .
If v = axu + bxv ∈ TpM , then Ip(v) = Ea2 + 2Fab+Gb2, where

E = 〈xu,xu〉 , F = 〈xu,xv〉 , G = 〈xv,xv〉 .

are the coefficients of the first fundamental form. Because M is timelike, we have EG− F 2 < 0,
so at any point p ∈ x(U) ⊂M there are two lightlike directions in TpM . These are the solutions
of Ip(v) = 0.

The second fundamental form of the surface M at the point p is the quadratic form IIp :
TpM → R given by IIp(v) = 〈Ap(v), v〉 , with Ap = −dE(p). For v = axu + bxv ∈ TpM , we have
IIp(v) = la2 + 2mab+ nb2, where

l = −〈eu,xu〉 = 〈e,xuu〉
m = −〈eu,xv〉 = 〈e,xuv〉 = 〈e,xvu〉 = −〈ev,xu〉
n = −〈ev,xv〉 = 〈e,xvv〉

The shape operator A determines pairs of foliations on M ([10]). A line of principal curvature
is a curve on the surface whose tangent at all points is a principal direction. These form a pair
of foliation in some region of M , given by the following binary differential equation

(Gm− Fn)dv2 + (Gl − En)dvdu+ (Fl − Em)du2 = 0. (2.1)

The discriminant function of this equation is

δ(u, v) =
(
(Gl − En)2 − 4(Gm− Fn)(Fl − Em)

)
(u, v). (2.2)

When δ(u, v) > 0, there are two distinct principal directions at p = x(u, v). These coincide at
points where δ(u, v) = 0. There are no principal directions at points where δ(u, v) < 0. We
labelled in [7, 10] the locus of points where δ(u, v) = 0 the Lightlike Principal Locus (LPL for
short).

Proposition 2.1. ([7, 10]) (1) For a generic timelike surface M ∈ S3
1 , the LPL is a curve

which is smooth except at isolated points where it has Morse singularities of type node. The
singular points are where the shape operator is a multiple of the identity, and are labelled
“timelike umbilic points”. The LPL is also the set of points on M where the two principal
directions coincide and become lightlike.

(2) The LPL divides the surfaces into two regions. In one of them there are no principal
directions and in the other there are two distinct principal directions at each point. In the
latter case, the principal directions are orthogonal and one is spacelike while the other is
timelike.

We also have the concept of asymptotic directions. A direction v ∈ TpM is called asymptotic
if IIp(v) = 〈Ap(v), v〉 = 0 ([10]). An asymptotic curve is a curve on the surface whose tangent
at all points is an asymptotic direction. The equation of the asymptotic curves is

ndv2 + 2mdudv + ldu2 = 0. (2.3)
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The discriminant of equation (2.3) is the locus of points where m2 − nl vanishes. This is the
set of points where the Gauss-Kronecker curvature K = det(Ap) = (m2 − nl)/(F 2 − EG) = 0
vanishes, and is labelled the (de Sitter) parabolic set. The parabolic set of a generic surface,
when not empty, is a smooth curve. It meets the LPL at isolated points and the two curves
are tangential at their points of intersection ([10]). In the region K > 0 there are two distinct
asymptotic directions and there are no asymptotic directions in the region K < 0. On the
parabolic set K = 0 there is a unique asymptotic direction. This direction is tangent to the
parabolic set when it is lightlike and this occurs at the point of tangency of the parabolic set
with the LPL. These points are the folded singularities of the asymptotic curves ([10]). On
one side of such points, the unique asymptotic direction is spacelike and on the other side
it is timelike ([10]). (On the LPL one of the asymptotic directions is lightlike and coincides
with the unique principal direction there. The generic local topological configurations of the
principal and asymptotic curves are studied in [10].)

Let γ : I →M ⊂ S3
1 be a regular curve on a timelike surface M . We can parametrise γ by

arc-length and assume that γ(s) is unit speed, that is, 〈γ′(s), γ′(s)〉 = ±1. Let t(s) = γ′(s) and
w(s) = γ(s) ∧ t(s) ∧ e(s), where e(s) = e(γ(s)). The acceleration vector γ′′(s) is written, in the
frame {γ(s), t(s), e(s), w(s)}, in the form

γ′′(s) = ∓γ(s) + κn(s)e(s) + κg(s)w(s)

where κg(s) is the geodesic curvature of γ on M at γ(s). When the curve γ is not parametrised

by arc length, we re-parametrise by arc-length l(s) =
∫s
0

||γ′(t)||dt and the formula for the

curvature is

κg(t) =
1

l′(t)3
〈l′(t)γ′′(t)− l′′(t)γ′(t), w(t)〉 .

A unit speed curve γ is geodesic on M if and only if κg ≡ 0. A point γ(s) is called a geodesic
inflection if κg(s) = 0.

Definition 1. The flecnodal curve of a timelike surface in S3
1 is the locus of geodesic

inflections of the of the asymptotic curves.

3. The family of projections along geodesics in Sn1

We exhibit in this section the expressions for the family of projections along geodesics in Sn1
for n ≥ 3 and deal in more details with the case n = 3 in the following section. We start with
projections along timelike geodesics.

