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Abstract

Our aim in this paper is to define principal and characteristic directions at points
on a smooth 2-dimensional surface in the Euclidean space R

4 in such a way that their
equations together with that of the asymptotic directions behave in the same way as the
triple formed by their counterpart on smooth surfaces in the Euclidean space R

3. The
definitions we propose are derived from a more general approach, namely an analysis of
self-adjoint operators on 2-dimensional smooth surfaces in the Euclidean space R

n.

1 Introduction

To a smooth and oriented surface M in (the Euclidean space) R
3 is associated a shape

operator S. This is a self-adjoint operator defined on each tangent plane of M and describes
the shape of M in R

3. On M are defined three pairs of foliations that are intimately related
to S. These are the lines of principal curvature defined away from umbilic points, the
asymptotic curves defined in the hyperbolic region and the characteristic curves defined in
the elliptic region of the surface. The three pairs of foliations are given, in a local chart, by
binary differential equations (BDEs), also know as quadratic differential equations. These
are equations in the form

a(x, y)dy2 + 2b(x, y)dxdy + c(x, y)dx2 = 0. (1)

It is shown in [7] that the equations of the asymptotic, characteristic and principal curves
are related. A BDE can be viewed as a quadratic form and represented at each point in the
plane by a point in the projective plane. If Γ denotes the set of degenerate quadratic forms,
then the asymptotic, characteristic and principal BDEs represent a self-polar triangle with
respect to Γ ([7]). In particular, any two of them determine the third one.

We show in this paper that the results in [7] and [4] extend to 2-dimensional surfaces in
(the Euclidean space) R

n. A key observation is that the geometric concepts above for surfaces
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in R
3 are derived from the shape operator which is a self-adjoint operator on the surface.

Given any smooth 2-dimensional surface M in R
n (n ≥ 3) and a self-adjoint operator S on

M , one can define at any point p ∈ M the concepts of pseudo normal curvature, principal
curvatures, Gaussian and normal curvatures, and pseudo principal/asymptotic/characteristic
directions associated to S at p, in an analogous way to the concepts associated to a shape op-
erator on a smooth surface in R

3. The pseudo principal, asymptotic, characteristic curves are
given by BDEs which form a self-polar triangle (§6). Furthermore, this triangle is determined
by the pseudo asymptotic BDE (Theorem 2.2 and Remark 2.3).

The differential geometry of surfaces in R
4 has been investigated previously in for example

[5, 6, 18, 19, 21, 23, 27, 29, 31, 34]. However, it appears that there is no previous study that
produces in a natural way orthogonal pairs of tangent (principal) directions at most points
on the surface. (So in particular, no natural way of defining a pair of orthogonal principal
foliation on the surface was given.) A definition of principal directions is given in [27] in
terms of the curvature ellipse. However, there are four such directions at generic points on
the surface. In [34] are defined the v-principal directions. These are the eigenvectors of the
shape operator Sv along a smooth vector field v normal to M . There are two such directions
at generic points on the surface, but these depend on the choice of v.

We provide in this paper a natural way of producing orthogonal pairs of (principal)
tangent directions at most points on a generic smooth surface in R

4. Our definition is
derived from the study of pseudo shape operators on surfaces in R

n. A key observation is
that the asymptotic BDE is well defined on a smooth 2-dimensional surface in R

4 ([27]; see
also [5, 6, 21, 29]). Therefore, a self-adjoint operator can be recovered from this BDE and
one can associate pseudo principal and characteristic directions to this operator. We define
the principal and characteristic directions at a point on a surface in R

4 to be these pseudo
principal and characteristic directions. These are given by BDEs and the triple asymptotic,
characteristic and principal BDEs behaves in the same way as its analogue on surfaces
in R

3. We show that there is a unique (up to multiplication by nowhere zero functions)
normal vector field v on M such that the principal directions defined here are the v-principal
directions of Sv.

The main results in this paper and the way it is organised are given in the next section.

2 Main results

A 2-dimensional surface M in the Euclidean space R
n inherits the scalar product of R

n and
we have a well-defined first fundamental form on M . A second fundamental form is also
defined on M , and for a given v in the normal space to M at p, there is a shape operator
Sv : TpM → TpM which is a self-adjoint operator. We consider the following generalisation
of Sv.

Definition 2.1 A pseudo shape operator is a smooth map S : TM → TM which defines a
self-adjoint operator on each tangent plane TpM , p ∈ M .

We say that a pseudo shape operator S is a shape operator if there exists a smooth vector
field v normal to M and a nowhere zero function λ such that S = λSv.
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To a pseudo shape operator are associated pseudo asymptotic, characteristic and principal
curves which are given by BDEs. These form a self-polar triangle. The pseudo principal BDE
has a unique property amongst the points on the polar line of the pseudo asymptotic BDE.

Theorem 2.2 Let S be a pseudo shape operator on M . Then there is a unique BDE on
the polar line of the pseudo asymptotic BDE of S whose solutions are orthogonal away from
pseudo umbilic points. This BDE is precisely that of the pseudo lines of curvature.

Remark 2.3 It follows from Theorem 2.2 that the self-polar triangle formed by the pseudo
asymptotic, characteristic and principal BDEs is completely determined by the pseudo asymp-
totic BDE.

