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Abstract

We survey in this paper results on a particular set of Implicit Differential Equations (IDEs) on
smooth surfaces, called Binary/Quadratic Differential Equations (BDEs). These equations define
at most two solution curves at each point on the surface, resulting in a pair of foliations in some
region of the surface. BDEs appear naturally in differential geometry and in control theory. The
examples we give here are all from differential geometry. They include natural families of BDEs
on surfaces. We review the techniques used to obtain local models of BDEs (formal, analytic,
smooth and topological). We also discuss some invariants of BDEs and present a framework for
studying their bifurcations in generic families.

1. Introduction

An implicit differential equation (IDE) is an equation of the form

F (x, y, p) = 0, p =
dy

dx
(1.1)

where F is a smooth (i.e., C∞) or real analytic function in some domain in R3. If F (q0) = 0 and
Fp(q0) 6= 0 at q0 = (x0, y0, p0) ∈ R3 (when not indicated otherwise, subscripts denote partial
differentiation), equation (1.1) can be written locally in a neighbourhood of q0 in the form
p = g(x, y). It can then be studied using the methods from the theory of ordinary differential
equations.

When F (q0) = Fp(q0) = 0, there may be more then one solution curve of equation (1.1)
through points in a neighbourhood U of (x0, y0). We deal here mainly with the case when
Fpp(q0) 6= 0, so there are at most two solution curves through each point in U . In this case, it
follows from the division theorem that equation (1.1) can be expressed in a quadratic form

a(x, y)dy2 + 2b(x, y)dxdy + c(x, y)dx2 = 0 (1.2)

where a, b, c are smooth or analytic functions in some neighbourhood U of (x0, y0) not vanishing
simultaneously at any point in U . Equation (1.2) is called a Binary Differential Equation (BDE)
or Quadratic Differential Equation. The functions a, b, c are called the coefficients of the BDE.

It is also of interest to study BDEs at points where their coefficients vanish at a given point.
We shall label these Type 2 BDEs and reserve the label Type 1 BDEs to those with coefficients
not vanishing simultaneously at any point. There are some crucial differences between the two
types of BDEs. For instance, Type 1 BDEs may have finite codimension in the set of all IDEs
and can be deformed in this set. However, Type 2 BDEs are of infinite codimension in the set
of all IDEs and are deformed in the set of all BDEs. Other differences will be highlighted in
the paper.

The discriminant of a BDE is the set ∆ = {(x, y) ∈ U : (b2 − ac)(x, y) = 0}. A BDE
determines a pair of transverse foliations or no foliations away from the discriminant. Thus, all
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the important features of the equation occur on the discriminant. The discriminant, together
with the pair of foliations determined by the BDE is called the configuration of the BDE.

BDEs have a long history (see for example [25] and [62] for historical notes). They appear in,
and have application to, control theory, partial differential equations and differential geometry.
The examples in this paper are from differential geometry. For applications to control theory
see [25, 51]. The paper is organised as follows:
§2: lines of curvature, asymptotic and characteristic curves are classical pairs of foliations on

surfaces and are given by BDEs. We consider their configurations on a surface endowed with a
Riemannian or a Lorentzian metric. We also discuss the case of surfaces endowed with a metric
of mixed type.
§3: the examples in §2 provide a good motivation for seeking models of the configurations of

BDEs at points on the discriminant. We review the techniques involved for finding such models
and clarify the meaning of the word model (up to formal, analytic, smooth or topological
equivalence). We also give a complete list of local singularities of topological codimension ≤ 2.
§4: the discriminant of a BDE is a plane curve. However, the deformation of its singularities

cannot always be modelled by the K-deformations of a plane curve singularity. We review
some invariants associated to BDEs and review Bruce’s symmetric matrices framework ([6])
for studying the singularities of the discriminant.
§5: we review briefly a method for studying the bifurcations of a BDE in generic families of

BDEs.
§6: we highlight references where work on more general IDEs and homogeneous differential

equations of a given degree is carried out. We also give a list of existing local topological models
of BDEs of codimension > 2.

An important aspect of BDE which is omitted here is the study of their foliations near a
limit cycle. This study is initiated in the pioneering work of Sotomayor and Gutierrez [64]
where they obtained a formula for the derivative of the Poincaré return map at a limit cycle
of the lines of principal curvature on a smooth surface in R3. The behaviour of the asymptotic
and characteristic curves at a limit cycle is also studied in [32, 33].

2. Examples from differential geometry

Let S be a smooth surface. We start with the case when S is immersed in the Euclidean space
R3 and denote by “.” the scalar product in R3. Let x : U ⊂ R2 → R3 be a local parametrisation
of S, and S2 denotes the unit sphere in R3. The Gauss map

N : x(U) ⊂ S → S2,

assigns to each point p = x(u, v) the normal vector N(p) = (xu × xv/||xu × xv||)(u, v) to S at
p.

The shape operator Ap = −dpN : TpS → TpS (or the Weingarten map) has the following
properties: it is a self-adjoint operator, i.e., a linear operator with Ap(w1).w2 = w1.Ap(w2),
for any pair of vectors in TpS; it has always two real eigenvalues κ1, κ2 called the principal
curvatures; it has two orthogonal eigenvectors (when κ1 6= κ2) called the principal directions.
The integral curves on S of the principal directions line fields are called the lines of principal
curvature. The points where κ1 = κ2 are referred to as umbilic points. For generic immersions,
the umbilic points are isolated points on S.

Let E = xu.xu, F = xu.xv, G = xv.xv denote the coefficients of the first fundamental form
and l = N.xuu, m = N.xuv = N.xvu, n = N.xvv those of the second fundamental form on S.
Then, the equation of the lines of principal curvature is given by the BDE

(Gm− Fn)dv2 + (Gl − En)dvdu+ (Fl − Em)dv2 = 0. (2.1)
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The discriminant of equation (2.1) is the set of umbilic points. Away from such points the lines
of curvature form a net of orthogonal curves. The coefficients of equation (2.1) vanish at umbilic
points, so we have a BDE of Type 2 there. There are generically three distinct topological
configurations of the lines of curvature at umbilic points (Figure 6, top three figures). The
configurations were first drawn by Darboux and a rigorous proof was given in [7, 64]. The
global behaviour of the lines of principal curvature on closed orientable surfaces in R3 was first
studied in [64]. (For historical notes on the study of the lines of curvature see [62].)

Two directions w1, w2 ∈ TpS are conjugate if Ap(w1).w2 = 0. An asymptotic direction is
a self-conjugate direction, that is Ap(w).w = 0. There are two asymptotic directions at a
hyperbolic point and none at an elliptic point on the surface. The integral curves of the pair of
asymptotic line fields are called the asymptotic curves. The equation of the asymptotic curves
is given by the BDE

ndv2 + 2mdvdu+ ldu2 = 0. (2.2)

The discriminant of equation (2.2) is the parabolic set of the surface. The asymptotic curves
form a family of cusps at a generic parabolic point. Their configurations at a cusp of Gauss
are given in [3, 4, 50] (Figure 2, last three figures) and a more general approach for studying
the singularities of their equation at such points is given in [23, 24, 51, 70]. Generic global
properties of these foliations including the study of their limit cycles are given in [33].

At elliptic points there is a unique pair of conjugate directions for which the included angle
is extremal ([28]). These directions are called the characteristic directions and their integral
curves are called the characteristic curves. Characteristic directions on surfaces in R3 are
studied in [28, 55, 60] and more recently in [8, 15, 32, 58]. In [32] they are labelled harmonic
mean curvature lines and are defined as curves along which the normal curvature is K/H,
where K is the Gaussian curvature and H is the mean curvature of S. The equation of the
characteristic curve is given by the BDE

(2m(Gm− Fn)− n(Gl − En))dv2

+2(m(Gl + En)− 2Fln)dvdu
+(l(Gl − En)− 2m(Fl − Em))du2 = 0.

