Umbilics of surfaces in the Minkowski 3-space

Farid Tari
Instituto de Ciências Matemáticas e de Computação - USP
Avenida Trabalhador são-carlense, 400-Centro
CEP: 13566-590 - São Carlos - SP, Brazil.
E-mail: faridtari@icmc.usp.br

Abstract

We prove that any closed and convex surface in the Minkowski 3-space of class C^{3} has at least two umbilic points. This shows that the Carathéodory conjecture for surfaces in the Euclidean 3 -space is true for surfaces in the Minkowski 3 -space.

1 Introduction

The Carathéodory conjecture states that any smooth closed and convex surface in the Euclidean 3 -space has at least two umbilic points. Various attempts were made to prove this conjecture (see for example [4] for a survey article and [3] for the latest results on the problem using the mean curvature flow on the space of oriented lines in \mathbb{R}^{3}).

We prove in this paper that any closed and convex surface in the Minkowski 3-space of class C^{3} has at least two umbilic points (Theorem 3.3). For ovaloids, we can even specify the nature of the umbilic points (Theorem 3.4). We give some preliminaries in section 2 and prove the main results in section 3.

2 Preliminaries

The Minkowski space $\left(\mathbb{R}_{1}^{3},\langle\rangle,\right)$ is the vector space \mathbb{R}^{3} endowed with the pseudo-scalar product $\langle\boldsymbol{u}, \boldsymbol{v}\rangle=-u_{0} v_{0}+u_{1} v_{1}+u_{2} v_{2}$, for any $\boldsymbol{u}=\left(u_{0}, u_{1}, u_{2}\right)$ and $\boldsymbol{v}=\left(v_{0}, v_{1}, v_{2}\right)$

2000 Mathematics Subject classification 53A35, 34A09, 32S05.
Key Words and Phrases. Carathéodory conjecture, lines of principal curvature, Minkowski 3space, umbilics, singularities.
in \mathbb{R}_{1}^{3}. We say that a non-zero vector $\boldsymbol{u} \in \mathbb{R}_{1}^{3}$ is spacelike if $\langle\boldsymbol{u}, \boldsymbol{u}\rangle>0$, lightlike if $\langle\boldsymbol{u}, \boldsymbol{u}\rangle=0$ and timelike if $\langle\boldsymbol{u}, \boldsymbol{u}\rangle<0$. The norm of a vector $\boldsymbol{u} \in \mathbb{R}_{1}^{3}$ is defined by $\|\boldsymbol{u}\|=\sqrt{|\langle\boldsymbol{u}, \boldsymbol{u}\rangle|}$. The set of all lightlike vectors form the lightcone

$$
L C^{*}=\left\{\boldsymbol{u} \in \mathbb{R}_{1}^{3} \backslash\{\underline{0}\} \mid\langle\boldsymbol{u}, \boldsymbol{u}\rangle=0\right\} .
$$

The lightcone can be considered as the cone in \mathbb{R}^{3} minus the origin given by

$$
\left\{\left(u_{0}, u_{1}, u_{2}\right) \in \mathbb{R}^{3} \backslash\{(0,0,0)\} \mid-u_{0}^{2}+u_{1}^{2}+u_{2}^{2}=0\right\}
$$

A plane $P_{c}^{\boldsymbol{v}}=\left\{\boldsymbol{u} \in \mathbb{R}_{1}^{3} \mid\langle\boldsymbol{u}, \boldsymbol{v}\rangle=c\right\}$, for some constant $c \in \mathbb{R}$, is called respectively, spacelike, timelike or lightlike if \boldsymbol{v} is timelike, spacelike or lightlike. Fixing \boldsymbol{v} and varying c gives a family of parallel planes with $P_{0}^{\boldsymbol{v}}$ passing through the origin (i.e., is a vector space). The vector \boldsymbol{v} is called the "normal" vector to $P_{c}^{\boldsymbol{v}}$. Every nonzero vector in a spacelike plane $P_{0}^{\boldsymbol{v}}$ is spacelike. There are two linearly independent lightlike vectors in a timelike plane $P_{0}^{\boldsymbol{v}}$ and a unique lightlike vector in a lightlike plane $P_{0}^{\boldsymbol{v}}$. The normal vector \boldsymbol{v} is transverse to $P_{c}^{\boldsymbol{v}}$ if this plane is spacelike or timelike but determines the unique lightlike direction in $P_{0}^{\boldsymbol{v}}$ if the plane $P_{c}^{\boldsymbol{v}}$ is lightlike.