The pseudo asymptotic BDE defines completely the pseudo shape operator, so we have a
1-1 correspondence between pseudo shape operators and BDEs on M . The asymptotic BDE
is well defined on a smooth surface M in R

4, so it provides a pseudo shape operator on M .

Definition 2.4 A curve on a smooth surface M in R
4 is called a principal (resp. charac-

teristic) curve if it is a pseudo principal (resp. characteristic) curve of the pseudo shape
operator associated to the asymptotic BDE on M . A point on M is called an umbilic point
if it is a singular point of the principal curves BDE. .

The principal curves defined here are related as follows to the v-principal curves defined
in [34] (which are the pseudo principal curves associated to the shape operator Sv).

Theorem 2.5 Let M be a smooth compact oriented surface in R
4 with isolated umbilic

points.
(1) The only pseudo shape operators on M that are also shape operators are those whose

associated BDEs lie on the polar line of the asymptotic BDE of M .
(2) There exists a smooth normal vector field v, unique up to multiplication by nowhere

zero functions, such that the principal curves on M as defined here are the v-principal curves
as defined in [34].

The main result in [34] can now be applied here to conclude the following.

Corollary 2.6 The principal curves are structurally stable on generic compact and oriented
surfaces in R

4.

We also have the following global result, analogous to Theorem 1.13 in [27].

Theorem 2.7 Any compact and oriented surface in R
4 of non-vanishing Euler characteristic

must have umbilic points.

Theorem 2.2 is proved in section 4 and the results on surfaces in R
4 are proved in §7.

Other results in the paper are in the following sections. In §3 we define what we mean
by generic properties and give the conditions for a pseudo shape operator to be a shape
operator. In §4 we study in detail the BDEs associated to a given pseudo shape operator,
and consider the configurations of the solution curves of these equations in §5. In §6 we look
at some natural families of BDEs determined by pseudo shape operators.
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3 Pseudo shape operators: generic properties

In all the paper, M denotes a smooth compact oriented 2-dimensional surface embedded
in R

n, and smooth means C∞. We follow the approach in [2] to define generic geometric
properties of M . Cover M with finitely many open sets Ui. At each point p in Ui we can
choose an orthonormal frame e = {e1, e2, e3, · · · , en} such that e agrees with the orientation
of R

n and {e1, e2} generates the tangent space TpM and agrees with the orientation of M .
Denote by Vk the vector space of polynomial maps R

2 → R
n−2 of degree d with 2 ≤ d ≤ k.

At each point p ∈ Ui, the surface can be written locally, in the system of coordinates
determined by e, in Monge form (x, y, f3(x, y), · · · , fn(x, y)), where the smooth functions fi

depend on the point p and have zero 1-jets. This defines a map θi : Ui → Vk given by
p 7→ jk(f3, · · · , fn)(p), which is the Taylor expansion of (f3, · · · , fn) at p truncated to degree
k. Different choices of the x, y axes are related by a change of coordinates via the special
orthogonal group SO(2). This groups acts on Vk via its variables. Suppose that X ⊂ Vk is an
SO(2)-invariant submanifold. Then Bruce’s Theorem 1 in [2] for surfaces in R

3 generalises
to surfaces in R

n. (The proof is identical to that in [2] and is omitted.)

Theorem 3.1 Let X ⊂ Vk be an SO(2)-invariant submanifold. For a dense set of embed-
dings of M in R

n the mappings θi : Ui → Vk are transverse to X.

In the cases treated in this paper X is of codimension > 2, so the maps θi miss X. Also
X is closed and as M is compact the set of embeddings such that θi is transverse to X is
open. An embedding of M (or the surface M for short) is said to be generic if θi : Ui → Vk

are transverse to X.
Each tangent space TpM , p ∈ M , inherits the scalar product in R

n, and given a pair of
tangent vectors v,w in TpM , we have the first fundamental form I(v,w) = 〈v,w〉 at p. Let
r : U → M ⊂ R

n be a parametrisation of a patch in M , and denote the coefficients of I by

E = 〈rx, rx〉, F = 〈rx, ry〉, G = 〈ry, ry〉.

A second fundamental form is also defined on M (see for example [10] on how this is
done using the Riemann connection in R

n). Consider the frame e, and let

ai = 〈ei, rxx〉, bi = 〈ei, rxy〉, ci = 〈ei, ryy〉, i = 3, · · · , n

be the coefficients of the second fundamental form. Given v = (λ3, · · · , λn) in the normal
space NpM to M at p, the shape operator Sv : TpM → TpM is represented, with respect to
the basis {rx, ry}, by the matrix

(
∑n

i=3
λiai

∑n
i=3

λibi
∑n

i=3
λibi

∑n
i=3

λici

)

.

The shape operator Sv is a self-adjoint operator and depends on v. We consider a
generalisation of Sv and define a pseudo shape operator as in Definition 2.1. We shall not
distinguish between S and λS where λ is a smooth function nowhere zero on M . A pseudo
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shape operator is represented, with respect to the basis {rx, ry}, by the matrix

(

l m
m n

)

,

where
l = 〈S(rx), rx〉, m = 〈S(rx), ry〉 = 〈S(ry), rx〉, n = 〈S(ry), ry〉.

These shall be called the coefficients of S (they completely determine S).