Let HP (v, 0) ∩ Sn1 , v ∈ Hn(−1), be (a flat) elliptic hyperquadric. Given a point p ∈ Sn1 , there
is a unique timelike geodesic in Sn1 which intersects orthogonally the elliptic hyperquadric at
some point q(v, p). We call the point q(v, p) the orthogonal projection of p in the direction v
to the elliptic hyperquadric HP (v, 0) ∩ Sn1 , and consider the fibre bundle

π12 : ∆1 = {(v, q) ∈ Hn(−1)× Sn1 | 〈v, q〉 = 0} → Sn1

where π12 is the canonical projection (see Appendix). By varying v, we obtain a family
of orthogonal projections along timelike geodesics to elliptic hyperquadrics parametrised by
vectors in Hn(−1).
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Theorem 3.1. The family of orthogonal projections in Sn1 along timelike geodesics is given
by

PT : Hn(−1)× Sn1 → ∆1

(v, p) 7→ (v, q(v, p))

where q(v, p) has the following expression

q(v, p) =
1√

1 + 〈v, p〉2
(p+ 〈v, p〉 v) .

Proof. Let p ∈ Sn1 and v ∈ Hn(−1). A timelike geodesic passing through p is parametrised
by

c(t) = cosh(t)p+ sinh(t)w, (3.1)

for some w ∈ Hn(−1) tangent to the geodesic at c(0) = p and with 〈w, p〉 = 0. At some t0,
we have c(t0) = q(v, p) and c′(t0) = sinh(t0)p+ cosh(t0)w = v. Thus, 〈c′(t0), p〉 = 〈v, p〉, which

gives sinh(t0) = 〈v, p〉. Therefore, cosh(t0) =
√

1 + 〈v, p〉2. From this we get

w =
1√

1 + 〈v, p〉2
(v − 〈v, p〉 p) .

Substituting in (3.1) for t = t0 yields q(v, p) = (p+ 〈v, p〉 v) /
√

1 + 〈v, p〉2.

We consider next projections along spacelike geodesics. Let HP (v, 0) ∩ Sn1 be a hyperbolic
hyperquadric, so v ∈ Sn1 . Given a point p ∈ Sn1 − {±v}, there is a unique spacelike geodesic
in Sn1 which intersects orthogonally HP (v, 0) ∩ Sn1 at two points q±(v, p). The points p = ±v
are excluded as all the spacelike geodesics orthogonal to HP (v, 0) ∩ Sn1 pass through these two
points. Therefore, their projection is not well defined. We call the points q±(v, p) the orthogonal
projection of p in the direction v to the hyperbolic hyperquadric HP (v, 0) ∩ Sn1 . We consider
the fibre bundle

π52 : ∆5 = {(v, q) ∈ Sn1 × Sn1 | 〈v, q〉 = 0} → Sn1

with π52 the canonical projection to the second component (see Appendix). By varying v, we
obtain a family of orthogonal projections along spacelike geodesics to hyperbolic hyperquadrics
parametrised by vectors in Sn1 .

Theorem 3.2. The family of orthogonal projections in Sn1 along spacelike geodesics is
given by

PS : Sn1 × Sn1 − {(v,±v), v ∈ Sn1 } → ∆5

(v, p) 7→ (v, q±(v, p))

where q±(v, p) has the following expression

q±(v, p) = ± 1√
1− 〈v, p〉2

(p− 〈v, p〉 v) .

Proof. Let (v, p) ∈ Sn1 × Sn1 . A spacelike geodesic passing through p is parametrised by

c(t) = cos(t)p+ sin(t)w, (3.2)
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for some w ∈ Sn1 tangent to the geodesic at c(0) = p and with 〈w, p〉 = 0. At some t0, we
have c(t0) = q(v, p) and c′(t0) = − sin(t0)p+ cos(t0)w = v. So 〈c′(t0), p〉 = 〈v, p〉, which gives

sin(t0) = −〈v, p〉. Therefore, cos(t0) = ±
√

1− 〈v, p〉2. We have 〈v, p〉2 = 1 if and only if p = ±v
and this is excluded. Hence,

w = ± 1√
1− 〈v, p〉2

(v − 〈v, p〉 p) .

Substituting in (3.2) for t = t0 we get q±(v, p) = ± (p− 〈v, p〉 v) /
√

1− 〈v, p〉2. The hyperbolic
hyperquadric HP (v, 0) ∩ Sn1 has two connected components, q+(v, p) lies on one component
and q−(v, p) on the other.

We consider now projections along lightlike geodesics, which are lines in Sn1 parallel to
lightlike vectors. An orthogonal space to a lightlike geodesic contains the geodesic, so we cannot
define projections along lightlike geodesics to orthogonal spaces (which are cylinders). We shall
fix instead a space transverse to all lightlike geodesics in Sn1 and project to this space. We denote
by {e0, . . . , en} the canonical basis of Rn+1

1 . Any lightlike geodesic intersects transversally the
elliptic de Sitter quadric Sn−1 = HP (e0, 0) ∩ Sn1 , so we take Sn−1 as the space to project to.