(2.3)

It is shown in [15] that the BDEs of the asymptotic, characteristic and principal curves
are related. A BDE (1.2) can be viewed as a quadratic form and represented at each point
in U by the point (a(x, y) : 2b(x, y) : c(x, y)) in the projective plane. Let Γ denote the conic
of degenerate quadratic forms. To a point in the projective plane is associated a unique polar
line with respect to Γ, and vice-versa. A triple of points is called a self-polar triangle if the
polar line of any point of the triple contains the remaining two points. It turns out that, at non
parabolic or umbilic points on M , the triple asymptotic, characteristic and principal curves
BDEs form a self-polar triangle ([15]). In particular, any two of them determine the third one.

In [29] is constructed a natural 1-parameter family of BDEs, called conjugate curve
congruence, that links the asymptotic curves BDE and the principal curves BDE on a smooth
surface in R3. In [15], it is constructed a natural 1-parameter family of BDEs, called reflected
conjugate congruence, linking the characteristic curves BDE and that of the principal curves.

Consider the projective space PTpM of all tangent directions through a point p ∈M which
is neither an umbilic nor a parabolic point. Conjugation gives an involution on PTpM , v 7→ v =
C(v). There is another involution on PTpM which is the reflection in either of the principal
directions, v 7→ R(v).

Definition 1. 1. ([29]) Let Θ : PTM → [−π/2, π/2] be given by Θ(p, v) = α, where α
denotes the oriented angle between a direction v and the corresponding conjugate direction
v = C(v). The conjugate curve congruence, for a fixed α, is defined to be Θ−1(α) and is denoted
by Cα.
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2. ([15]) Let Φ : PTM → [−π/2, π/2] be given by Φ(p, v) = α, where α is the signed angle
between v and R(v) = R ◦ C(v). Then, the reflected conjugate curve congruence, for a fixed α,
is defined to be Φ−1(α) and is denoted by Rα.

Proposition 2.1. 1. ([29]) The conjugate curve congruence Cα of a parametrised surface
is given by the BDE

(sinα(mG− nF )− n cosα
√
EG− F 2)dv2

+(sinα(lG− nE)− 2m cosα
√
EG− F 2)dvdu

+(sinα(lF −mE)− l cosα
√
EG− F 2)du2 = 0.

(2.4)

2. ([15]) The reflected conjugate congruence Rα is given by the BDE

(2m(mG− nF )− n(Gl − En)) cosα+ (nF −mG) 2mF−lG−nE√
(EG−F 2)

sinαdv2

+2(m(lG+ nE)− 2lnF ) cosα+ (nE − lG) 2mF−lG−nE√
(EG−F 2)

sinαdvdu

+(l(lG− nE)− 2m(lF −mE)) cosα+ (mE − lF ) 2mF−lG−nE√
(EG−F 2)

sinαdu2 = 0.
(2.5)

Remark 1. The concepts of asymptotic, principal and characteristic curves and of
conjugate and reflected curve congruences can be associated to any self-adjoint operator on a
Riemannian surface ([65]).

We turn now to the case of surfaces embedded in a non-Euclidean space. We consider a
smooth surface S endowed with a Lorentzian metric, that is, a metric which is locally equivalent
to λ(u, v)(dv2 − du2). We shall refer to such surfaces as timelike surfaces. In view of Remark 1,
we consider a self-adjoint operator A on S, so A : TS → TS is a smooth map, where TS is the
tangent bundle of S and its restriction Ap : TpS → TpS is a self-adjoint operator. An example
of this situation is provided by an immersed timelike surface in the de Sitter space S3

1 ⊂ R4
1,

where R4
1 denotes the Minkowski 4-space. Then, there is a natural Gauss map E : S → S3

1 and
its derivative is a self-adjoint operator on S ([48]).

Because the metric on S is not positive definite, Ap does not always have real eigenvalues.
When it does, we label them A-principal curvature and the associated eigenvectors the A-
principal directions. The A-lines of principal curvature are given by the BDE (2.1), where
E,F,G are the coefficients of the first fundamental form on S and l,m, n are referred to as the
coefficients of the A-second fundamental form and are given by the same formulae as those for
surfaces in the Euclidean 3-space. The discriminant of the equation is now a curve which is
generically either empty or smooth except at isolated points where it has a Morse singularity
of type node. We label these singular points timelike umbilic points as Ap is a multiple of
the identity at such points. The configurations of the A-lines of curvature at timelike umbilic
points are those in Figure 6, second and third rows.

The concepts of A-asymptotic and A-characteristic directions and curves can also be defined
and their equations are given by the BDEs (2.2) and (2.3) respectively ([49]). The local
behaviour of these pairs of foliations is distinct from that of their counterpart on a surface
in the Euclidean 3-space.

Surfaces that have a mixed type metric give rise to interesting problems. Suppose given
a metric ds2 = a(u, v)dv2 + 2b(u, v)dvdu+ c(u, v)du2 on a smooth surface S, where the set
ac− b2 = 0 is a smooth curve on S. Suppose the metric ds2 is Riemannian in the region
ac− b2 > 0, so it is equivalent to λ(u, v)(dv2 + du2). It is Lorentzian in the region ac− b2 < 0,
so it is equivalent to λ(u, v)(dv2 − du2). Miernowski [52] considered the problem of finding an
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analytic model of the metric at points on the curve ac− b2 = 0. The problem reduces to finding
analytic models of BDEs of Type 1 at points on their discriminant (see §3.1).

Given an immersed surface S in the Minkowski space R3
1, the restriction of the pseudo

scalar product in R3
1 to S gives a metric on S which can be of mixed type. The asymptotic,

characteristic and principal curves associated to the Gauss map of S are well defined on the
Riemannian and the Lorentzian parts of S. Their extensions to the degenerate locus of the
metric on S are studied in [49].

3. Classification

We denote by ω(x, y, dx, dy) = a(x, y)dy2 + 2b(x, y)dydx+ c(x, y)dx2 the quadratic form
associated to the BDE (1.2) and also use ω to refer to the equation ω = 0. The interest here
is local, so we take a, b, c to be germs of functions R2, 0→ R. We consider the origin to be a
point on the discriminant. For BDEs of Type 1, we can rotate the coordinate axes in the plane,
set p = dy/dx and take p in a neighbourhood of zero. However, for BDEs of Type 2, we take
(dx : dy) ∈ RP 1.

Definition 2. Two germs, at the origin, of BDEs ω1 and ω2 are respectively smoothly,
analytically or formally equivalent if there exist germs H = (h1, h2) : R2, 0→ R2, 0 of a smooth,
analytic or formal diffeomorphism and r : R2, 0→ R of a smooth, analytic or formal function
not vanishing at 0 such that

ω2 = r.H∗ω1,

that is, ω2(x, y, dx, dy) = r(x, y)ω1(h1(x, y), h2(x, y), dh1(x, y), dh2(x, y)).
Two germs of BDEs are topologically equivalent if there exists a germ of a homeomorphism

that takes the configuration of one to the configuration of the other.

The aim is to produce representatives (models, preferably in simple forms) of equivalence
classes of the equivalence relations in Definition 2. A more realistic task is to produce models
of germs of low codimensions, which we define as follows. We associate to a germ of a BDE
ω = (a, b, c) the jet-extension map

Φ : R2, 0 → Jk(2, 3)
(x, y) 7→ jk(a, b, c)|(x,y)

where Jk(2, 3) denotes the vector space of polynomial maps of degree ≤ k from R2 to R3, and
jk(a, b, c)|(x,y) is the k-jet of (a, b, c) at (x, y). (This is simply the Taylor expansion of order k
of (a, b, c) at (x, y).)