Proposition 3.2 For an open dense subset of the space of smooth embeddings of M in R
n,

a pseudo shape operator with coefficients (l,m, n) is a shape operator for n ≥ 6, and for the
other dimensions it is a shape operator if and only if

n = 3: (l,m, n) = α(a3, b3, c3), α a nowhere zero function.
n = 4: (b3c4 − c3b4)l − (a3c4 − c3a4)m + (a3b4 − b3a4)n = 0.
n = 5: on an open dense subset of the surface M .

Proof It is enough to work on a chart and use the partition of unity to obtain the required
v on M . We need to solve

∑n
i=3

λiai = l,
∑n

i=3
λibi = m,

∑n
i=3

λibi = n in (λ3, · · · , λn).
The case n = 3 is obvious.
When n = 4, we have the following system of linear equations

λ3a3 + λ4a4 = l,
λ3b3 + λ4b4 = m,
λ3c3 + λ4c4 = n.

Suppose that one of the determinants a3b4 − b3a4, b3c4 − c3b4, a3c4 − a4c3 is not zero,
say the first one. Solving the first two equations yields λ3 = lb4−ma4

a3b4−b3a4
and λ4 = ma3−lb3

a3b4−b3a4
.

Substituting in the third equation yields the condition in the proposition. (The condition
has a geometric interpretation; see Theorem 2.5(1).) We can multiply by the denominator
and take v = (lb4 − ma4,ma3 − lb3).

If two of the above determinants vanish at a point p then the remaining one also vanishes
at p. We can write the surface locally in Monge form. Then, following the notation pro-
ceeding Theorem 3.1, the vanishing of two determinants determines a closed set X ⊂ V2 of
codimension 2. By Theorem 3.1 and the discussion that follows, this occurs only at isolated
points on generic surfaces (called inflection points in [27]). We can extend smoothly the
solution v at these points (it is generically not zero there).

When n = 5, we have a system of three equations with three unknowns. By Theorem
3.1, for a generic surface M , the set of points where the determinant is not zero is either
empty or form a smooth curve on M . This curve is denoted by M2 in [30]. We can solve the
system on M3 = M\M2 but may not be able to extend the solution to M2.

When n ≥ 6, we have more unknowns than equations. For generic surfaces, at least one
of the 3 × 3 determinant of the system is not zero at each point on the surface. Therefore
the system has always a solution for a generic embedding of the surface M in R

n. 2

4 Pseudo shape operators and BDEs

Given a pseudo shape operator S, we define the following notions, analogous to those asso-
ciated to the shape operator on a smooth surface in R

3. Let u be a tangent direction, i.e. a
line in the direction of a vector u ∈ TpM .
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We call the number κ(u) = 〈S(u), u〉 the pseudo normal curvature of M at p along the
unit direction u. The maximum and minimum values of κ(u) are called the pseudo principal
curvatures and are denoted by κ1 and κ2. The invariants K = det(S) and H = trace(S) are
called, respectively, the pseudo Gaussian curvature and pseudo mean curvature. A point is
called pseudo hyperbolic if K < 0, pseudo parabolic if K = 0 and pseudo elliptic if K > 0.

The directions along which κ(u) is extremal are called pseudo principal directions. A
point p is said to be a pseudo umbilic point when the pseudo normal curvature is constant on
all unit tangent directions at p. Every direction is considered pseudo principal at a pseudo
umbilic point.

A direction ū satisfying 〈S(u), ū〉 = 0 is called a conjugate direction to u. The direc-
tions along which the pseudo normal curvature vanishes are called the pseudo asymptotic
directions. These are also the directions that are self-conjugate. A direction is said to be
pseudo characteristic if the angle it makes with its conjugate direction is extremal. These
are also the directions along which the pseudo normal curvature is the harmonic mean of the
pseudo principal curvatures, i.e. directions along which κ(u) = K

H = 1/((1/κ1 + 1/κ2)/2).
(Characteristic/harmonic directions on surfaces in R

3 are studied in [16, 32, 33] and more
recently in [4, 7, 20].)

A curve on M whose tangent direction at each point is pseudo asymptotic, characteristic
or principal is called, respectively, a pseudo asymptotic, characteristic, or principal curve.

The discriminant ∆ of a BDE (1) is the set of points (x, y) where δ = b2 − ac vanishes,
that is, the set of points where the equation determines a double direction.

We denote by (dx, dy) the coordinates of a vector in TpM with respect to the basis
{rx, ry}. The statements in the following theorem are classical results on real symmetric
matrices (see for example [28]).

Theorem 4.1 (1) If p is a pseudo umbilic point of M , then the pseudo shape operator S at
p is just a scalar multiplication.

(2) If p is not a pseudo umbilic point, then there are exactly two pseudo principal direc-
tions, and these are orthogonal. Moreover, the pseudo principal directions ei, i = 1, 2, are
parallel to the eigenvectors of S, that is S(ei) = κiei.

(3) The pseudo principal curves are given by

(mG − nF )dy2 + (lG − nE)dxdy + (lF − mE)dx2 = 0.

(4) K = κ1κ2 =
ln − m2

EG − F 2
, H =

κ1 + κ2

2
=

Gl + En − 2Fm

2(EG − F 2)
.

(5) The discriminant of the pseudo principal curves BDE is the set of pseudo umbilic
points.

We now turn to the pseudo asymptotic and characteristic curves.