Let S be a surface in \mathbb{R}_{1}^{3} (of class C^{3}). The pseudo-scalar product in \mathbb{R}_{1}^{3} induces a metric on S. If S is closed, then this metric must be degenerate at some point on S (see for example Lemma 3.1). This happens at points p on S where the tangent space $T_{p} S$ is a lightlike plane. We call the locus of points where the induced metric on S is degenerate the Locus of Degeneracy and denote it by $L D$.

Let $\boldsymbol{x}: U \subset \mathbb{R}^{2} \rightarrow S$ be a local parametrisation of S and let

$$
E=\left\langle\boldsymbol{x}_{u}, \boldsymbol{x}_{u}\right\rangle, \quad F=\left\langle\boldsymbol{x}_{u}, \boldsymbol{x}_{v}\right\rangle, \quad G=\left\langle\boldsymbol{x}_{v}, \boldsymbol{x}_{v}\right\rangle
$$

denote the coefficients of the first fundamental form of S with respect to \boldsymbol{x}. We identify the $L D$ and its pre-image in U by \boldsymbol{x}. Then the $L D$ (in U) is the zero set of the C^{2} function $\delta(u, v)=\left(F^{2}-E G\right)(u, v)$. Therefore, the $L D$ is a closed subset of S. We observe that the $L D$ of a generic closed surface is a smooth curve, but we do not make the genericity assumption here. We can have, for instance, a convex surface with an $L D$ that has interior points.

Pei [6] defined an $\mathbb{R} P^{2}$-valued Gauss map on S. In $\boldsymbol{x}(U)$, this is simply the map $P N: \boldsymbol{x}(U) \rightarrow \mathbb{R} P^{2}$ which associates to a point $p=\boldsymbol{x}(q)$ the projectivisation of the vector $\left(\boldsymbol{x}_{u} \times \boldsymbol{x}_{v}\right)(q)$, where " \times " denotes the wedge product in \mathbb{R}_{1}^{3}. Away from the $L D$, the $\mathbb{R} P^{2}$-valued Gauss map can be identified with the de Sitter Gauss map $\boldsymbol{x}\left(U_{1}\right) \rightarrow S_{1}^{2}$ on the Lorentzian part of the surface and with the hyperbolic Gauss map $\boldsymbol{x}\left(U_{2}\right) \rightarrow H^{2}(-1)$ on its Riemannian part. (Here U_{1} and U_{2} are open sets with $U=U_{1} \cup U_{2} \cup L D$.) Both maps are given by $\boldsymbol{N}=\boldsymbol{x}_{u} \times \boldsymbol{x}_{v} /\left\|\boldsymbol{x}_{u} \times \boldsymbol{x}_{v}\right\|$. The shape operator $A_{p}(\boldsymbol{v})=-d \boldsymbol{N}_{p}(\boldsymbol{v})$ is a self-adjoint operator on $\boldsymbol{x}(U) \backslash L D$. We denote by

$$
\begin{aligned}
l=-\left\langle\boldsymbol{N}_{u}, \boldsymbol{x}_{u}\right\rangle & =\left\langle\boldsymbol{N}, \boldsymbol{x}_{u u}\right\rangle, \\
m & =-\left\langle\boldsymbol{N}_{u}, \boldsymbol{x}_{v}\right\rangle=\left\langle\boldsymbol{N}, \boldsymbol{x}_{u v}\right\rangle, \\
n & =-\left\langle\boldsymbol{N}_{v}, \boldsymbol{x}_{v}\right\rangle=\left\langle\boldsymbol{N}, \boldsymbol{x}_{v v}\right\rangle
\end{aligned}
$$

the coefficients of the second fundamental form on $\boldsymbol{x}(U) \backslash L D$. When A_{p} has real eigenvalues, we call them the principal curvatures and their associated eigenvectors the principal directions of S at p. We observe that there are always two principal curvatures at points in the Riemannian part of S but this is not true at points in its Lorentzian part ([5]). The lines of principal curvature, which are the integral curves of the principal directions, are solutions of the binary quadratic differential equation (BDE for short)

$$
\begin{equation*}
(G m-F n) d v^{2}+(G l-E n) d v d u+(F l-E m) d u^{2}=0 . \tag{1}
\end{equation*}
$$

The discriminant of the above equation, which is the set points in $U \backslash L D$ where it determines a unique direction, is denoted the Lightlike Principal Locus (LPL) in [5]. It is the zero set of the function $\left((G l-E n)^{2}-4(G m-F n)(F l-E m)\right)(u, v)$.