Definition 3. A singularity of ω is of codimension m if the conditions that define it yield
a semi-algebraic set V of codimension m+ 2 in Jk(2, 3), for any k ≥ k0.

3.1. Formal and analytic classifications

We can reduce, inductively on the k-jet spaces, the coefficients of a BDE to simpler forms by
making polynomial changes of coordinates in the plane and multiply by invertible polynomial
functions. If this process converges, i.e., the composite of all the changes of coordinates (resp.
multiplicative polynomials) converges to an analytic diffeomorphism (resp. non zero analytic
function), then the obtained germ of a BDE is an analytic model. Otherwise we have a formal
model. The convergence problem is a complicated one, see for example [1] for the case of
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vector fields. However, even if the process is not convergent (which is the case in general),
the reduction of the k-jet of a BDE to a simple form is very valuable in practice. The local
topological behaviour of the solutions and the relevant invariants of a BDE do, in general,
depend only on some initial terms of the coefficients of the BDE. Taking these in simpler
forms makes the geometric interpretation of the conditions involved more apparent and the
calculations more manageable.

The formal classification of some BDEs of Type 1 is dealt with in [16]. We can reduce the
constant part of the BDE to one of the following cases

dy2 + dx2, dy2 − dx2, dy2, 0.

(We show below how this is done.) It is shown in [16] that a BDE with constant part equivalent
to dy2 ± dx2 is analytically equivalent to dy2 ± dx2. The initial form dy2 leads to the following
representatives of orbits in the space of 1-jets:

dy2 + xdx2, dy2 − ydx2, dy2.

We reproduce from [16] the case dy2 + xdx2 as an example of how the formal reduction is
carried out. Suppose a BDE has 1-jet dy2 + xdx2 and assume that the k-jets of the coefficients of
the BDE are 1 + ak, 2bk, x+ ck, with ak, bk, ck belonging to the set of homogeneous polynomials
of degree k which we denote by Hk. We make changes of coordinates of the form

x = X + p(X,Y )
y = Y + q(X,Y )

with p ∈ Hk and q ∈ Hk+1 and multiply by 1 + r(X,Y ), r ∈ Hk. Then,

dx = (1 + pX)dX + pY dY, dy = qXdX + (1 + qY )dY,

and the k-jet of the transformed BDE is

(1 + ak + r + 2qY , bk + qX +XpY , x+ ck + p+ 2XpX).

We are seeking r, p, q so that ak + r + 2qY = bk + qX +XpY = ck + p+ 2XpX = 0, i.e.,

r + 2qY = −ak,
qX +XpY = −bk,
p+ 2XpX = −ck.

This process produces the linear map

Lk : Hk ⊕Hk+1 ⊕Hk → Hk ⊕Hk ⊕Hk

(p, q, r) 7→ (r + 2qY , p+ 2XpX , qX +XpY )

The map Lk is surjective and furthermore L̄k = Lk|qk+1=0 is an isomorphism, where qk+1

denotes the coefficient of yk+1 in q. Therefore, the above linear system has a solution, which
means that we can reduce the k-jet of the coefficients of the BDE to (1, 0, x).

Proposition 3.1. ([16]) 1. Suppose that a germ of a BDE has linear part dy2 + xdx2.
Then, for any k ≥ 1 we can change coordinates and multiply by a non zero function so that
the germ of the transformed BDE has k-jet dy2 + xdx2.

2. Suppose the germ of a BDE has linear part dy2 + xdx2. Then, there exist an analytic
change of coordinates which transforms the BDE to µ(x, y)(dy2 + xdx2), where µ is an analytic
function not vanishing at the origin.

The BDEs with 1-jet dy2 − ydx2 are also considered in [16]. The 2-jet can be put in the
form dy2 − (y + λx2)dx2. It is shown in [16] that
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Proposition 3.2. ([16]) For almost all value of λ, a BDE with 2-jet dy2 − (y + λx2)dx2

is formally equivalent to dy2 − (y + λx2)dx2.

As pointed in the §2, Miernowski [52] considered the problem of finding analytic models of a
metric ds2 = a(u, v)dv2 + 2b(u, v)dvdu+ c(u, v)du2 of mixed type at points where ac− b2 = 0.
Suppose that the point in consideration is the origin. Miernowski showed that if the 1-jet of
ds2 is equivalent to dv2 + udu2, then the metric is analytically equivalent to µ(u, v)(dv2 +
udu2) (compare Proposition 3.1). However, if the 1-jet of ds2 is equivalent to dv2 − vdu2, then
Miernowski proved that there is a functional modulus in the classification. As a corollary of
his result, a BDE with 2-jet dy2 − (y + λx2)dx2 cannot be reduced to the form µ(x, y)(dy2 −
(y + λx2)dx2) by analytic changes of coordinates.

We turn now to BDEs of Type 2. We have the following orbits in the 1-jet space where
ε = ±1:

– (y, b1x+ b2y, εy), b1 6= 0, 2b1 + ε 6= 0, b1 6= 1
2 (b22 − ε), and b1 6= ±b2 − 1 when ε = +1 ([17,

38])
– (x+ a2y, 0, y), a2 >

1
4 ([66])

– (y,±x+ b0y, 0), (y, y, 0), (x+ y, 0, 0), (x, b0y, 0), (x+ y,−y, 0), (y, 0, 0), (0, 0, 0) ([13]).
It turns out that there are no discrete orbits in the formal classification. It is shown in

[17] that a BDE with 1-jet (y, b1x+ b2y, εy), ε = ±1 can be reduced, for almost all values of
(b1, b2), by a formal diffeomorphism and multiplication by non zero formal power series to
(y, b1x+ b2y + b(x, y), εy), where b(x, y) is a formal power series with no constant or linear
terms. (See also [42] for a similar result for the case ε = −1.)

3.2. Smooth and topological classifications

We deal with BDEs of Type 1 and 2 separately.

BDEs of Type 1

The study of BDEs of Type 1 follows form the general study of IDEs. The IDE (1.1) defines
a surface

M = {(x, y, p) ∈ R3 : F (x, y, p) = 0}

in the 3-dimensional space of 1-jets of functions endowed with the contact structure α = dy −
pdx. Consider the projection π : M → R2, π(x, y, p) = (x, y). Generically,M is a smooth surface
(that is 0 is a regular value of F ) and the restriction of π to M is either a local diffeomorphism,
a fold or cusp map. The set of critical points of the projection is called the criminant of the IDE
and is given by the equations F = Fp = 0. The set of critical values of the projection is called
the discriminant of the IDE, and is obtained by eliminating p from the equations F = Fp = 0.

The multi-valued direction field defined by F in the plane lifts to a single-valued direction
field on the surface. This direction field is determined by the vector field

ξ = Fp
∂

∂x
+ pFp

∂

∂y
− (Fx + pFy)

∂

∂p

(which is along the intersection of M with the contact planes in R3). It is of course tangent to
M at (x, y, p) and projects to a line through (x, y) with slope p.

If π is a local diffeomorphism at (x, y, p), then the integral curves of ξ around (x, y, p) project
to a family of smooth curves around (x, y).