Theorem 4.2 (1) The pseudo asymptotic curves are given by

ndy2 + 2mdxdy + ldx2 = 0.

The discriminant is the pseudo parabolic set. There are 2/1/0 asymptotic directions at a
pseudo hyperbolic/parabolic/elliptic point.
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(2) The pseudo characteristic curves are given by

(2m(mG − nF ) − n(lG − nE))dy2 + 2(m(lG + nE) − 2lnF )dydx + (l(lG − nE) − 2m(lF − mE))dx2 = 0,

which can be written in a determinant form

dy2 −2dxdy dx2

l 2m n
lF − mE lG − nE mG − nF

= 0.

The discriminant consists of the pseudo parabolic set together with the pseudo umbilic points.
Away from pseudo umbilic points, there are 0/1/2 characteristic directions at a pseudo hy-
perbolic/parabolic/elliptic point.

Proof (1) A direction u = (dx, dy) is pseudo asymptotic if and only if 〈S(u), u〉 = 0, which
can be expressed in the coordinate system {rx, ry} as ndy2 + 2mdxdy + ldx2 = 0. This BDE
determines 2/1/0 directions at a point on M if δ = m2 − ln > 0/ = 0/ < 0. The sign of δ is
the same as that of −K.

(2) We write, without loss of generality, u = rx +pry (p = dy
dx) and its conjugate direction

as ū = rx + ξry. From 〈S(u), ū〉 = 0 we get l + (p + ξ)m + pξn = 0, so ξ = − l + pm

m + pn
. The

coordinates of u in an orthonormal system { rx√
E

,
√

E√
EG−F 2

(ry − F
E rx)} are (E+pF√

E
, p

√
EG−F 2

√
E

)

and those of ū are (E+ξF√
E

, ξ
√

EG−F 2

√
E

). Therefore the angles θ1 and θ2 that u and ū make with

rx are given by

tan θ1 =
p
√

EG − F 2

E + pF
, tan θ2 =

ξ
√

EG − F 2

E + ξF
.

We consider tan(θ1 − θ2) as a function of p (after substituting ξ by its expression in terms
of p). Setting p = dy

dx at the extrema of this function yields the equation in the statement of
the theorem.

The discriminant of the characteristics BDE is given by 4(EG − F 2)2(H2 −K)K = 0, so
it consists of the pseudo parabolic set and the pseudo umbilic points. 2

Remark 4.3 It is clear from Theorem 4.2(1) that there is a 1-1 correspondence between
pseudo shape operators on M and BDEs on M . We shall call a shape operator with coefficient
of a given BDE the shape operator associated to the BDE. The BDE of the pseudo asymptotic
curves of a given shape operator will be referred to as the BDE of the shape operator.

At each non pseudo umbilic point p on M , we can choose a local coordinates system with
axes along the principal directions and with E = G = 1, F = 0, l = κ1, m = 0 and n = κ2

at p. Then we have the following.

Corollary 4.4 With the above setting, the pseudo asymptotic (resp. characteristic) direc-
tions at p are given by κ2dy2 +κ1dx2 = 0 (resp. κ2dy2−κ1dx2 = 0). So the pseudo principal
directions bisect the angles formed by the pseudo asymptotic and characteristic directions.
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It is shown in [7] that the BDEs of the asymptotic, characteristic and principal curves on
a smooth surface in R

3 are related. The arguments in [7] can be used to show that the same
relation holds for the pseudo asymptotic, characteristic and principal curves on a smooth
surface in R

n. As we do not distinguish between a BDE and its non-zero multiples, at each
point (x, y), we can view a BDE (1) as a quadratic form in dx, dy and represent it by the
point (a : 2b : c) in RP 2. In RP 2 there is the conic Γ = {(X : Y : Z) |Y 2 − 4XZ = 0} of
degenerate quadratic forms. To a point (a : 2b : c) is associated a polar line with respect
to Γ, and is given by aZ − bY + cX = 0. Three points in RP 2 form a self-polar triangle if
the polar of any vertex is the line through the remaining two points. In our case the point
(a : 2b : c) is parametrised by (x, y) ∈ U and so is its associated polar line. We shall refer to
this parametrised line as the polar line of the BDE.

Proposition 4.5 The triple pseudo asymptotic, characteristic and principal BDEs form a
self-polar triangle. In particular, any two of the BDEs determine the third one.

Proof The proof is identical to that in [7] for the asymptotic, characteristic and principal
curves BDEs on a smooth surface in R

3. 2

We now prove Theorem 2.2 that shows that the pseudo principal BDE has a unique
property amongst the elements of the polar line of the pseudo asymptotic BDE, namely that
it is the unique BDE on this line that has orthogonal solutions.

Proof of Theorem 2.2

Denote, as before, by l,m, n the coefficients of S. The BDE of the pseudo asymptotic
curves determines the point (n : 2m : l) ∈ RP 2.

Suppose that the BDE we are looking for is given by Ady2 +Bdxdy+Cdx2 = 0. Suppose
also, without loss of generality, that A 6= 0 so its solutions at (x, y) are along rx+siry, i = 1, 2.
The solutions are orthogonal if and only if

〈rx + s1ry, rx + s2ry〉 = E + (s1 + s2)F + s1s2G = 0.

We have s1 + s2 = −B/A, s1s2 = C/A, so the condition on the solutions to be orthogonal is
equivalent to

EA − FB + GC = 0.