A spacelike umbilic point (resp. timelike umbilic point) is a point in the Riemannian part (resp. Lorentzian part) of the surface where the coefficients of equation (1) vanish simultaneously. (The coefficients of a BDE are its coefficients when viewed as a quadratic form in $d u$ and $d v$.) Spacelike and timelike umbilic points can also be characterised as the points p where the shape operator A_{p} is a multiple of the identity map.

One can extend the lines of principal curvature across the $L D$ as follows ([5]). As equation (1) is homogeneous in l, m, n, we can multiply these coefficients by $\left\|\boldsymbol{x}_{u} \times \boldsymbol{x}_{v}\right\|$ and substitute them by

$$
\bar{l}=\left\langle\boldsymbol{x}_{u} \times \boldsymbol{x}_{v}, \boldsymbol{x}_{u u}\right\rangle, \quad \bar{m}=\left\langle\boldsymbol{x}_{u} \times \boldsymbol{x}_{v}, \boldsymbol{x}_{u v}\right\rangle, \quad \bar{n}=\left\langle\boldsymbol{x}_{u} \times \boldsymbol{x}_{v}, \boldsymbol{x}_{v v}\right\rangle .
$$

This substitution does not alter the pair of foliations on $\boldsymbol{x}(U) \backslash L D$. The new equation is defined on the $L D$ and defines the same pair of foliations associated to the de Sitter (resp. hyperbolic) Gauss map on the Lorentzian (resp. Riemannian) part of $\boldsymbol{x}(U)$. The extended lines of principal curvature are the solution curves of the BDE

$$
\begin{equation*}
(G \bar{m}-F \bar{n}) d v^{2}+(G \bar{l}-E \bar{n}) d u d v+(F \bar{l}-E \bar{m}) d u^{2}=0 . \tag{2}
\end{equation*}
$$

We still call the directions determined by equation (2) at points on the $L D$ principal directions. We do not have a shape operator at points on the $L D$. For this reason, we define a lightlike umbilic point as a point on the $L D$ where the coefficients of equation (2) vanish simultaneously.

We say that a point on S is an umbilic point if it is either a spacelike, timelike or lightlike umbilic point. Thus, a point $p=\boldsymbol{x}(q)$ is an umbilic point if and only if all the coefficients of equation (2) vanish at q.

Remark 2.1 The lines of principal curvatures on a generic surface in \mathbb{R}_{1}^{3} are studied in [5]. On the Riemannian part of a generic surface, the $L P L$, when not empty, consists of isolated points which are spacelike umbilic points. Away from these points, there
are always two orthogonal spacelike principal directions. On the Lorentzian part of a generic surface, the $L P L$, when not empty, is a smooth curve except at isolated points where it has Morse singularities of node type. The singular points of the $L P L$ are precisely the timelike umbilic points. The regular points of the $L P L$ consist of points where the principal directions coincide and become lightlike. There are two principal directions on one side of the $L P L$ and none on the other. When there are two of them, they are orthogonal and one is spacelike while the other is timelike.

Equation (2) determines two directions in $T_{p} S$ at most points p on the $L D$. One of these directions is the unique lightlike direction in $T_{p} S$ and the other is a spacelike. The two directions coincide and become the unique lightlike direction in $T_{p} S$ at isolated points p on the $L D$. Generic surfaces do not have lightlike umbilic points. The generic local topological configurations of the lines of principal curvature at points on the $L P L$ and on the $L D$ are given in [5].

We consider here closed and convex surfaces in \mathbb{R}_{1}^{3}. Convexity is an affine property so is independent of the metric (Euclidean or Lorentzian) in \mathbb{R}^{3}.

We also consider some special convex surfaces. An ovaloid in the Euclidean space \mathbb{R}^{3} is defined as a surface with everywhere strictly positive Gaussian curvature K. We do not have the concept of Gaussian curvature of a surface in the Minkowski space \mathbb{R}_{1}^{3} at point on the $L D$. (In fact, for generic surfaces, the Gaussian curvature tends to infinity as a point on the $L D$ is approached from either the Riemannian or the Lorentzian part of the surface; see [7].) However we can still define the concept of ovaloids using the contact of the surface with planes (which is an affine property of the surface).