Suppose that π|M has a fold singularity at (x, y, p), i.e., we can choose local coordinates in M
and R2 for which π has the form (u, v2). This means that F = Fp = 0 but Fpp 6= 0 at (x, y, p).
Then, the IDE is locally a BDE at (x, y, p) and the discriminant is a smooth curve. (For BDEs
of Type 1, the surface M is smooth if and only if the discriminant is smooth.) Every point in
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R2

M

Figure 1. The lifted field ξ and the involution σ on M .

the plane near (x, y) which is not on the discriminant has two pre-images on M under π. This
defines an involution σ on M near (x, y, p), which interchanges pairs of points with the same
image under σ (Figure 1). The criminant is the set of fixed points of σ. Thus, locally at (x, y, p),
we have a pair (ξ, σ) of a vector field and an involution on M . The classification (smooth or
topological) of IDEs is the same as the classification (smooth or topological) of the pairs (ξ, σ).
When ξ is regular, the IDE is smoothly equivalent to dy2 − xdx2 = 0 (i.e., p2 − x = 0) ([23]).
If ξ has an elementary singularity (saddle/node/focus), then the corresponding point in the
plane is called a folded singularity of the BDE. At folded singularities, the equation is locally
smoothly equivalent to

dy2 + (−y + λx2)dx2 = 0, (3.1)

with λ 6= 0, 1
16 , provided that ξ is linearisable at the singular point; see [24, 25].

Normal forms at folded resonant saddles and nodes are given in [27]. At a degenerate
elementary singular point of ξ of multiplicity r ∈ N, r > 1, the equation is smoothly equivalent
to

(
dy

dx
+ εxr +Ax2r−1)2 = y

where A ∈ R and ε ∈ {(±1)r}; see [26].
Suppose that π|M has a cusp singularity at (x, y, p), i.e., we can choose local coordinates

in M and R2 for which π has the form (u, v3 + uv). This means that F = Fp = Fpp = 0 but
Fppp 6= 0 at (x, y, p). Then, the IDE is locally a cubic equation in p and the discriminant has
a cusp singularity. Bruce [5] conjectured that the IDE has a functional modulus for smooth
equivalence. Davydov [24] proved that the equation has a functional modulus even for the
topological equivalence (see also §3.3).

We turn now to the topological equivalence. This can be treated in several ways. It can be
done, as in [24, 25], by studying the pair (ξ, σ). Kuzmin [51] split the BDE into two ODEs
and used the methods of ODE to analyse the behaviour of the solutions. In [9, 67, 69] we
used the method of blowing up (see below). We give below the topological classification of the
singularities of codimension ≤ 2.

There are three stable topological models (see [25] for references) at folded singularities: a
folded saddle if λ < 0, a folded node if 0 < λ < 1

16 and a folded focus if 1
16 < λ in equation (3.1);

Figure 2, last three figures respectively. The labelling in the figures refers to the coefficients
(a, b, c) of the model BDE. The first two figures in Figure 2 are models away from the
discriminant, and the third at points on the discriminant corresponding to regular points of ξ.
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O

(1,0,1) (1,0,-1) (1,0,x) (1,0,-y-x2) (1,0,-y-1/32x2) (1,0,-y+x2)

Figure 2. Topological models of stable singularities of BDEs of Type 1.

Codimension 1 singularities are dealt with in [9, 25, 51, 67], see Figure 3. These occur
when: the lifted field ξ has a saddle-node singularity (Figure 3, first figure, λ = 0 in equation
(3.1)); the lifted field ξ has equal eigenvalues (Figure 3, second figure, λ = 1/16 in equation
(3.1)); or when the discriminant has a Morse singularity, labelled Morse Type 1 singularities
in [9] (Figure 3, last 4 figures). The Morse Type 1 singularities are distinguished by the type
of the singularity of the discriminant, isolated point or node, and by the type of the folded
singularities that appear in a generic deformation (two folded saddles or foci), see [9].

(1,0,-y+x3) (1,0,-y+1/16x2) (1,0,x2-y2) (1,0,-x2+y2) (1,0,-x2-y2) (1,0,x2+y2)

Figure 3. Topological models of codimension 1 singularities of BDEs of Type 1.

Codimension 2 singularities are classified in [69]. Degeneracy occurs in three ways: the
discriminant is smooth and the lifted field has a degenerate elementary singularity of
multiplicity 3 (Figure 4, first two figures); the discriminant has a Morse singularity of type
node and the unique direction determined by the IDE at the origin has an ordinary tangency
with one of the branches of the discriminant (Figure 4, third figure); the discriminant has a
cusp singularity with a limiting tangent transverse to the unique direction determined by the
IDE (Figure 4, last two figures).

(1,0,-y+x4) (1,0,-y-x4) (1,0,xy+x3) (1,0,-x2+y3) (1,0,x2+y3)

Figure 4. Topological models of codimension 2 singularities of BDEs of Type 1.

We have a general topological result about IDEs with F = Fp = 0 and Fpp 6= 0 at the origin.
Such IDEs can be written in the form ω = dy2 + f(x, y)dx2 = 0 ([13]). We say that ω is
finitely topologically determined if there exists k ∈ N such that any BDE ω′ with jkω′ = jkω
is topologically equivalent to ω.
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Theorem 3.3. ([69]) A BDE ω = dy2 + f(x, y)dx2 = 0 with f(x, y) and g(x) = f(x, 0)
K-finitely determined is finitely topologically determined.

The hypotheses in Theorem 3.3 are equivalent to m(w) <∞, where m(w) is the multiplicity
of the IDE (§4.1).

BDEs of Type 2

As pointed out in §3.1 there are no discrete local models under formal equivalence for BDEs
of Type 2. To my knowledge, smooth equivalence has only been considered in one case in [42]
(see Remark 2(2)). For topological equivalence there are several ways to proceed. We review
here two techniques, another one can be found in [51].

One way to proceed when seeking topological models for BDEs of Type 2 is to consider
a blowing-up of the singularities of the BDEs. This is first done in [64] where topological
models of the lines of curvature at umbilic points on a smooth surface in R3 are sought. Gúıñez
([39] and elsewhere) used this technique on BDEs whose discriminants are isolated points,
labelled there positive quadratic equations. However, Gúıñez’s technique can be extended to
deal with general BDEs ([57, 66, 68]). We highlight Gúıñez’s method below for the case when
j1ω = (y, b1x+ b2y,−y).

Following the notation in [39], let fi(ω), i = 1, 2 denote the foliation associated to the BDE
ω = (a, b, c), which is tangent to the vector field a ∂

∂u + (−b+ (−1)i
√
b2 − ac ) ∂∂v . If ψ is a

diffeomorphism and λ(x, y) is a non-vanishing real valued function, then ([39]) for k = 1, 2,
1. ψ(fk(ω)) = fk(ψ∗(ω)), if ψ is orientation preserving;
2. ψ(fk(w)) = f3−k(ψ∗(ω)), if ψ is orientation reversing;
3. fk(λω) = fk(ω), if λ(x, y) is positive;
4. fk(λω) = f3−k(ω), if λ(x, y) is negative.

We write ω = (y +M1(x, y), b1x+ b2y +M2(x, y),−y +M3(x, y)) and consider the direc-
tional blowing-up x = u, y = uv. (We also need to consider the blowing-up x = uv, y = v.)
Then, the new BDE ω0 = (u, v)∗ω has coefficients

ā = u2(uv +M1(u, uv)),
b̄ = uv(uv +M1(u, uv)) + u(b1u+ b2uv +M2(u, uv)),
c̄ = v2(uv +M1(u, uv)) + 2v(b1u+ b2uv +M2(u, uv))− uv +M3(u, uv).

We can write (ā, b̄, c̄) = u(u2A1, uB1, C1) with
A1 = v + uN1(u, v),
B1 = v2 + b2v + b1 + u(N2(u, v) + vN1(u, v)),
C1 = v(v2 + 2b2v + 2b1 + ε) + u(v2N1(u, v) + 2vN2(u, v) +N3(u, v)),

and Mi(u, uv) = u2Ni(u, v), i = 1, 2, 3.
The quadratic form ω1 = (u2A1, uB1, C1) can be decomposed into two 1-forms, and to these

1-forms are associated the vector fields

Xi = (u2A1,−uB1 + (−1)i
√
u2(B2

1 −A1C1) ), i = 1, 2.