The BDE we are seeking is represented by the point (A : B : C) ∈ RP 2. This point belongs
to the polar line of (n : 2m : l) if and only if

lA − mB + nC = 0.

We have then a system of two linear equations in RP 2. As the point in consideration on
the surface is not pseudo umbilic, the system has a unique solution given by (if for example
mG − nF 6= 0)

B

A
=

lG − nE

mG − nF
,

C

A
=

lF − mE

mG − nF
.
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Therefore the equation of the BDE we are looking for is given by

(mG − nF )dy2 + (lG − nE)dxdy + (lF − mE)dx2 = 0,

which is precisely that of the pseudo principal curves. 2

Let SP (resp. SC) be the shape operator whose associated BDE is that of the pseudo
principal (resp. characteristic) curves of a given pseudo shape operator S. We relate below
the triple of BDEs associated to S, SP and SC .

Proposition 4.6 Let S be a pseudo shape operator with isolated pseudo umbilic points. The
relations between the pseudo asymptotic, characteristic and principal curves of the pseudo
shape operators S, SP and SC are given below (where p. is short for pseudo).

p. asymptotic p. principal p. characteristic

S p. asymptotic of S p. principal of S p. characteristic of S
SC p. characteristic of S p. principal of S p. asymptotic of S
SP p. principal of S rotation of the p. principal ∅

of S by π
4

Proof The case SC follows from Theorem 2.2 and the fact that the pseudo asymptotic,
characteristic and principal BDEs of S form a self-polar triangle.

The coefficients of the pseudo shape operator SP are those of the BDE of the pseudo
principal curves of S (so the pseudo principal BDE of S becomes the pseudo asymptotic
BDE of SP ). Following the setting of Corollary 4.4, the pseudo asymptotic directions of
SP at p are given by dxdy = 0. Therefore, by Theorem 4.1 its associated pseudo principal
directions at p are given by dy2 − dx2 = 0. The solutions of this equation are obtained by
rotating the pseudo principal directions of S by π/4. The pseudo characteristic directions
of SP at p are given by dy2 + dx2 = 0 (Theorem 4.2). This is not surprising as the pseudo
characteristic curves live in the pseudo elliptic region of SP which is empty (all non pseudo
umbilic points of SP are pseudo hyperbolic points). 2

Remark 4.7 It follows from the proof of Proposition 4.6 that if the pseudo asymptotic curves
of a pseudo shape operator S are defined everywhere on M and are orthogonal away from
pseudo umbilic points, then there are no pseudo characteristic curves on M and the pseudo
principal curves are obtained by rotating the pseudo asymptotic curves of S by π/4.

5 The configurations of the solution curves

The BDEs in §4 determine a pair of transverse foliations away from the discriminant. The
pair of foliations together with the discriminant are called the configuration of the solutions
of the BDE. We analyse here the configurations of the BDEs in §4 at points on their discrim-
inants. One approach for investigating BDEs with coefficients not all vanishing at a given
point consists of lifting the bi-valued direction field defined in the plane to a single direction
field ξ on some surface N ⊂ R

3 (see for example [12, 13, 14, 25, 36]).
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It is shown in [11] and [12] (see [1] and [24] for alternative proofs) that if ξ does not vanish
at the point in consideration then the BDE can locally be reduced, by smooth changes of
coordinates in the plane, to dy2 − xdx2 = 0. The integral curves in this case is a family of
cusps transverse to the discriminant.

If ξ has an elementary singularity (saddle/node/focus), then the corresponding point in
the plane is called a folded singularity of the BDE. At folded singularities, the equation is
locally smoothly equivalent to dy2 + (−y + λx2)dx2 = 0, with λ 6= 0, 1

16
, provided that ξ is

linearizable at the singular point; see [13, 14]. (For normal forms at folded resonant saddles
and nodes see [15].) There are three topological models (see [14] for references): a folded
saddle if λ < 0, a folded node if 0 < λ < 1

16
and a folded focus if 1

16
< λ; Figure 1.

N

R
2, 0

Figure 1: Folded saddle (left), node (centre) and focus (right).

The family of cusps and the folded singularities are the only locally structurally stable
configurations of singular BDEs (1).

General BDEs with vanishing coefficients at a given point are studied for example in [3, 9,
22, 26]. One can lift the bi-valued field in the plane to a single field ξ on a surface N ⊂ R

2 ×
RP 1. The whole exceptional fibre (0, 0)×RP 1 is an integral curve of ξ. It turns out that when
the discriminant has a Morse singularity and the field ξ has only elementary singularities,
the topological models of the integral curves of the BDE are completely determined by the
singularity type of the discriminant (an isolated point or a crossing), the number (1 or 3) and
the type (saddle or node) of the singularities of ξ on the exceptional fibre (see for example
[9]). If j1(a, b, c) = (a1x + a2y, b1x + b2y, c1x + c2y), then the singularities of ξ on the
exceptional fibre are given by the roots of the cubic

φ(p) = a2p
3 + (2b2 + a1)p

2 + (2b1 + c2)p + c1.

The eigenvalues of the linear part of ξ at a singularity are −φ′(p) and α1(p), where

α1(p) = 2(a2p
2 + (b2 + a1)p + b1).