Let $P_{c}^{\boldsymbol{v}}=\left\{p \in \mathbb{R}^{3} \mid\langle p, \boldsymbol{v}\rangle=c\right\}$ be a plane in \mathbb{R}_{1}^{3}. The contact of a surface S with $P_{c}^{\boldsymbol{v}}$ is measured by the singularities of the height function $h: S \rightarrow \mathbb{R}$, given by

$$
h(p)=\langle p, \boldsymbol{v}\rangle .
$$

We say that the contact is of type A_{1}^{+}at $p \in S$ if $p \in P_{c}^{\boldsymbol{v}}$ and the height function h has a Morse singularity of index 0 or 2 at p, i.e., h can be written in some local coordinate system at p in S in the form $\pm\left(u^{2}+v^{2}\right)$. For this, it is necessary and sufficient for the Taylor polynomial of degree 2 of h at p to be a strictly positive or a strictly negative quadratic form.

We say that a closed and convex surface S is an ovaloid if it has an A_{1}^{+}-contact with its tangent plane $T_{p} S$ at all $p \in S$. An example of an ovaloid in the Minkowski space \mathbb{R}_{1}^{3} is (the "Euclidean sphere")

$$
S^{2}=\left\{\left(u_{0}, u_{1}, u_{2}\right) \in \mathbb{R}_{1}^{3} \mid u_{0}^{2}+u_{1}^{2}+u_{2}^{2}=1\right\} .
$$

The surface $S^{2} \subset \mathbb{R}_{1}^{3}$ has two umbilic points ([5] section 4.4.), so is not a totally umbilic surface. (See [2] for the study of geodesics on an ellipsoid in \mathbb{R}_{1}^{3}.)

A surface S is locally convex at $p \in S$ if there exists a neighbourhood V of p in S such that V is contained in one of the closed half-spaces determined by the tangent plane $T_{p} S$. A convex surface is of course locally convex. Given a local parametrisation $\boldsymbol{x}: U \rightarrow S$ of the surface S and $q_{0}=\left(u_{0}, v_{0}\right) \in U$, the height function h along the "normal vector" $\boldsymbol{v}=\left(\boldsymbol{x}_{u} \times \boldsymbol{x}_{v}\right)\left(q_{0}\right)$ at q_{0} can be considered locally as a map $U \rightarrow \mathbb{R}$, given by $h(u, v)=\langle\boldsymbol{x}(u, v), \boldsymbol{v}\rangle$. The Taylor polynomial of degree 2 of h at $q_{0}=\left(u_{0}, v_{0}\right) \in U$ is given by

$$
\frac{1}{2}\left(h_{u u}\left(q_{0}\right)\left(u-u_{0}\right)^{2}+2 h_{u v}\left(q_{0}\right)\left(u-u_{0}\right)\left(v-v_{0}\right)+h_{v v}\left(q_{0}\right)\left(v-v_{0}\right)^{2}\right)
$$

and a necessary condition for S to be locally convex at $p_{0}=\boldsymbol{x}\left(q_{0}\right)$ is that

$$
\left(h_{u v}^{2}-h_{u u} h_{v v}\right)\left(q_{0}\right) \leq 0 .
$$

The above condition is true at any point on S including points on the $L D$.

3 The main results

The proof of the main result relies on the structure of the $L D$ and on the directions determined by equation (2) on this set.

Lemma 3.1 The LD of a closed surface S in \mathbb{R}_{1}^{3} of class C^{1} is the union of at least two disjoint non-empty closed subsets of S.

Proof The $L D$ is the set of points on S where the tangent plane to S is lightlike. Lightlike planes are those tangent to the lightcone $L C^{*}$ and a key observation is that these planes can be captured by changing the metric on \mathbb{R}^{3}.

We change the metric in \mathbb{R}^{3} and consider $S \subset \mathbb{R}_{1}^{3}$ as a surface \tilde{S} in the Euclidean space \mathbb{R}^{3}. Since \tilde{S} is closed, the image of its Gauss map $N: \tilde{S} \rightarrow S^{2}$ is the whole sphere S^{2}.

The unit Euclidean normals to the tangent planes to $L C^{*}$ (viewed as a cone in \mathbb{R}^{3}, see $\S 1$) trace the two circles $u_{0}= \pm 1 / \sqrt{2}$ on S^{2}. The $L D$ of S is precisely the pre-image of the two circles $u_{0}= \pm 1 / \sqrt{2}$ by the Gauss map N on \tilde{S}. Therefore, the $L D$ consists of at least two disjoint non-empty closed subsets of S.