These vector fields are tangent to the foliations defined by ω1. It is clear that we can factor
out the term u in Xi, with an appropriate sign change when u < 0. The vector fields

Yi = (uA1,−B1 + (−1)i
√
B2

1 −A1C1 ), i = 1, 2

are then considered. Since the blowing up is orientation preserving if u > 0 and orientation
reversing if u < 0, and we factored out u twice, it follows from the observation above (see [39])
that Y1 corresponds to the foliation F1 of ω if u > 0 and to F2 if u < 0; while Y2 corresponds
to F2 if u > 0 and to F1 if u < 0.
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One studies the vector fields Yi in a neighbourhood of the exceptional fibre u = 0, and blows
down to obtain the configuration of the integral curves of the original BDE. One can then
proceed as in [9, 67, 69] to show that any two such configurations are homeomorphic.

Another way to proceed when seeking topological models for such BDEs of Type 2 is as
follows (see for example [7] for the case c = −a and in [11] for the general case). Consider the
associated surface to the BDE

M = {(x, y, [α : β]) ∈ R2, 0× RP 1 : aβ2 + 2bαβ + cα2 = 0}.

As the coefficients of the BDE all vanish at the origin, the exceptional fibre 0× RP 1 is
contained in M . The discriminant function δ = b2 − ac plays a key role. When δ has a Morse
singularity the surface M is smooth and the projection π : M → R2, 0 is a double cover of the
set {(x, y) : δ(x, y) > 0} ([11]; see also [6] for a general relation between the singularities of δ
and those of M). We label these BDEs Morse Type 2. The bi-valued direction field defined by
the BDE in the plane lifts to a single direction field ξ on M and extends smoothly to π−1(0).
Note that the exceptional fibre 0× RP 1 ⊂ π−1(∆) is an integral curve of ξ. The closure of the
set π−1(∆)− (0× RP 1) is the criminant of the equation.

There is an involution σ on M − (0× RP 1) that interchanges points with the same image
under the projection to R2, 0. It is shown in [11] that σ extends to M when the coefficients
a, b, c are analytic. (In fact the result is true when the coefficients are smooth functions; see
Remark 2 in [66].) Points on M are identified with their images by σ. A bi-valued field on
the quotient space M ′ = M/σ is then studied and models of the configurations of the integral
curves of the BDE are obtained by blowing-down.

Consider the affine chart p = β/α (we also need to consider the chart q = α/β), and set

F (x, y, p) = a(x, y)p2 + 2b(x, y)p+ c(x, y).

Then, the lifted direction field is parallel to the vector field

ξ = Fp
∂

∂x
+ pFp

∂

∂y
− (Fx + pFy)

∂

∂p
.

The singularities of ξ on the exceptional fibre (F = Fp = 0) are given by the roots of the cubic

φ(p) = (Fx + pFy)(0, 0, p)
= a2p

3 + (2b2 + a1)p2 + (2b1 + c2)p+ c1,

where j1a = a1x+ a2y, j
1b = b1x+ b2y, j

1c = c1x+ c2y. The eigenvalues of the linear part of
ξ at a singularity are −φ′(p) and α1(p), where

α1(p) = 2(a2p
2 + (b2 + a1)p+ b1).

Therefore, the cubic φ and the quadratic α1 determine the number and the type of the
singularities of ξ (see [7, 11] for details).

The calculations simplify considerably when the 1-jet of the BDE is simplified. For instance,
if α1 and φ have no common roots or if φ has more than one root ([11, 38]): then one can take

j1(a, b, c) = (y, b1x+ b2y, εy), ε = ±1.

(If α1 and φ have a common root and φ has only one root, we can set j1(a, b, c) = (x+
a2y, 0, y), a2 >

1
4 , [66].)

The topological classification of codimension ≤ 2 singularities of BDEs of Type 2 is obtained
using the above methods. We first observe that there are no topologically stable singularities of
BDEs of Type 2. The discriminant of such BDEs are always singular and generic deformations
within the set of BDEs remove the singularities.

The codimension 1 singularities are classified by the number and type of the singularities of
ξ when (b1, b2) is away from some special curves in the (b1, b2)-plane ([7, 11, 39], see §3.1 and
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3S
2S+1N

1S

1S+2N 1N

2S+1N

1S

b2

3S

b2

b1b1

Figure 5. Partition of the (b1, b2)-plane, ε = −1 left, ε = +1 right. The labels refer to the number
and type (S for saddle and N for node) of the singularities of ξ.

Figure 5). There are 3 topological models when the discriminant has an A+
1 singularity and

5 when it has an A−1 -singularity (Figure 6). The bifurcations of these singularities in generic
families are studied in [12], see also [51] for the case ε = −1.

Codimension 2 singularities occur at generic points on the exceptional curves in Figure 5.
These are classified in [66] using the blowing-up method; see Figure 7 for the models. The
models in the first row in Figure 7 correspond to the case where φ and α1 have one common
root (ε = 1, b1 = ±b2 − 1), those in the second row to the case where φ has a double root
(2b1 + ε = 0 or b1 = 1

2 (b22 − ε)) and those in the third row to the case where the discriminant
has a cusp singularity (b1 = 0). (The first case in the second row in Figure 7 is also classified
in [40].)

(y,x,-y) (y,-x,-y) (y,1/4x,-y)

(y,x,y) (y,-1/4x,y)

(y,-2x,y)(y,y-x,y) (y,-4/6x,y)

Figure 6. Topological models of codimension 1 singularities of Type 2 BDEs.

Remark 2. (1) For BDEs of Type 2, the second method is geometrical and works well when
the surface M is smooth ([7, 11]). However, when M is singular, the involution σ presents some
obstacles. One needs to show that σ extends to the exceptional fibre and this is not trivial.
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(y,2x+3y+x2,y) (y,-3/4x+1/4y,y) (x+y,x2,y)

(y,x+y+y2,-y) (y,4x+3y+y2,y) (y,3/8x+1/2y+y2,y)

(y,-x+y,y2) (y,x+2y,y2) (y,x+y,y2)

Figure 7. Topological models of codimension 2 singularities of Type 2 BDEs.

The first method is computational and the calculations are sometimes long and winding. (It is
used in [38, 39, 40, 41, 42, 57, 66, 68] to obtain topological models of BDEs with singular
associated surface M .)

(2) There are classifications of some more degenerate singularities, motivated by geometric
problems. We list the existing cases in the Appendix (§6). It is worth pointing out here that
Gutierrez and Gúıñez [42] showed that BDEs with 1-jet (y, b1x+ b2y,−y) are topologically
1-determined when the discriminant has a Morse singularity, i.e., when b1 6= 0. They also
proved that any BDE with 1-jet (y, b1x+ b2y,−y) is smoothly equivalent to (y, b1x+ b2y +
M2(x, y),−y +M3(x, y)), where M2,M3 are smooth functions with zero 1-jets.

3.3. IDEs with first integrals

In [47], the authors studied germs of IDEs with independent first integral. An IDE is defined
to be the surface M = F−1(0) in PT ∗R2 endowed with its canonical contact structure given
by the 1-form α = dy − pdx. The surface M is supposed to be smooth, so is locally the image
of a germ of an immersion f : R2, 0→ PT ∗R2, z. The IDE is then represented by the germ f .

The IDE has a first integral, that is, there exists a germ of a submersion µ : R2, 0→ R, 0 such
that dµ ∧ f∗α = 0 (this means that the integral curves of the lifted field ξ on M are images
under f of the level sets of µ). As the solutions of the IDE in the plane are the images under

π ◦ f of the level sets of µ, it is natural to consider the diagram R, 0 R2, 0
µoo π◦f // R2, 0 .