We fix a point in Sn−1, say e1 = (0, 1, 0, . . . , 0). A lightlike line through e1 is parametrised
by e1 + tv, t ∈ R, where v ∈ Sn−1

+ ⊂ LC∗. This line lies is Sn1 if and only if 〈v, e1〉 = 0. Thus,
the lightlike geodesics in Sn1 that pass through e1 can be parametrised by

Sn−2
+ = {(1, 0, v2, . . . , vn) ∈ Rn+1 : v2

2 + . . .+ v2
n = 1} ⊂ Sn−1

+ ⊂ LC∗.

Any lightlike geodesic in Sn1 can be obtained by rotating a lightlike geodesic through e1. The
rotation is in the form A = Ide0 ×B, where B is a rotation in Sn−1 = HP (e0, 0) ∩ Sn1 . Given
v ∈ Sn−2

+ , the geodesics A(e1) + tA(v), t ∈ R, obtained by varying B ∈ SO(n− 1) foliate Sn1 .
We can now define the projection in Sn1 along lightlike geodesics as follows.

Given a point p ∈ Sn1 and v ∈ Sn−2
+ , there exists a unique A = Ide0 ×B, with B ∈ SO(n− 1),

such that A(p) belongs to the lightlike geodesic e1 + tv. Then A(p) = e1 + 〈e0, p〉 v. We define
the lightlike projection of p to Sn−1 along the direction v as the point

q(v, p) = A−1(e1) = A−1(A(p)− 〈e0, p〉 v) = p− 〈e0, p〉A−1(v).

Definition 2. The family of projections along lightlike geodesics to the de Sitter elliptic
hyperquadric Sn−1 is defined by

PL : Sn−2
+ × Sn1 → Sn−1

(v, p) 7→ q(v, p)

where q(v, p) = p− 〈e0, p〉A−1(v), and A = Ide0 ×B, with B ∈ SO(n− 1), is the unique
rotation taking p to a point on the lightlike geodesic e1 + tv, t ∈ R.

Given an embedded submanifold M in Sn1 , the family of projections of M along geodesics
refer to the restriction of the families PL, PS and PT to M . We still denote this restriction by
PL, PS and PT respectively. We have the following result where the term generic is defined in
terms of transversality to submanifolds of multi-jet spaces (see for example [3]).

Theorem 3.3. For a residual set of embeddings x : M → Sn1 , the families PL, PS and PT
are generic families of mappings.



PROJECTIONS OF TIMELIKE SURFACES Page 7 of 15

Table 1: Ae-codimension ≤ 3 local singularities of map-germs R2, 0→ R2, 0 ([15]).

Name Normal form Ae-codimension

Immersion (x, y) 0
Fold (x, y2) 0
Cusp (x, xy + y3) 0
4k (k = 2 lips/beaks; k = 3 goose) (x, y3 ± xky), k = 2, 3, 4 k − 1
5 (swallowtail) (x, xy + y4) 1
6 (butterfly) (x, xy + y5 ± y7) 2
7 (x, xy + y5) 3
112k+1 (k = 2 gulls) (x, xy2 + y4 + y2k+1), k = 2, 3 k
12 (x, xy2 + y5 + y6) 3
16 (x, x2y + y4 ± y5) 3

Proof. The theorem follows from Montaldi’s result in [12] and the fact that PL|Sn−2
0 ×M ,

PS |Sn
1 ×M−{(v,v)∈Sn

1 ×M} and PT |Hn(−1)×M are stable maps.

4. Projections of timelike surfaces in S3
1

A projection along a geodesic is singular at p ∈M if and only if the geodesic is tangent to
M at p. Therefore, for spacelike surfaces (whose tangent spaces at all points are spacelike) the
projections along timelike and lightlike geodesics are always local diffeomorphisms. The study
of projections of spacelike surfaces along spacelike geodesics is similar to that of projections
of surfaces in H3(−1) [9]. So we deal here with embedded timelike surfaces M in S3

1 . The
projection of M at p0 ∈M along a given geodesic can be represented locally by a map-germ
from the plane to the plane. These map-germs are extensively studied. We refer to [15] for the
list of the A-orbits with Ae-codimension ≤ 6, where A denotes the Mather group of smooth
changes of coordinates in the source and target. In Table 1, we reproduce from [15] the list of
local singularities of Ae-codimension ≤ 3.

We study the local singularities of the projections along the three types of geodesics and
characterise them geometrically.

4.1. Projections along timelike and spacelike geodesics

It follows from Theorem 3.3 that, for a generic embedding of a timelike surface in S3
1 , only

singularities of Ae-codimension ≤ 3 can occur in the members of the family of orthogonal
projections of the surface along spacelike and timelike geodesics (3 being the dimension of
the parameter spaces S3

1 and H3(−1) respectively). We denote by P vS (resp. P vT ) the map
M → HP (v, 0) ∩ S3

1 given by P vS (p) = π ◦ PS(v, p) (resp. P vT (p) = π ◦ PT (v, p)), where π is the
projection to the second component. The following result follows from Theorem 3.3.