So the cubic φ and the quadratic α1 determine the number and the type of the singularities
of ξ.
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It is shown in [7] that for generic surfaces in R
3 the asymptotic and characteristic BDEs

have folded singularities with opposite indices at cusps of Gauss, that is, on one side of the
parabolic curve we have a folded saddle and on the other a folded node or focus (Figure 1). It
is also shown in [7] that the type of an umbilic point of the characteristic and principal curves
on surfaces in R

3 are related. There are three topological configurations of the principal and
characteristic curves at a generic umbilic point (so the discriminant is an isolated point):
D1 (lemon) where ξ has 1 saddle on the exceptional fibre, D2 (monstar) where ξ has 1 node
and 2 saddles, and D3 (star) where ξ has 3 saddles, see Figure 2. We show below that the
above relations do not hold in general for the pseudo asymptotic, characteristic and principal
BDEs.

Figure 2: Darbouxian singularities: D1 (lemon) left, D2 (monstar) centre, D3 (star) right.

Proposition 5.1 (1) The pseudo asymptotic and characteristic BDEs have common singu-
larities on the pseudo parabolic set. However, the types of these singularities are not related
in general.

(2) The types of pseudo umbilics of the pseudo characteristic and principal BDEs are not
related in general.

Proof (1) We take the point in consideration to be the origin and suppose that the surface
is given locally in Monge form (x, y, f3(x, y), · · · , fn(x, y)), where the fi’s have zero 1-jets.
So the 1-jets of E,F,G at the origin are equal to 1, 0, 1 respectively. We suppose, without
loss of generality, that the unique solution, at the origin, of the pseudo asymptotic BDE is
parallel to (0, 1). Given that the origin is a singularity of the pseudo asymptotic BDE, we
can write the 2-jet of that equation in the form

n0p
2 + 2(m1x + m2y)p + l1x + l2y + l3x

2 + l4xy + l5y
2.

This singularity is a folded singularity if and only if

λ =
1

2l2
(8n0l2l3 − 8m2

1l2 − m1) 6= 0,
1

16

(see [8]). We have a folded saddle if λ < 0, a folded node if 0 < λ < 1

16
and a folded focus if

λ > 1

16
; see Figure 1.

The 2-jet of the pseudo characteristic BDE is given by

n2
0p

2 + 2n0(m1x + m2y)p + l1n0x − l2n0y + (l1(l1 − n1) − n0l3 + 2m2
1)x

2+
(l2(l1 − n1) + l1(l2 − n2) + 4m2m1)xy + (l2(l2 − n2) + 2m2

2)y
2

11



The origin is also a singularity of this BDE. The singularity is a folded singularity if and
only if

µ =
1

2l2
(8n2

0l2l
2
1 − 8n2

0l2l1n1 − 8n3
0l2l3 + 8m2

1n
2
0l2 + m1) 6= 0,

1

16
.

It is clear that λ and µ are distinct in general.
(2) We write j1l = l0 + l1x + l2y, j1m = m0 + m1x + m2y, j1n = n0 + n1x + n2y. The

origin is a pseudo umbilic point of the pseudo principal (and of the pseudo characteristic)
BDE if and only if the coefficients of the BDE all vanish at the origin, if and only if m0 = 0
and l0 = n0. We shall assume that the pseudo umbilic point is not a pseudo parabolic point,
that is n0 6= 0.

The 1-jet of the coefficients the pseudo principal BDE is given by

(−m1x − m2y,
1

2
((n1 − l1)x + (n2 − l2)y),m1x + m2y).

The number of the singularities of the lifted field and their type are determined by

φ1 = −m2p
3 + (n2 − m1 − l2)p

2 + (n1 − l1 + m2)p + m1,
α1

1 = −2m2p
2 + (n2 − 2m1 − l2)p + n1 − l1.

The 1-jet of the coefficients of the pseudo characteristic BDE is given by

((n1 − l1)x + (n2 − l2)y, 2m1x + 2m2y,−(n1 − l1)x − (n2 − l2)y).

The number of the singularities of the lifted field and their type are determined by

φ2 = (n2 − l2)p
3 + (n1 − l1 + 4m2)p

2 + (l2 − n2 + 4m1)p + l1 − n1,
α2

1 = n0((n2 − l2)p
2 + (2m2 + n1 − l1)p + 2m1).

It is clear that the topological type of the pseudo umbilic of the pseudo characteristic
and principal BDEs are not related in general. 2

Remark 5.2 We can identify the set of pseudo shape operators with the set C(M, R3) of
smooth maps M → R

3, and give this set the Whitney topology. It follows by Thom’s transver-
sality theorem and an analysis of the various conditions in the proof of Proposition 5.1 that
the set of shape operators with the properties (i)-(iii) below form an open and dense subset
of C(M, R3).

(i) The pseudo parabolic set, when not empty, is a smooth curve.
(ii) The singularities of the pseudo asymptotic and characteristic BDEs are folded-saddles,

nodes or foci.
(iii) The pseudo umbilic points are isolated and are Darbouxian singularities of the pseudo

principal and characteristic BDEs.