Consider in general a diagram (g, µ)

R, 0 R2, 0
µoo g // R2, 0 ,

where g is a smooth map germ and µ is a germ of a submersion. The diagram (g, µ) is called
an integrable diagram if there exists a germ of an immersion f : R2, 0→ PT ∗R2, z such that
dµ ∧ f∗α = 0 and g = π ◦ f . Then (g, µ) is said to be induced by f .

Let π : PT ∗R2 → R2 be the natural projection. Two germs of immersions (IDEs) f :
R2, 0→ PT ∗R2, z and f ′ : R2, 0→ PT ∗R2, z′ are said to be equivalent if there exists germs of
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diffeomorphisms ψ : R2, 0→ R2, 0 and φ : R2, π(z)→ R2, π(z′) such that φ̂ ◦ f = f ′ ◦ π, where
φ̂ : PT ∗R2, z → PT ∗R2, z′ is the lift of φ.

The idea in [47] is to reduce the classification of IDEs with first integrals under the above
equivalence to that of germs of integral diagrams. Two germs (g, µ), (g′, µ′) of integral diagrams
are equivalent if the diagram

R, 0

κ

��

R2, 0
µoo g //

ψ

��

R2, 0

φ

��
R, 0 R2, 0

µ′
oo g′

// R2, 0

commutes, with κ, ψ, φ germs of diffeomorphisms.
Suppose given two germs of IDEs f and f ′ with first integrals and with the set of critical

points of π ◦ f and π ◦ f ′ nowhere dense. Then, ([47, Proposition 2.8]), f and f ′ are equivalent
as IDEs if and only if the diagrams (π ◦ f, µ) and (π ◦ f ′, µ′) are equivalent as integral diagrams.

A weaker equivalence relation of integral diagrams is introduced in [47]. Two germs (g, µ),
(g′, µ′) of integral diagrams are weakly equivalent if the diagram

R2, 0

φ

��

R2 × R, 0
(g,µ)oo π1 //

Ψ

��

R2, 0

ψ

��
R2, 0 R2 × R, 0

(g′,µ′)oo π1 // R2, 0

commutes, with φ,Ψ, φ germs of diffeomorphisms and π1 is the projection to the first
component. Equivalent integral diagrams are weakly equivalent.

The authors in [47] used the theory of Legendrian singularities to classified generic
integral diagrams under the weakly equivalence. The word generic means the following. The
set Int(U,PT ∗R2 × R) of integral IDEs with first integral (f, µ) : U ⊂ R2 → PT ∗R2 × R is
endowed with the Whitney C∞-topology. A property is generic if the subset of (f, µ) that
satisfy it is open and dense in Int(U,PT ∗R2 × R).

Theorem 3.4. ([47, Theorem A]) For almost all differential equation germs with first
integral (f, µ), the integral diagram is weakly equivalent to one of the germs in the following
finite list:

(1) g = (u, v), µ = v.
(2) g = (u2, v), µ = v − 1

3u
3.

(3) g = (u, v2), µ = v − 1
3u.

(4) g = (u3 + uv, v), µ = 3
4u

4 + 1
2u

2v + v.
(5) g = (u, v3 + uv), µ = v.
(6) g = (u, v3 + uv2), µ = 1

2v
2 + v.

An integral diagram (g, µ) is said to be of generic type if it is weakly equivalent to an integral
diagram from the list in Theorem 3.4. Diagrams of generic type are then classified up to the
“stronger” equivalence.

Theorem 3.5. ([47, Theorem B]) An integral diagram of generic type is equivalent to one
of the following integral diagrams (g, µ)

(1) g = (u, v), µ = v.
(2) g = (u2, v), µ = v − 1

3u
3.
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(3) g = (u, v2), µ = v − 1
3u.

(4) g = (u3 + uv, v), µ = 3
4u

4 + 1
2u

2v + β ◦ g,
where β(x, y) is a germ of a smooth function with β(0) = 0 and βy(0) = ±1.

(5) g = (u, v3 + uv), µ = v + β ◦ g,
where β(x, y) is a germ of a smooth function with β(0) = 0.

(6) g = (u, v3 + uv2), µ = 1
2v

2 + β ◦ g,
where β(x, y) is a germ of a smooth function with β(0) = 0 and βx(0) = 1.

The cases (2) and (3) in Theorem 3.5 are first given in [22, 23]. In (4)-(6) Theorem 3.5,
the discriminant is a cusp. We refer to [47] for further details and for the relation between
Theorem 3.5, the previous classifications and Clairaut type equations.

4. Invariants

Consider the two BDEs
dy2 + (x2 + y2)dx2 = 0,

ydy2 − 2xdxdy − ydx2 = 0.

The first has a Morse Type 1 singularity and the second a Morse Type 2 singularity. Their
discriminant, given by x2 + y2 = 0, has a Morse singularity of type A+

1 (isolated point).
Consider now the following 1-parameter deformations of these BDEs

dy2 + (x2 + y2 + t)dx2 = 0,
ydy2 − 2xdxdy − (y + t)dx2 = 0.

The discriminants in the first family x2 + y2 + t = 0 undergo the usual Morse transitions
(Figure 8, first row). However, the discriminants in the second family x2 + y(y + t) = 0 undergo
transitions of type cone sections (Figure 8, second row). One can also show that for the first
family, two folded singularities appear on the discriminant for t < 0 ([9], Figure 8). Three of
these singularities appear on the discriminant of the second family for t 6= 0 ([18]). To explain
these phenomena, an invariant of BDEs (multiplicity) is introduced in [13] and symmetric
matrices are studied in [6].

O

Figure 8. Bifurcations of a Morse Type 1 and a Morse Type 2 singularities.

4.1. The multiplicity of a BDE

We suppose here that the IDE (1.1) is given by an analytic function F and the coefficients of
the BDE (1.2) are analytic functions (some of the results are also valid in the smooth category
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[21]). We can then complexify and denote by O(x, y, p) the ring of holomorphic function germs
C3, 0→ C. We start with IDEs (1.1).

Definition 4. ([13]) A singular point or zero of the IDE given by F (x, y, p) = 0 is a zero
of the canonical 1-form dy − pdx on the criminant F = Fp = 0. The multiplicity of a singular
point is the maximum number of zeros it can split up into under deformations of the equation
F = 0 (including complex zeros).

Proposition 4.1. ([13]) (a) The multiplicity of a singular point ((x, y, p) = (0, 0, 0)) of
the IDE F = 0 at a fold point of the projection corresponding to a zero of the vector field ξ is
given by dimCO(x, y, p)/O(x, y, p)〈F, Fp, Fx + pFy〉.

(b) The multiplicity of a non-fold singularity of the projection (x, y, p)→ (x, y) is given by
dimCO(x, y, p)/O(x, y, p)〈F, Fp, Fpp〉 provided that the vector field ξ is non-zero on the lift.

(c) If we have a non-fold singular point of the projection where the vector field ξ vanishes,
then the multiplicity is the sum of the numbers occurring in (a) and (b).

For BDEs of Type 1, the discriminant is smooth in a generic deformation, so the multiplicity
is the number of folded singularities that occur in a generic deformation. If we assume that
a(0, 0) 6= 0 and p = 0, then the multiplicity m of the BDE at (0, 0, 0) is given by

m = m(δ, aδx − bδy),

where m(h, k) denotes dimCO(x, y)/O(x, y) 〈h, k〉 ([13]).
In fact ([13]), any BDE of Type 1 can be transformed by changes of coordinates and

multiplication by non-zero functions to one in the form dy2 + f(x, y)dx2 = 0. The multiplicity
of the BDE is then given by

m = m(f, fx) = µ(f) + µ(f(x, 0))− 1,

where µ denotes the Milnor number of the function germ (which is the multiplicity of its
Jacobian ideal).