Proposition 4.1. For a residual set of embeddings x : M → S3
1 , the projections P vS (resp.

P vT ) in the family PS (resp. PT ) have local singularities A-equivalent to one in Table 1.
Moreover, these singularities are versally unfolded by the family PS (resp. PT ).

We seek to derive geometric information on M from the local singularities of the projections.
We deal with the members of the family PT and make an observation about those of PS .

Given v ∈ H3(−1) and p ∈ S3
1 , we denote by v∗ the parallel transport of v to p along

a geodesic orthogonal to HP (v, 0) ∩ S3
1 . From the proof of Theorem 3.1 we have v∗ =



Page 8 of 15 SHYUICHI IZUMIYA AND FARID TARI

(v − 〈v, p〉 p) /
√

1 + 〈v, p〉2. We observe that the map H3(−1)→ TpS
3
1 ∩H3(−1) given by

v 7→ v∗/||v∗|| is a submersion, and the pre-image of a vector w is the curve

Cw(t) = cosh(t)w + sinh(t)p, t ∈ R.

(There is a pencil of hyperplanes defining the same elliptic quadric in S3
1 .) We have the following

result where the names of the singularities of P̃ vT are those in Table 1.

Theorem 4.2. Let M be an embedded timelike surface in S3
1 and v ∈ H3(−1).

(1) The projection P vT is singular at a point p ∈M if and only if v∗ ∈ TpM.
(2) The singularity of P vT at p is of type cusp or worse if and only if v∗ is a timelike asymptotic

direction at p.
(3) The singularity of P vT at p is of Type 5 (i.e., swallowtail) if and only if v∗ is a timelike

asymptotic direction and p is on the flecnodal curve. The singularity is of Type 6 if and only
if v∗ is tangent to the flecnodal curve at p. At these tangency points, there are generically up
to 8 directions on the curve Cv∗ ⊂ H3(−1) where the singularity becomes of Type 7.

(4) The singularities of P vT at p is of type 4k, k = 2, 3, 4, if and only if p is a parabolic
point but not a folded singular point of the asymptotic curves and v∗ is the unique timelike
asymptotic direction there. There are up to 12 directions on the curve Cv∗ where the singularity
becomes of type 43. There are isolated points on the parabolic set where the singularity of the
projection along these special directions becomes of Type 44.

(5) At folded singularity of the asymptotic curves there are up to 12 directions on the curve
Cv∗ where the singularity is of Type 16. Away from these directions the singularity is generically
of Type 115, and for up to 38 directions on Cv∗ it becomes of Type 117. The singularities of
Type 12 do not occur in general.

Proof. As our study is local in nature, we can make some assumptions about the position of
the of surface patch and the choice of the geodesic. We shall assume that the surface patch is at
some point p0 and that this point is taken by a geodesic C1 to e1 = (0, 1, 0, 0) ∈ HP (e0, 0) ∩ S3

1 .
We also suppose that e0 = (1, 0, 0, 0) is tangent to C1 at e1. The geodesic C1 can then be
parametrised by

c1(t) = cosh(t)e1 + sinh(t)e0, t ∈ R.

We take, without loss of generality, the point on the surface to be p0 = (1,
√

2, 0, 0). The tangent
to C1 at p0 is parallel to w = (

√
2, 1, 0, 0). Then the vectors v ∈ H3(−1) satisfying w = v∗/||v∗||

are in the form v = (v0, v1, 0, 0) with −v2
0 + v2

1 = −1.
The surface patch at p0 can be taken in Monge form

φ(x, y) = (1 + x,
√

1 + (1 + x)2 − f2(x, y)− y2, y, f(x, y))

where f is a smooth function in some neighbourhood U of the origin in R2, (x, y) ∈ U and
f(0, 0) = 0. (There is nothing special about the above setting, the results are local in nature
and are valid for any v ∈ H3(−1) and at any point p0 ∈M .)

The projection to the elliptic quadric HP (v, 0) ∩ S3
1 = HP (e0, 0) ∩ S3

1 in the direction v
(with v as above) is then given by

P vT (x, y) = q(v, φ(x, y)) =
1√

1 + 〈v, φ(x, y)〉2
(φ(x, y) + 〈v, φ(x, y)〉 v)

(see Theorem 3.1). As we are interested in the A-singularities of the projection, we can
simplify the expression of P vT by projecting further to the tangent space of the elliptic quadric
HP (e0, 0) ∩ S3

1 at e1. This tangent space is generated by (0, 0, 1, 0) and (0, 0, 0, 1) and we take
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the projection to this space to be the restriction of the canonical projection π : R4 → R2, with
π(x0, x1, x2, x3) = (x2, x3). Therefore, the modified projection P̃ e0T = π ◦ P e0T is a map-germ
from the plane to the plane given by

P̃ vT (x, y) =
1

λ(x, y, v)
(y, f(x, y)) ,

with λ(x, y, v) = (1 + (−v0(1 + x) + v1
√

1 + (1 + x)2 − f2(x, y)− y2 )2)1/2. The map-germ P̃ vT
is singular at the origin if and only if fx(0, 0) = 0, if and only if v∗ = w ∈ Tp0M .