Lemma 3.2 Let S be a closed and convex surface in \mathbb{R}_{1}^{3} of class C^{3} and $\boldsymbol{x}: U \rightarrow S$ a local parametrisation of S.
(1) The singular points of $\delta=F^{2}-E G$ on the $L D$ are lightlike umbilic points.
(2) The unique lightlike principal direction in $T_{p} S$ at the regular points of δ on the $L D$ is transverse to the $L D$.

Proof If $E(q)=0$ or $G(q)=0$ at $q \in U$ with $\boldsymbol{x}(q) \in L D$, then $F(q)=0$. Therefore, we cannot have $E(q)=G(q)=0$ at points on the $L D$. We assume, without loss of generality, that $G \neq 0$ on U.

The lightlike directions at points in $\boldsymbol{x}(U)$ are solutions of the equation

$$
G d v^{2}+2 F d u d v+E d u^{2}=0
$$

and the unique lightlike direction on the $L D$ is parallel to $G \boldsymbol{x}_{u}-F \boldsymbol{x}_{v}$. This is a smooth vector field on $\boldsymbol{x}(U)$, so we can re-parametrise $\boldsymbol{x}(U)$ so that one of the coordinate curves are the integral curves of this vector field. That is, we can choose a local parametrisation of S, that we still denote by \boldsymbol{x}, so that the unique lightlike direction on the $L D$ is along \boldsymbol{x}_{u}. With this parametrisation, that we use in the rest of the proof, $E=F=0$ on the $L D$.
(1) The function δ is singular on the $L D$ if and only if $\left(-E_{u} G,-E_{v} G\right)=(0,0)$. The coefficients of equation (2) become ($G \bar{m}, G \bar{l}, 0$) on the $L D$, and on this set we also have $\boldsymbol{x}_{u} \times \boldsymbol{x}_{v}=\lambda \boldsymbol{x}_{u}$ for some non-zero function λ. Therefore,

$$
\bar{l}=\left\langle\boldsymbol{x}_{u} \times \boldsymbol{x}_{v}, \boldsymbol{x}_{u u}\right\rangle=\lambda\left\langle\boldsymbol{x}_{u}, \boldsymbol{x}_{u u}\right\rangle=\frac{1}{2} \lambda E_{u},
$$

and similarly,

$$
\bar{m}=\left\langle\boldsymbol{x}_{u} \times \boldsymbol{x}_{v}, \boldsymbol{x}_{u v}\right\rangle=\lambda\left\langle\boldsymbol{x}_{u}, \boldsymbol{x}_{u v}\right\rangle=\frac{1}{2} \lambda E_{v} .
$$

Thus, the coefficients of equation (2) at points on the $L D$ are $\left(\lambda E_{v} G, \lambda E_{u} G, 0\right)$, and this is $(0,0,0)$ at a point $q \in L D$ if and only if the δ is singular at q.
(2) Suppose now that δ is regular on the $L D$ (so the $L D$ is a regular curve). Then we have either $E_{u} \neq 0$ or $E_{v} \neq 0$ on this curve. We consider the contact of S with its tangent plane $T_{p_{0}} S$ at $p_{0}=\boldsymbol{x}\left(q_{0}\right) \in L D$. The Taylor polynomial of degree 2 of the height function $h(u, v)=\left\langle\boldsymbol{x}(u, v), \boldsymbol{x}_{u}\left(q_{0}\right)\right\rangle$ along the lightlike "normal vector" $\boldsymbol{x}_{u}\left(q_{0}\right)$ at q_{0} is given by

$$
\frac{1}{2}\left(h_{u u}\left(q_{0}\right)\left(u-u_{0}\right)^{2}+2 h_{u v}\left(q_{0}\right)\left(u-u_{0}\right)\left(v-v_{0}\right)+h_{v v}\left(q_{0}\right)\left(v-v_{0}\right)^{2}\right)
$$

with

$$
\begin{aligned}
& h_{u u}\left(q_{0}\right)=\left\langle\boldsymbol{x}_{u u}\left(q_{0}\right), \boldsymbol{x}_{u}\left(q_{0}\right)\right\rangle=\frac{1}{2} E_{u}\left(q_{0}\right), \\
& h_{u v}\left(q_{0}\right)=\left\langle\boldsymbol{x}_{u v}\left(q_{0}\right), \boldsymbol{x}_{u}\left(q_{0}\right)\right\rangle=\frac{1}{2} E_{v}\left(q_{0}\right), \\
& h_{v v}\left(q_{0}\right)=\left\langle\boldsymbol{x}_{v v}\left(q_{0}\right), \boldsymbol{x}_{u}\left(q_{0}\right)\right\rangle=\left(F_{v}-\frac{1}{2} G_{u}\right)\left(q_{0}\right) .
\end{aligned}
$$