If we consider the example at the beginning of this section, f(x, y) = x2 + y2, so fx(x, y) =
2x and m = dimCO(x, y)/O(x, y)

〈
x2 + y2, 2x

〉
= 2. This explains why we have two folded

singularities appearing in the deformation (Figure 8, first row)

We turn now to BDEs of Type 2 where we complexify the coefficients.

Definition 5. ([13]) The multiplicity of a BDE of Type 2 is defined to be the (maximum)
number of non-degenerate singular points of the perturbed equations within the set of BDEs,
where this is finite.

We observe that if we deform a BDE of Type 2 in the set of all IDEs, then its multiplicity
is infinite. Consider, for example, the BDE yp2 + 2xp− y = 0 which has multiplicity 3 using
Definition 5 (see below). If we view it as an IDE and consider the deformation F = tpn + yp2 +
2xp− y = 0, then the equations F = Fp = Fpp = 0 have a zero at the origin of multiplicity n.
Therefore, using Definition 4, the multiplicity of the above BDE is infinite. (The key point here
is that one cannot use the division theorem to reduce the BDE to an IDE of a fixed degree.)
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Proposition 4.2. ([13]) The multiplicity of a BDE is given by

m = 1
2m(δ, aδ2

x − 2bδxδy + cδ2
y)

= m(δ, aδx − bδy)−m(a, b)
= m(δ, bδx − cδy)−m(b, c).

The formula in Proposition 4.2 is also valid for BDEs of Type 1. For example, when a(0, 0) 6=
0, m(a, b) = 0 and we recover the formula for the multiplicity of a BDE of Type 1 given by
m(δ, aδx − bδy).

If we consider the second example at the beginning of this section, we have a = y, b = −x,
c = −y, so the multiplicity m = m(x2 + y2, 4yx)−m(y, x) = 4− 1 = 3, which explains why we
have three folded singularities appearing in the deformation of the BDE (Figure 8, second row).

4.2. The singularities of the discriminant

To a BDE with coefficients (a, b, c) is associated the family of symmetric matrices

S(x, y) =
(
a(x, y) b(x, y)
b(x, y) c(x, y)

)
.

The discriminant of the BDE is precisely the determinant of S. Bruce classified in [6] families
of symmetric matrices up to an equivalence relation that preserves the singularities of the
determinant. Let S(n,K) denote the space of n× n-symmetric matrices with coefficients in the
field K of real or complex numbers. A family of symmetric matrices is a smooth map germ
Kr, 0→ S(n,K). Denote by G the group of smooth changes of parameters in the source and
parametrised conjugation in the target. Thus, two smooth map-germs A,B are G equivalent
if B = Xt(A ◦ φ−1)X, where φ is a germ of a diffeomorphism Kr, 0→ Kr, 0 and X : Kr, 0→
GL(n,K). A list of all the G-simple singularities of families of symmetric matrices is obtained
in [6]. For more on symmetric matrices see [10, 36, 37].

The 2× 2 matrix associated to a BDE of Type 1 is G-equivalent to one in the form(
1 0
0 f(x, y)

)
.

It turns out that, in this case, the G-action reduces to the action of the contact group K on
the ring of function germs f : K2, 0→ K, 0 ([6]). This explains, for instance, why we get the
usual Morse transitions in the discriminants of the family of BDEs dy2 + (x2 + y2 + t)dx2 = 0
at the beginning of this section (Figure 8, first row).

For BDEs of Type 2, the G-action does not reduce to the action of the contact group K.

For the example at the beginning of this section, the matrix
(

y −x
−x −y

)
of the BDE is

1-G-determined and a versal G-deformation is given by
(

y −x
−x −y + t

)
. The zero sets of

the determinants of these matrices undergo transitions of type cone sections (Figure 8, second
row).

It is worth observing that the action G models the singularities of the discriminant of a BDE
as well as its deformations in generic families of BDEs. The action does not preserve the pair
of foliations determined by the BDE. Nevertheless, it provides important information when
studying families of BDEs (see §5). All the key local information about the pair of foliations
determined by the BDE occurs on the discriminant. It is also worth mentioning that all the
G-invariants associated the matrix of a BDE are invariants of the BDE.
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4.3. The index of a BDE

The index of a BDE with discriminant an isolated point is defined as the index of one
direction field determined by the BDE at the singular point. In [19, 20, 21], Challapa gave the
following definition of the index of a BDE at a singular point (with discriminant not necessary
an isolated point) when the coefficients are real analytic functions. Consider a family of BDEs
(a(x, y, t), b(x, y, t), c(x, y, t)). The family is called a good perturbation if the discriminant δt is
a regular curve for t 6= 0 and the BDEs for t 6= 0 fixed have only folded singularities. Challapa
showed that such good perturbations exist. He defined the index of a folded saddle to be
K(S) = −1/2 and the index of a folded node and focus to be K(N) = K(F ) = 1/2 and gave
the following definition of the index of an analytic BDE.

Definition 6. Let ω = (a, b, c) be a germ, at the origin, of an analytic BDE and ωt be a
good perturbation of ω. The index of ω at the origin is defined by

I(ω) =
∑
i

Kδt
(zi) +

∑
δt(ui)<0

indexui
∇δt

where ∇δt denotes the gradient of δt , zi are non-degenerate singular points of ωt and ui are
the critical points in the negative part of δt (i.e., ∇δt(ui) = 0 and δt(ui) < 0 ).

Challapa shows that the index I is independent of the choice of a good deformation, it is
invariant under analytic changes of coordinates and it satisfies the Poincaré-Hopf formula.

4.4. Cr-invariant of asymptotic curves at folded singularities

Consider a surface S immersed in R3. Uribe-Vargas ([71]) produced an invariant of the folded
singularities of the asymptotic curves BDEs on S. As asymptotic curves capture the contact of
S with lines, one can also consider S immersed in an affine or projective 3-space. Recall that
the discriminant of the BDE of the asymptotic curves is the parabolic set P of S. The flecnodal
curve F is a curve on which an asymptotic direction has higher contact with the surface. In
general the flecnodal curve is a smooth curve on S and is tangent to the parabolic set at the
cusp of Gauss/godron point (i.e., at the folded singularities of asymptotic BDE). The flecnodal
curve can also be captured using Legendre duality on the BDE of the asymptotic curves, see
[14]. There is another curve D on S, called the conodal curve. It is the closure of the locus of
points of contact of S with its bitangent planes. This curve is in general tangent to P and F
at a cusp of Gauss.

Let g denotes the cusp of Gauss/godron point. Consider π : PT ∗S → S endowed with the
canonical contact structure and the Legendrian lifts LD, LF , LP consisting of the contact
elements of S tangent to D,F, P around g. Consider also Lg the fibre over g of π. The
four Legendrian curves are tangent to the same contact plane Π and their tangent directions
determine four lines lD, lF , lP , lg through the origin in Π.

Definition 7. ([71]) The cr-invariant ρ(g) of a godron g is defined as the cross-ratio of
the lines lD, lF , ldP and lg of Π: ρ(g) = (lF , lD, lP , lg).