We can make successive changes of coordinates in the sources and target and write the
appropriate k-jet of P̃ vT in the form (y, g(x, y)). We can then obtain the conditions on the
coefficients of the Taylor expansion of f for P̃ vT to have a given singularity at the origin.
The calculations are carried out using Maple. For example, the 2-jet of P̃ vT is A-equivalent to
(y, a20x

2 + a21xy). We have a fold singularity if and only if a20 6= 0. The condition a20 = 0
means that φx(0, 0) =

√
2w is an asymptotic direction at p0. The remaining calculations are

done similarly but are too lengthy to reproduce here.

For projections along a spacelike geodesic, we choose the geodesic C2 given by c2(t) =
cos(t)e3 + sin(t)e1 and project to the hyperbolic quadric HP (e1, 0) ∩ S3

1 . We take the point
p0 = (0,

√
2/2, 0,

√
2/2) on the surface (and on C2) and project the surface patch around p0

along geodesics parallel to C2. We take the surface in Monge form

φ(x, y) = (f(x, y),

√
1 + f2(x, y)− (

√
2

2
+ x)2 − y2, y,

√
2

2
+ x)

with f(0, 0) = fx(0, 0) = 0. The modified projection is then a map-germ from the plane to the
plane and is given by

P̃ e1S (x, y) =
1√

(
√

2
2 + x)2 + y2 − f2(x, y)

(f(x, y), y).

We can obtain the conditions for P̃ e1S to have a given singularity at the origin from the
coefficients of the Taylor expansion of f and interpret these geometrically. The results are
similar to those in Theorem 4.2. One needs to take v ∈ S3

1 and replace timelike asymptotic
direction by spacelike asymptotic direction in the statement of Theorem 4.2. The numbers of
directions in the statements also need changing. In statement (3) we have up to 4 directions
on Cv∗ giving singularities of Type 7; in statement (4), there are up to 2 directions on Cv∗

giving singularities of Type 43; in statement (5), there up to 16 directions on Cv∗ where the
singularity becomes of Type 117. There are generically no singularities of type 12 or 16.

4.2. Projections along lightlike geodesics

We shall give an explicit expression for the projection PL (Definition 2) in S3
1 . Consider the

sphere S2 = {(0, v1, v2, v3) : v2
1 + v2

2 + v2
3 = 1} (we shall drop the first coordinate of points in

S2). Let

Tθ =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 , Tφ =

 cosφ 0 − sinφ
0 1 0

sinφ 0 cosφ


and their composite

T(θ,φ) = Tθ ◦ Tφ =

 cos θ cosφ − sin θ − cos θ sinφ
sin θ cosφ cos θ − sin θ sinφ

sinφ 0 cosφ

 .
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Any point on S2 − (0, 0,±1) is the image of the point e1 = (1, 0, 0) by a rotation T (θ, φ), for
some (θ, φ) ∈ [0, 2π]×]− π

2 ,
π
2 [. (One can consider other rotations to cover the points (0, 0,±1).)

We consider in S3
1 the rotation A = Ide0 × T(θ,φ). Let v ∈ S1

+ = {(1, 0, v2, v3) : v2
2 + v2

3 =
1} ⊂ LC∗. A point p = (p0, p1, p2, p3) is projected to q(v, p) ∈ S2 along the lightlike geodesic
determined by v (see Definition 2). The point q(v, p) is the image of e1 by a rotation A for
some (θ, φ). The point p is on the line q(v, p) + tA(v), and we have p = q(v, p) + p0A(v), that
is, 

p0

p1

p2

p3

 =


0

cos θ cosφ
sin θ cosφ

sinφ

+ p0


1

−v2 sin θ − v3 cos θ sinφ
v2 cos θ − v3 sin θ sinφ

v3 cosφ

 .

We suppose that q(v, p) 6= (0, 0,±1), this implies that p2
1 + p2

2 6= 0. We can then solve the above
system for θ and φ and get

cosφ =
p0p3v3 +

√
1− p2

3 + p2
0v

2
3

1 + p2
0v

2
3

sinφ =
p3 − p0v3

√
1− p2

3 + p2
0v

2
3

1 + p2
0v

2
3

cos θ =
p0p2v2 + p1

√
1− p2

3 + p2
0v

2
3

p2
1 + p2

2

sin θ =
−p0p1v2 + p2

√
1− p2

3 + p2
0v

2
3

p2
1 + p2

2

To analyse the singularities of P vL, we take v = (1, 0, 0, 1), the point p0 = e1 + v so that
q(p0, v) = e1. Then, a local parametrisation of the surface can be taken in the form

φ(x, y) = (1 + x,
√

1 + (1 + x)2 − y2 − f2(x, y), y, f(x, y))

with (x, y) is in some neighbourhood of the origin in R2, f(0, 0) = 1 and fx(0, 0) = 1. We
consider the modified projection P̃ vL by projecting further to the tangent space of Te1S

2 =
{(0, 0, x2, x3) : x2, x3 ∈ R}, which we identify with R2. Then, the resulting map-germ from the
plane to the plane is given by the last two components of q(v, p), that is (sin θ cosφ, sinφ), with
sin θ, cosφ, sinφ as above. That is,

P̃ vL = (y
√

1+(1+x)2−f(x,y)2((1+x)f(x,y)+
√

1+(1+x)2−f(x,y)2

(1+(1+x)2)(1+(1+x)2−f2(x,y)) ,
f(x,y)−(1+x)

√
1+(1+x)2−f(x,y)2

1+(1+x)2 ).