The lightlike direction $\boldsymbol{x}_{u}\left(q_{0}\right)$ is tangent to the $L D$ at $p_{0}=\boldsymbol{x}\left(q_{0}\right)$ if and only if $E_{u}\left(q_{0}\right)=0$. But as S is convex, $\left(h_{u v}^{2}-h_{u u} h_{v v}\right)\left(q_{0}\right)=\frac{1}{4}\left(E_{v}^{2}-2\left(F_{v}-\frac{1}{2} G_{u}\right) E_{u}\right)\left(q_{0}\right) \leq 0$, so $E_{u}\left(q_{0}\right)=0$ implies $E_{v}\left(q_{0}\right)=0$, and consequently the $L D$ is singular. Therefore, $E_{u} \neq 0$ at regular points of δ on the $L D$, that is, the lightlike principal direction is transverse to the $L D$ at the regular points of δ on this set.

Theorem 3.3 Let S be a closed and convex surface of class C^{3} in \mathbb{R}_{1}^{3}. Then S has at least two umbilic points.

Proof Consider the C^{3}-function $f: S \rightarrow \mathbb{R}$ given by $f(p)=p_{0}$ for any $p=$ $\left(p_{0}, p_{1}, p_{2}\right) \in S$. It has a global minimum $p_{\min }$ and a global maximum $p_{\max }$ (these points need not be unique). The tangent planes to S at $p_{\min }$ and $p_{\max }$ are spacelike (both are given by $u_{0}=0$). Therefore, $p_{\min }$ and $p_{\max }$ belong to the Riemannian part of S. Suppose that they belong to the same Riemannian connected component R of S. Let $\gamma:[0,1] \rightarrow R$ be a continuous path in R with $\gamma(0)=p_{\text {min }}$ and $\gamma(1)=p_{\text {max }}$, and consider the Gauss map $N: \tilde{S} \rightarrow S^{2}$ as in the proof of Lemma 3.1. The continuous curve $N \circ \gamma$ satisfies $N \circ \gamma(0)=(-1,0,0)$ and $N \circ \gamma(1)=(1,0,0)$, so there exists $t_{0} \in(0,1)$ such that $N \circ \gamma\left(t_{0}\right)$ belongs the equator $u_{0}=0$ on S^{2}. Therefore, the tangent space to S at $\gamma\left(t_{0}\right)$ is a timelike plane, which is a contradiction as R is supposed to be Riemannian.

Let R_{1} (resp. R_{2}) denotes the Riemannian connected component of S which contains $p_{\min }$ (resp. $p_{\max }$) and let L_{1} (resp. L_{2}) be its boundary. The sets L_{1} and L_{2} are part of the $L D$. It follows from the proof of Lemma 3.1 that L_{1} and L_{2} are disjoint sets (L_{1} is part of the pre-image of the circle $u_{0}=-1 / \sqrt{2}$ by the Gauss map N, and L_{2} is part of the pre-image of the circle $u_{0}=1 / \sqrt{2}$ by $\left.N\right)$.

We consider local parametrisations of S at points on L_{1} and L_{2}. If $\delta=F^{2}-E G$ is singular on L_{1} and L_{2}, then the singular points are lightlike umbilic points (Lemma 3.2(1)). As L_{1} and L_{2} are disjoint, we get at least two umbilic points on S.

Suppose that δ is regular on L_{1} (so L_{1} is a regular curve; it is also a closed curve). The surface S being closed and convex is homeomorphic to a 2 -sphere. Thus R_{1} is homeomorphic to a disc. Consider the direction field in R_{1} given by equation (2) and which agrees with the unique lightlike direction in $T_{p} S$ for all $p \in L_{1}$. This direction field is transverse to L_{1} (Lemma 3.2(2)), so by Poincaré-Hopf theorem it must have at least one singularity in R_{1}. This singularity is a spacelike umbilic point as R_{1} is a Riemannian region. We proceed similarly if δ is regular on L_{2} to get a second umbilic point of S. If δ is singular at a point on L_{2}, the singularity is a lightlike umbilic point and gives a second umbilic point of S.