6 Pseudo conjugate and reflective congruence

In [17] is constructed a natural 1-parameter family of BDEs, called conjugate curve con-
gruence, that links the asymptotic curves BDE and the principal curves BDE on a smooth

12



surface in R
3. In [7] is constructed a natural 1-parameter family of BDEs, called reflected

conjugate congruence, linking the characteristic curves BDE and that of the principal curves.
We define here analogous families for pseudo shape operators. We shall assume that the

pseudo umbilic points are isolated and follow the notation in [7]. Consider the projective
space PTpM of all tangent directions through a point p of M which is neither a pseudo
umbilic nor a pseudo parabolic point. Recall that v ∈ TpM is a conjugate direction to
u ∈ TpM if 〈S(u), v〉 = 0. Conjugation gives an involution on PTpM , v 7→ v = C(v). There
is another involution on PTpM which is the reflection in either of the principal directions,
v 7→ R(v).

Definition 6.1 (1) Let Θ : PTM → [−π/2, π/2] be given by Θ(p, v) = α, where α denotes
the oriented angle between a direction v and the corresponding conjugate direction v = C(v).
The pseudo conjugate curve congruence, for a fixed α, is defined to be Θ−1(α) which we
denote Cα.

(2) Let Φ : PTM → [−π/2, π/2] be given by Φ(p, v) = α, where α is the signed angle
between v and R(v)(= R ◦C(v)). Then the pseudo reflected conjugate curve congruence, for
a fixed α, is defined to be Φ−1(α), which we denote Rα.

Note that Θ is not well defined at points corresponding to pseudo asymptotic directions
at pseudo parabolic points, and Φ is not well defined at pseudo umbilic points.

We have a result below similar to that in [7], namely that Cα and Rα are given by
families of BDEs.

Proposition 6.2 1. The pseudo conjugate curve congruence Cα of a parametrised surface
is given by the BDE

(sin α(mG − nF ) − n cosα
√

EG − F 2)dy2 + (sin α(lG − nE) − 2m cosα
√

EG − F 2)dydx +

(sin α(lF − mE) − l cosα
√

EG − F 2)dx2 = 0,

and the pseudo reflected conjugate congruence Rα is given by the BDE

{(2m(mG − nF ) − n(Gl − En)) cos α + (nF − mG)
2mF − lG − nE
√

(EG − F 2)
sin α}dy2 +

{2(m(lG + nE) − 2lnF ) cos α + (nE − lG)
2mF − lG − nE
√

(EG − F 2)
sin α}dydx +

{(l(lG − nE) − 2m(lF − mE)) cos α + (mE − lF )
2mF − lG − nE
√

(EG − F 2)
sin α}dx2 = 0.

We indicate here some of the properties of the families Cα and Rα (see [7] for more
details, adding the word pseudo to all the concepts there).

– C0 (resp. R0) is the pseudo asymptotic (resp. characteristic) BDE and C±π/2 (resp.
R±π/2) is the pseudo principal BDE.
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– In the setting of Corollary 4.4, the directions Cα at p are given by

κ2 cos αdy2 + (κ2 − κ1) sin αdydx + κ1 cos αdx2 = 0,

and the directions Rα are given by

κ2 cos αdy2 − (κ1 + κ2) sin αdydx − κ1 cos αdx2 = 0.

– The discriminant of Cα is given by H2(x, y) sin2 α − K(x, y) = 0 and that of Rα by
H2(x, y) sin2 α + K(x, y) cos2 α = 0.

– The discriminants of Cα and C−α (resp. Rα and R−α) coincide.

– The discriminants of the family Cα (resp. Rα) foliate the pseudo elliptic (resp. hy-
perbolic) region and are given by κ1/κ2 = constant. On these discriminants the BDE
Cα (resp. Rα) determines a unique direction which is a pseudo characteristic (resp.
asymptotic) direction and the other pseudo characteristic (resp. asymptotic) direction
is the unique direction determined by C−α (resp. R−α) there.

– As α varies in [−π/2, π/2], the folded singularities of the members of Cα (resp. Rα)
trace a curve in the pseudo elliptic (resp. hyperbolic) region, that we label the pseudo
zero curve. This curve has the same properties as that in [4].

7 Principal curves on surfaces in R
4

Let M be a smooth compact oriented 2-dimensional surface in R
4. Given a point p ∈ M ,

consider the unit circle in TpM parametrised by θ ∈ [0, 2π]. The set of the curvature vectors
η(θ) of the normal sections of M by the hyperplane NpM ⊕〈θ〉 form an ellipse in the normal
plane NpM (see for example [27]). This ellipse is called the curvature ellipse. (When θ varies
in [0, 2π], the vector η(θ) traces the ellipse twice.)

Asymptotic directions, labelled conjugate directions in [27], are defined as the directions
along θ such that η(θ) is tangent to the curvature ellipse (see also [21, 29]). So there are 2/1/0
of these depending on whether p is outside/on/inside the curvature ellipse. An alternative
description of the asymptotic directions is given in [5] via the singularities of the projections
of M to hyperplanes. Following [5], a direction u ∈ TpM is said to be asymptotic if the
projection of M along u to a transverse hyperplane has an A-singularity more degenerate
than a cross-cap at p (where A denotes the Mather group of smooth changes of coordinates
in the source and target).