We take the 4-jet of f in the form

j4f(x, y) = 1 + x+ a11y + a20x
2 + a21xy + a22y

2 +
3∑
i=0

a3ix
3−iyi +

4∑
i=0

a4ix
4−iyi.

The surface patch parametrised by φ is timelike if and only if a11 6= 0. A short calculation
shows that the 4-jet of the projection is A-equivalent to the map-germ

(x, y) 7→ (y, a20x
2 + a21xy + a30x

3 + a31x
2y − (

1
2
a2
11 + a1a21 − a32)xy2 + f4(x, y)),

with

f4(x, y) = (a40 + 1
2a

2
20)x4 + a41x

3y − ( 1
2a

2
11a20 + a11(a31 + a21) + a20a22 + 1

2a
2
21 − a42)x2y2

+( 1
2a43 − a21a22 − a11(a22 + a32))xy3.

We have a fold singularity if and only if a20 6= 0; a cusp singularity if and only if a20 = 0
and a21a30 6= 0; a lips/beaks singularity if and only if a20 = a21 = 0 and a30(3(a2

1 + 2a1a21 −
2a32)a30 + 2a2

31) 6= 0; a swallowtail singularity if and only if a20 = a30 = 0, and a40 6= 0.
To interpret these conditions geometrically we consider the LPL, given by δ(x, y) = 0 in

expression (2.2) in section 2. We calculate the coefficients of the first and second fundamental
forms and find that the point p0 is on the LPL if and only if

a20(a20 − 2a11a21 + 4a20a
4
11 + 4a2

11a20 − 4a3
11a21 + 4a2

11a22) = 0.
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The asymptotic directions at p0 are given by

a22dy
2 + a21dxdy + a20dx

2 = 0.

In particular, the singularity of P vL is worse than fold (a20 = 0) if and only if p0 ∈ LPL and
v = φx(0, 0) is a lightlike asymptotic direction. (Then v is also the double principal direction
at p0, see section 2.) The other asymptotic direction is not lightlike unless the LPL is singular.

When a20 = 0, we assume that 2a11a22 − a21 − 2a2
11a21 6= 0, otherwise the point p0 is a

timelike umbilic point so the LPL is singular there. At such points both asymptotic directions
are lightlike and the projection P vL along these directions has a cusp singularity.

Suppose that a20 = 0. Then the 1-jet of the equation of the LPL is given by

(2a11a22 − 2a2
11a21 − a21)(−3a11a30x− (−a2

21 + a11a31)y).

As the surface is timelike, a11 6= 0. Therefore, the singularity of the projection is of type
swallowtail at p0 or worse (i.e., a30 = 0) if and only if the lightlike direction v is tangent to
the LPL. (This occur at precisely the folded singularities of the configuration of the principal
curves [10].)

The point p0 is on the parabolic set if and only if a2
21 − 4a20a22 = 0. Therefore, we have a

lips/beaks singularity (a20 = a21 = 0) at the point of tangency of the LPL with the parabolic
set. We have thus the following result.

Theorem 4.3. The projection P vL can have generically the local codimension ≤ 1
singularities in Table 1. The singularity of P vL at p0 ∈M is of type

(1) fold if and only if v is not a lightlike asymptotic direction at p0;
(2) cusp if and only if v is a lightlike asymptotic direction at p0 and is transverse to the LPL;
(3) swallowtail if and only if v is lightlike asymptotic direction at p0 and is tangent to the

LPL;
(4) lips/beaks if and only if v is a lightlike asymptotic direction at p0 and p0 is the point of

tangency of the LPL with the parabolic curve.

5. Duality

We prove in this section duality result similar to those in [8, 9], and to those in [16] for
central projections of surfaces in RP 3 and in [2] for orthogonal projections of surfaces in R3.

Let M be an embedded timelike surface in S3
1 . We shall use the duality concepts in [4, 5, 6],

see §6 for details. We denote by Apar2 the ruled surface in S3
1 swept out by the geodesics in S3

1

passing through a parabolic point of M and with tangent direction there its unique asymptotic
direction. We assume that the unique asymptotic direction is not lightlike, so the point is not
on the LPL.