We showed in [5] section 4.4 that (the Euclidean sphere) S^{2} has exactly two umbilic points and both of them are spacelike. We have the following general result.

Theorem 3.4 The umbilic points of an ovaloid in \mathbb{R}_{1}^{3} of class C^{3} are all spacelike and there are at least two of them.

Proof We change the metric in \mathbb{R}^{3} and consider an ovaloid $S \subset \mathbb{R}_{1}^{3}$ as a surface \tilde{S} in the Euclidean space \mathbb{R}^{3}. The fact that the contact of S with its tangent plane (which is independent of the metric) is A_{1}^{+}implies that the Gaussian curvature of \tilde{S} is strictly positive. By Hadamard's theorem, the Gauss map $N: \tilde{S} \rightarrow S^{2}$ is a diffeomorphism
([1]). This implies that the $L D$ of S is the union of two regular (non-empty) disjoint closed curves. These split the surface into three parts, two of them are Riemannian and one is Lorentzian. By Lemma 3.2(2), the unique lightlike principal direction on the $L D$ is transverse to the $L D$. By Poincaré-Hopf theorem, there is at least one spacelike umbilic point in each Riemannian disc of S.

We now show that there are no timelike umbilic points on S. The timelike umbilic points occur in the Lorentzian part of the surface, so we can take a local parametrisation $\boldsymbol{x}: U \subset \mathbb{R}^{2} \rightarrow \mathbb{R}_{1}^{3}$ where the coordinate curves are lightlike (Theorem 3.1 in [5]). Then $E=G=0$ in U. The equation of the lines of principal curvature simplifies to $n d v^{2}-l d u^{2}=0$, so the timelike umbilic points are the solutions of $l=n=0$.

Let $q_{0}=\left(u_{0}, v_{0}\right) \in U$ and consider the height function h on $\boldsymbol{x}(U)$ along the unit normal vector $\boldsymbol{N}\left(q_{0}\right)=\left(\boldsymbol{x}_{u} \times \boldsymbol{x}_{v} /\left\|\boldsymbol{x}_{u} \times \boldsymbol{x}_{v}\right\|\right)\left(q_{0}\right)$. The Taylor polynomial of $h(u, v)=\left\langle\boldsymbol{x}(u, v), \boldsymbol{N}\left(q_{0}\right)\right\rangle$ at q_{0} is given by

$$
\frac{1}{2}\left(l\left(q_{0}\right)\left(u-u_{0}\right)^{2}+2 m\left(q_{0}\right)\left(u-u_{0}\right)\left(v-v_{0}\right)+n\left(q_{0}\right)\left(v-v_{0}\right)^{2}\right)
$$

where l, m, n are the coefficients of the second fundamental form. As S is an ovaloid, $\left(m^{2}-n l\right)(q)<0$ for any $q \in U$ and consequently $l(q) n(q) \neq 0$ at any $q \in U$. This proves that there are no timelike umbilic points on S.

References

[1] M. P. do Carmo, Differential geometry of curves and surfaces. Prentice-Hall, 1976.
[2] D. Genin, B. Khesin and S. Tabachnikov, Geodesics on an ellipsoid in Minkowski space. Enseign. Math. 53 (2007), 307-331.
[3] B. Guilfoyle and W. Klingenberg, Proof of the Caratheodory conjecture by mean curvature flow in the space of oriented affine lines. Preprint, arXiv:0808.0851v1, 2008.
[4] C. Gutierrez and J. Sotomayor, Lines of curvature, umbilic points and Carathéodory conjecture. Resenhas 3 (1998), 291-322.
[5] S. Izumiya and F. Tari, Self-adjoint operators on surfaces with a singular metric. J. Dyn. Control Syst. 16 (2010), 329-353.
[6] D. Pei, Singularities of $\mathbb{R} P^{2}$-valued Gauss maps of surfaces in Minkowski 3-space. Hokkaido Math. J. 28 (1999), 97-115.
[7] F. Tari, Caustics of surfaces in the Minkowski 3-space. Q. J. Math. 63 (2012), 189-209; doi: 10.1093/qmath.laq030.