Uribe-Vargas used ρ to obtain a classification of the configurations of the curves D,F, P at
a cusp of Gauss; see [71] for more details.
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5. Bifurcations

We consider in this section families of germs of BDEs. Two germs of families of BDEs ω̃
and τ̃ , depending smoothly on the parameters t and s respectively, are said to be locally
fibre topologically equivalent if, for any of their representatives, there exist neighbourhoods
U and W of 0 in respectively the phase space (x, y) and the parameter space t, and a family
of homeomorphisms ht, for t ∈W , all defined on U such that ht is a topological equivalence
between ω̃t and τ̃ψ(t), where ψ is a homeomorphism defined on W . (The map ht is not required
to be continuous in t.)

We associate to a germ of an r-parameter family of BDEs ω̃ = (ã, b̃, c̃) the jet-extension map

Φ : R2 × Rr, (0, 0) → Jk(2, 3)
((x, y), t) 7→ jk(ã, b̃, c̃)t|(x,y)

where Jk(2, 3) denotes the vector space of polynomial maps of degree ≤ k from R2 to R3, and
jk(ã, b̃, c̃)t|(x,y) is the k-jet of (ã, b̃, c̃) at (x, y) with t fixed.

The singularity type of the BDE ω̃0 determines a semi-algebraic set V in Jk(2, 3) of
codimension, say, m. The family ω̃ is said to be a generic family if the map Φ is transverse to
V in Jk(2, 3). A necessary condition for genericity is of course r ≥ m. It follows from Thom’s
Transversality Theorem that the set of generic families is residual in the set of smooth map
germs R2 × Rr, 0→ R3, 0.

The bifurcation set of a generic family is the set of parameters t where the associated BDE
has a singularity of codimension ≥ 1 at some point p ∈ U . This gives a stratification S of the
parameter space consisting of following strata: the origin (if the singularity at t = 0 is isolated),
and local and semi-local singularities of codimension s, 1 ≤ s ≤ m− 1. The singularity of ω̃0 is
local, but semi-local singularities can appear in ω̃t, for t 6= 0. The semi-local singularities are
very hard to deal with, and there is so far no general approach to deal with them. Each case
is dealt with separately. There is a result in [69] which is worth mentioning here.

Lemma 5.1. ([69]) There are no Poincaré-Andronov (Hopf) bifurcations on the lifted field
ξ of an IDE (1.1) at a regular point on the criminant.

When studying bifurcations of a BDE ω̃0, the aim is to show that any two generic families
of ω̃0 are (fibre) topologically equivalent. The strategy we adopted in [66, 69] is the following.

– Obtain a model for the BDE at t = 0 (using the methods in §3.2).
– Reduce the N -jet of the family to a normal form (using the formal reduction

technique in §3.1).
– Obtain a condition for the family to be generic.
– Show that the bifurcation sets of generic families are homeomorphic.
– Obtain the configuration of the discriminant in each stratum of S (using the

symmetric matrices framework §4.2).
– Show that the number of singularities, their type and their position on the

discriminant are constant in each stratum of S. (The results in [56] are of use
here.)

– Show that the configurations of the integral curves have a constant topological
type in each stratum of S.

Models of generic families of BDEs with local codimension 2 singularities and their
bifurcations in the families are given in [66, 69]. Singularities of codimension 1 are dealt
with in [9, 18, 51, 67]. Some degenerate cases are studied in [54].
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6. Appendix

In §2 the pairs of foliations asymptotic/characteristic/principal curves are defined on an
immersed surface. These pairs (or some of the them) are also considered on algebraic surfaces
or surfaces with a cross-cap singularity. They are given by BDEs whose singularities are of
higher codimension ([34, 57, 63, 68]).

When F = Fp = Fpp = 0 at the origin, the solution curves of the IDE form a web (see §3.3).
A classification of hexagonal analytic 3-webs p3 + ap2 + bp+ c = 0 is given in [2]. Other types
of n-web occur in differential geometry. For example, the asymptotic curves on surfaces in R5

are given by a quintic differential equation p5 + a1p
4 + a2p

3 + a3p
2 + a4p+ a5 = 0, where ai,

i = 1 . . . 5, are smooth functions in (x, y) ([53, 59]).
Systems of IDEs F1(t, x, p) = . . . = Fn(t, x, p) = 0 with x = (x1, . . . , xn), p = (p1, ..., pn),

pi = dxi/dt are considered by in [61].
Homogeneous differential equations of degree greater than 2 are also considered. In [44]

are defined lines of curvature on surface in R4 that are given by a quartic differential
equation a0dy

4 + a1dy
3dx+ a2dy

2dx2 + a3dydx
3 + a4dx

4 = 0, where ai, i = 1 . . . 4, are smooth
functions in (x, y). The coefficients all vanish at some special points on the surface. The
configuration of the solution curves at such points is given in [44].

In [31] Fukui and Nuño-Ballesteros studied equations of degree n which have n real solutions
away from some isolated (singular) points where all the coefficients vanish. They defined the
index of such BDEs at a singular point and proved a Poincaré-Hopf type theorem (see also
[30]). They also gave a classification of the configuration of the n-web around generic singular
points.

Below are some topological models of singularities of BDEs of Type 2 with codimension
higher than 2 (see Figure 9). The models are of BDEs with discriminant having a given K-
singularity type. However, they do not form an exhaustive list of the topological types of BDEs
with discriminant having that K-singularity type. The models are topologically determined by
the k-jet of the BDE, where k is the highest degree of the coefficients of the equation. These
are as follows.
– The discriminant has an A−1 -singularity, α1 and φ have two common roots, [68]:

(y,−x+ y2, y), (y,−x+ xy, y).

– The discriminant has an A2-singularity, j1w ∼ (x, by, 0), [57]:

(x,−y, x2), (x, y, x2).

– The discriminant has an A3-singularity, j1w ∼ (0, x+ y, 0), [41] and [43] respectively:

(y, x2,−y), (y2, x+ y,−y2).

– The discriminant has an A3-singularity, j1w ∼ (0, b0x, y), [68]:

(±y3, b0x+ b2y
2, y).

The topological type is constant in open regions determined by some exceptional curves in the
(b0, b2)-plane (see [68]).
– The discriminant has an A3-singularity, j1w ∼ (αx+ y,±x, 0), [49]:

(y, x,±y3), (y,−x,±y3).

– The discriminant has an X1,2-singularity [68]:

(x2 + y4,−xy,−x2 + 2y2 + y3), (x2 + y4,−xy,−x2 + 2y2 + xy2).

– The discriminant has an Y5,6-singularity [57]:

(x2,−xy, 2y2 − x3).
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(x2+y4,-xy,-x2+2y2+y3) (x2+y4,-xy,-x2+2y2+xy2)

(y,-x+y2,y) (y,-x+xy,y)

(-y3,-2x,y) (-y3,-2x+3y2,y) (-y3,-1/2x,y) (-y3,x,y)

(y3,x,y) (y3,2x+9/5y2,y) (y3,2x+4y2,y) (y3,-1/2x+y2,y) (y3,-2x+y2,y)

(y3,-3x+1/3y,y) (y3,-3/2x+1/9y2,y) (y3,-2/3x+3/5y2,y) (y3,-1/2x,y)

(y2,x+y,-y2) (y,x2,-y)

(y,x,y3) (y,-x,y3)(y,x,-y3) (y,-x,-y3)

(x,-y,x2) (x,y,x2)

Singularity of
δ

Topological Models

A1

A3

A2

A3

(x2,-xy,2y2-x3)

A3 X1,2 Y5,6X1,2

Figure 9. Some topological models of Type 2 BDEs with singularities of codimension > 2.
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– Under some conditions, a BDE with discriminant an isolated point is topologically equivalent
to its principal part defined by Newton polyhedra [45].

Remark 3. Some of the configurations in Figure 9 are topologically equivalent to those of
less degenerate singularities. For instance, those in the second row are equivalent to a folded
node and saddle respectively (Figure 2). However, their topological codimensions are distinct
and so are their bifurcations.
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