Let p(t), t ∈ I = (−a, a), a > 0, be a local parametrisation of the parabolic set of M and u(t)
be the unique unit asymptotic direction at p(t). Recall that if p0 = p(t0) is on the LPL, u(t)
is spacelike on one side of p0 and timelike on the other side ([10] and section 2). The surface
Apar2 has two connected components given by

AS−par2 = {cos(s)p(t) + sin(s)u(t), (s, t) ∈ I × J, 〈u(t), u(t)〉 = 1}
AT−par2 = {cosh(s)p(t) + sinh(s)u(t), (s, t) ∈ I × J, 〈u(t), u(t)〉 = −1}

with J = (−b, b), for some b > 0. We also denote by A1||A1 the ruled surface swept out by the
spacelike or timelike geodesics in S3

1 that are tangent to M at two points where the normals to
M at such points are parallel (i.e., the projection PS or PT has a multi-local singularity of type
double tangent fold). The surface A1||A1 has also two component determined by the type of
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bi-tangent geodesics. We have the following result, whose proof is similar to that of Theorem
3.8 in [9].

Theorem 5.1. Let M∗ be the ∆5-dual of a timelike surface M embedded in S3
1 .

(1) The ∆5-dual of the surface Apar2 is the cuspidaledge of M∗.
(2) The ∆5-dual of the surface A1||A1 is the self-intersection line of M∗.

Proof. (1) We deal with the AS−par2 component (the calculations are similar for the
component AT−par2 and are omitted) and parametrise it as above by y(s, t) = cos(s)p(t) +
sin(s)u(t). The normal to the surface AS−par2 is along

y ∧ ys ∧ yt = cos3(s)p(t) ∧ u(t) ∧ p′(t) + sin3(s)p(t) ∧ u(t) ∧ u′(t).

At a generic point p on the parabolic set, the asymptotic direction is transverse to the
parabolic set, so p(t) ∧ u(t) ∧ p′(t) is along e(p(t)). One can prove, following the same arguments
in the proof of Lemma 3.11 in [8], that p(t) ∧ u(t) ∧ u′(t) is also along e(p(t)). Therefore,
y ∧ ys ∧ yt is along e(p(t)), and it follows from this that the normal to the ruled surface AS−par2

is constant along the rulings and is given by the normal vector e(p(t)) to M at p(t). This means
that AS−par2 is a de Sitter developable surface (i.e.,K ≡ 0 on AS−par2 ). Therefore, the ∆5-dual of
AS−par2 is {e(p), p a parabolic point}. This is precisely the singular set (i.e., the cuspidaledge)
of M∗, the ∆5-dual surface of M .

(2) Suppose a multi-local singularity (double tangent fold) occurs at two points p1 and p2

on M . The surface A1||A1 is then a ruled surface generated by spacelike geodesics along a
curve C1 on M through p1, or a curve C2 on M through p2. The normals to the surface at
points on C1 and C2 that are on the same ruling of A1||A1 are parallel. Let q(t) be a local
parametrisation of the curve C1 and u(t) be the unit tangent direction to the ruling in A1||A1

through q(t). A parametrisation of A1||A1 is given by

w(s, t) = cos(s)q(t) + sin(s)u(t).

The normal to this surface is along cos3(s)V1(t) + sin3(s)V2(t) with V1(t) = q(t) ∧ u(t) ∧ q′(t)
and V2(t) = q(t) ∧ u(t) ∧ u′(t). These normals are parallel at two points on any ruling, one point
being on the curve C1 and the other on C2. Therefore, V1(t) and V2(t) are parallel, so the normal
to the surface A1||A1 is constant along the rulings of this surface. As these are along the normal
to the surface at q(t), it follows that the ∆5-dual of A1||A1 is {e(p), p ∈ C1} = {e(p), p ∈ C2}.
This is precisely the self-intersection line of M∗, the ∆5-dual surface of M .

We consider now some components of the bifurcation sets of the families of projections PS
and PT .

Theorem 5.2. Let M∗ be the ∆5-dual of a timelike surface M embedded in S3
1 . Then,

(1) The local stratum Bif(PS , lips/beaks) of the bifurcation set of PS , which consists of
vectors v ∈ S3

1 for which the projection P vS has a lips/beaks singularity, is a ruled surface. The
∆5-dual of Bif(PS , lips/beaks) is the cuspidaledge of M∗.

(2) The multi-local stratum Bif(PS , DTF ) of the bifurcation set of PS , which consists of
vectors v ∈ S3

1 for which the projection P vS has a multi-local singularity of type double tangent
fold, is a ruled surface. The ∆5-dual of this ruled surface is the self-intersection line of M∗.

(3) The local stratum Bif(PT , lips/beaks) of the bifurcation set of PT , which consists of
vectors v ∈ H3(−1) for which the projection P vT has a lips/beaks singularity, is a ruled surface.
The ∆1-dual of Bif(PT , lips/beaks) is the cuspidaledge of M∗.



PROJECTIONS OF TIMELIKE SURFACES Page 13 of 15

(4) The multi-local stratum Bif(PT , DTF ) of the bifurcation set of PT , which consists of
vectors v ∈ H3(−1) for which the projection P vT has a multi-local singularity of type double
tangent fold, is a ruled surface. The ∆5-dual of this ruled surface is the self-intersection line of
M∗.