One important result for our investigation here is that the asymptotic curves on a surface
in R

4 are given by a BDE ([6, 21, 27, 29]). This BDE has the form

(b3c4 − b4c3)dy2 + (a3c4 − a4c3)dxdy + (a3b4 − a4b3)dx2 = 0

where ai, bi, ci, i = 1, 2, are the coefficients of the second fundamental form at (x, y). This
equation can also be written in a determinant form

∣

∣

∣

∣

∣

∣

dy2 −dxdy dx2

a3 b3 c3

a4 b4 c4

∣

∣

∣

∣

∣

∣

= 0.
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The discriminant ∆ of the above equation is labelled the parabolic set in [29], and separates
the surface into two regions labelled hyperbolic and elliptic, with the asymptotic curves lying
on the hyperbolic part of the surface ([29]). Points where ∆ is singular (generically a Morse
singularity A±

1
modelled by x2 ± y2) are labelled inflection points. The configurations of the

asymptotic curves at inflection points where ∆ has an A+

1
-singularity are given in [21], and

the configurations at A−
1
-singularities of ∆ and at other points on the discriminant are given

in [6].
As pointed out in the introduction, it appears that there is no previous study that

produces in a natural way orthogonal pairs of tangent (principal) directions at most points
on the surface. A definition of a principal direction is given in [27]. A unit direction θ in
TpM is called a principal direction if the curvature vector η(θ) is an extremity of one of the
principal axes of the curvature ellipse. At a generic point on the surface pass four lines of
curvatures ([27]; see also [23]). In [34], the authors define the v-principal curves which are,
in the terminology of this paper, the pseudo principal curves of the shape operator Sv. A
structural stability theorem, similar to the one in [35], is proved in [34] (see also [19] for some
related results). Note that the v-principal curves depend on the choice of the normal vector
field v. (Another pair of foliations on surfaces in R

4 defined in terms of the curvature ellipse
is studied in [18].)

We propose in this paper a definition of the principal curves based on the results in the
previous sections (see Definition 2.4). We define a principal (resp. characteristic) curve on
M as a pseudo principal (resp. characteristic) curve of the pseudo shape operator associ-
ated to the asymptotic BDE on M . With these definitions, the equations of the principal
and characteristic curves are given by BDEs, and the triple asymptotic, characteristic and
principal BDEs behave in the same way as their counterpart on surfaces in R

3 (Proposition
4.5).

Corollary 7.1 The principal curves on M are given by the BDE in Theorem 4.1(3) and the
characteristic curves by the BDE in Theorem 4.2(2), where l = a3b4 − a4b3, m = (a3c4 −
a4c3)/2 and n = b3c4 − b4c3.

Remarks 7.2 (1) At a hyperbolic point, the principal directions bisect the angle formed by
the asymptotic directions (Corollary 4.4). So the curvature vector η(αi) (i = 1, 2) along a
unit principal direction αi ∈ TpM is an extremity of the segment bisecting the internal and
external angles formed by the curvature vectors η(θi), i = 1, 2, associated to the asymptotic
directions; see Figure 7 (recall that η(θi), i = 1, 2, are tangent to the curvature ellipse).
A similar observation can be made for points in the elliptic region. At such points, the
curvature vector along a unit principal direction is an extremity of the segment bisecting the
internal and external angles formed by the curvature vectors associated to the characteristic
directions.

(2) The pseudo parabolic set of the pseudo shape operator associated to the asymptotic
BDE on M is the parabolic set ∆ (as defined in [29]) and the pseudo hyperbolic and elliptic
regions are the hyperbolic and elliptic regions defined in [29].

(3) Umbilics are isolated points on generic surfaces and occur in the elliptic region of the
surface. Also, the inflection points are umbilic points but the converse is not true in general.
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(4) The results in Proposition 5.1 still hold here. That is, although the asymptotic curves
and the characteristic curves are singular at the same points on ∆ (see [6] for their location),
their types are not related in general. The type of umbilic points of the characteristic and
principal curves are also not related in general. In fact, the 1-jets of all the coefficients of
the BDE of the characteristic curves vanish at inflection points.

p

p

Tangent plane
Normal plane

Figure 3: Unit principal directions (thick lines) and asymptotic directions (dotted lines) in
the tangent space left, and their associated normal vectors on the curvature ellipse at a
hyperbolic point.

We relate in Theorem 2.5 the principal curves defined here to the v-principal curves
defined in [34]. Below is the proof of that result.

Proof of Theorem 2.5

(1) It follows from Proposition 3.2 that a pseudo shape operator with coefficients A,B,C
is a shape operator if and only if

(b3c4 − c3b4)A − (a3c4 − c3a4)B + (a3b4 − b3a4)C = 0.

But this is exactly the condition for the point (A : 2B : C) to be on the polar line of
(a3b4 − b3a4 : a3c4 − c3a4 : b3c4 − c3b4), that is, on the polar line of the asymptotic BDE of
M .

(2) The principal curves are v-principal if and only if they are the pseudo principal curves
of the shape operator Sv. So by (1) above the BDE of Sv must lie on the polar line of the
BDE of the asymptotic curves. (Note that as v varies on the unit circle in NpM , the BDE
of Sv traces the polar line of the asymptotic BDE of M .) However, the BDE of Sv must
also lie on the polar line of the BDE of the principal curves. Therefore the BDE of Sv is
precisely that of the characteristic curves (which is the intersection point of the polar lines
of the asymptotic and principal BDEs).

One can compute v as in the proof of Proposition 3.2, where l,m, n refer now to the
coefficients of the characteristic BDE of M . 2

Acknowledgement: I would like to thank the referee for useful comments.
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