Proof. We prove (1) as the proof of (2) is similar. It follows from Theorem 4.2(5) that the
lips/beaks stratum Bif(PS , lips/beaks) of the family PS is given by the set of v ∈ S3

1 such that
v∗ is an asymptotic direction at a parabolic point p, where v∗ denotes the parallel transport
of v to p. Thus, v∗ = u(t) when v ∈ Bif(PS , lips/beaks), where u(t) is the unique asymptotic
direction at p(t).

We have then

u(t) = v∗ =
1√

1− 〈v, p(t)〉2
(v − 〈v, p(t)〉 p(t))

and hence

v =
√

1− 〈v, p(t)〉2u(t) + 〈v, p(t)〉 p(t).

If we set sin(s) = 〈v, p(t)〉 we get

Bif(PP , lips/beaks) = {cos(s)u(t) + sin(s)p(t), t ∈ I, s ∈ R},

which shows that Bif(PP , lips/beaks) is a ruled surface. For the duality result, following
Remark 1, we need to find the unit normal vector to Bif(PS , lips/beaks). Following the same
argument in the proof of Theorem 5.1, we find that the normal vector is constant along the
rulings of the surface Bif(PS , lips/beaks) and is along e(t), and the result follows.

Remark 1. It is shown in [16] that other strata of the bifurcation set of the family of
central projections of a surface in RP 3 are also self-dual. For instance, the strata A3, A3

1 and
A1 ×A2 are all self-dual. These results do not hold in our context. If we define the A3 set as
the surface formed by geodesics through points on the flecnodal curve and with tangent at
these points along the associated asymptotic direction, then this surface is not in general a
ruled surface. This means that the dual of the A3-set is not the flecnodal curve on the ∆5-dual
surface of M . The situation is similar for the other strata.

6. Appendix

We require some properties of contact manifolds and Legendrian submanifolds for the duality
results in this paper (for more details see for example [1]). Let N be a (2n+ 1)-dimensional
smooth manifold and K be a field of tangent hyperplanes on N . Such a field is locally defined
by a 1-form α. The tangent hyperplane field K is said to be non-degenerate if α ∧ (dα)n 6= 0
at any point on N. The pair (N,K) is a contact manifold if K is a non-degenerate hyperplane
field. In this case K is called a contact structure and α a contact form.

A submanifold i : L ⊂ N of a contact manifold (N,K) is said to be Legendrian if dim L = n
and dix(TxL) ⊂ Ki(x) at any x ∈ L. A smooth fibre bundle π : E →M is called a Legendrian
fibration if its total space E is furnished with a contact structure and the fibres of π
are Legendrian submanifolds. Let π : E →M be a Legendrian fibration. For a Legendrian
submanifold i : L ⊂ E, π ◦ i : L→M is called a Legendrian map. The image of the Legendrian
map π ◦ i is called a wavefront set of i and is denoted by W (i).
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The duality concepts we use in this paper is one of those introduced in [4, 5, 6], where five
Legendrian double fibrations are considered on subsets of the product of two of the pseudo
spheres Hn(−1), Sn1 and LC∗. We recall here only those that are needed in this paper:
(1) (a) Hn(−1)× Sn1 ⊃ ∆1 = {(v, w) | 〈v, w〉 = 0},

(b) π11 : ∆1 → Hn(−1), π12 : ∆1 → Sn1 ,
(c) θ11 = 〈dv, w〉|∆1, θ12 = 〈v, dw〉|∆1.

(5) (a) Sn1 × Sn1 ⊃ ∆5 = {(v, w) | 〈v, w〉 = 0},
(b) π51 : ∆5 → Sn1 , π52 : ∆5 → Sn1 ,
(c) θ51 = 〈dv, w〉|∆5, θ52 = 〈v, dw〉|∆5.

Here, πi1(v, w) = v and πi2(v, w) = w for i = 1, 5, 〈dv, w〉 = −w0dv0 +
∑n
i=1 widvi and

〈v, dw〉 = −v0dw0 +
∑n
i=1 vidwi. The 1-forms θi1 and θi2, i = 1, 5, define the same tangent

hyperplane field over ∆i which is denoted by Ki.

Theorem 6.1. ([4, 5, 6]) The pairs (∆i,Ki), i = 1, 5, are contact manifolds and πi1 and
πi2 are Legendrian fibrations.

Remarks 1.
(1) Given a Legendrian submanifold i : L→ ∆i, i = 1, 5, Theorem 6.1 states that πi1(i(L))

is dual to πi2(i(L)) and vice-versa. We shall call this duality ∆i-duality.
(2) If π11(i(L)) is smooth at a point π11(i(u)), then π12(i(u)) is the normal vector to the

hypersurface π11(i(L)) ⊂ Hn
+(−1) at π11(i(u)). Conversely, if π12(i(L)) is smooth at a point

π12(i(u)), then π11(i(u)) is the normal vector to the hypersurface π12(i(L)) ⊂ Sn1 . The same
properties hold for the ∆5-duality.
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