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Abstract. In this work we show a result of existence of positive solution for the
following nonlocal problem of Kirchhoff type

−M
(∫

Ω

|∇u|2dx
)

∆u = f(u)− a in Ω, u = 0 on ∂Ω ,

where Ω ⊂ RN is a smooth bounded domain, M,f are continuous nonnegative functions
and a > 0. By using mainly variational methods, we prove the existence of a solution
for a small enough, under two different sets of hypotheses, which generalize the classical
superlinear and sublinear problems.

1. Introduction

In this paper we study the existence of positive weak solutions for the semipositone
problem with Kirchhoff type, possibly degenerate, nonlocal term

(Pa)


−M

(∫
Ω

|∇u|2dx
)

∆u = f(u)− a in Ω,

u(x) > 0 in Ω,
u = 0 on ∂Ω,

where Ω ⊂ RN , N ∈ N, is a smooth bounded domain with smooth boundary denoted
by ∂Ω, f : [0,+∞) → [0,+∞) is a continuous function with subcritical growth, a > 0
and the function M : [0,+∞)→ [0,+∞) is also continuous.

We will prove, via variational methods and with the help of some regularity theory,
a-priori estimates and comparison methods, the existence of a positive regular solution
for positive small values of the parameter a, under two different sets of hypotheses, which
generalize the model problem −∆u = uq−1 − a, respectively, in the superlinear (q > 2)
and the sublinear (1 < q < 2) case.

The main feature of problem (Pa) is the presence of the term M
(∫

Ω
|∇u|2dx

)
, which

is said to be nonlocal, since it depends not only on the point in Ω where the equation
is evaluated, but on the norm of the whole solution. Such problems are usually called
of Kirchhoff type, as they are generalizations of the (stationary) Kirchhoff equation,
originally proposed in [24] as an improvement of the vibrating string equation, in order
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to take into account the variation in the tension of the string due to the variation of its
length with respect to the unstrained position.

Our results include the original nonlocal term M(t) = c+ bt with c, b > 0 proposed by
Kirchhoff in [24], but also admit the possibility for M to be degenerate (see the model
problems in Section 1.2).

Many other physical phenomena can be modeled through nonlocal equations similar
to (Pa) (see examples in [19,33]), and interesting mathematical questions also arise.

For more recent literature about such Kirchhoff type problems we cite the works
[2, 4, 6, 8, 11, 13, 17, 21, 22, 27, 28, 30–32], which deal with the existence of solutions with
various types of nonlinearities f and use mainly variational methods. Among them, we
refer to [4, 13, 22, 28, 30, 31] for considering also the case where the nonlocal term M is
degenerate.

On the other hand, studies on positone problems are classic and very current. For
example, considering the Laplacian operator, the authors in [23] show existence of radial
solution in a ball or an annulus. For the case with the p-Laplacian operator, the authors
in [29] found a positive solution in the critical case. A uniqueness result in exterior
domains was proved in [12]. The version in Orlicz-Sobolev space was studied in [1].
Other interesting results can be seen in [3], [5], [9], [10], [14], [15], [16] and the references
therein.

1.1. Statement of the results. We define the two primitives F (t) =
∫ t

0
f(τ) dτ and

M(t) =
∫ t

0
M(τ) dτ and we assume througout the paper the following two conditions:

(H0) M, f : [0,+∞)→ [0,+∞) are continuous, M(t) > 0 for t > 0 and f 6≡ 0;

(fsc) there exists q < 2∗ such that lim sup
t→∞

f(t)

tq−1
<∞,

where, for N ≥ 3, 2∗ = 2N
N−2

is the critical Sobolev exponent, while for N = 1, 2 we will
take 2∗ =∞.

In our first setting we will also assume

(M0) there exists r ∈ [2, q) such that

lim inf
t→0

M(t2)

tr
> 0 ;

(f0) f(0) = 0 and

lim
t→0

F (t)

tr
= 0 .

Moreover, in order to obtain the required compactness condition we assume

(KAR) there exist θ > 1, D, β, t0 > 0 such that

(i) θF (t)− f(t)t ≤ 0 for every x ∈ Ω, t > t0,

(ii)
θ

2
M(t2)−M(t2)t2 ≥ βt−D for every t ≥ 0,

and finally, we will also impose

(M∞) there exist θ1 ∈ (1, θ) such that

lim sup
t→+∞

M(t2)

tθ1
<∞ .
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Remark 1. Observe that by (KAR) and (M∞), using also that f 6≡ 0, there exist
A1, B1 > 0 such that

(1.1) F (t) ≥ A1|t|θ −B1, t ≥ 0,

(1.2)
1

2
M(t2) ≤ A1|t|θ1 +B1, t ≥ 0.

Actually, (1.2) with θ instead of θ1 would be a consequence of (KAR-ii), so (M∞) imposes
a stronger growth condition than (KAR-ii). In fact, the two conditions are independent:
the former is required in order to guarantee that the functional we will be working with
is not bounded from below, while the latter is used in the proof of the (PS)-condition.

Condition (fsc) imposes a subcritical growth to f and implies that θ < 2∗, while the
conditions (M0) and (f0) will produce a “range of mountain” geometry around the origin
for the functional, which completes the mountain pass structure.

In our second setting we still assume (H0) and (fsc), moreover we assume

(M̃0) there exists r ∈ [2, 2∗) such that

lim sup
t→0

M(t2)

tr
<∞ ;

(f̃0) f(0) = 0 and

lim
t→0

F (t)

tr
=∞ ,

and in order to obtain coercivity we assume

(KC) there exists r̃ > q, where q is the exponent from (fsc), such that

lim inf
t→+∞

M(t2)

tr̃
> 0.

Remark 2. In this setting, the conditions (M̃0) and (f̃0) will produce a situation where
the origin is not a local minimum for the functional while, as observed above, (KC) will
make the functional coercive, in view of (fsc). It will be then possible to obtain solutions
via minimization.

Remark 3. Our techniques could be extended to work for the p-Laplacian operator and
considering more general nonlinearities f(x, t) depending also on x ∈ Ω, however, we
chose to work in the setting with the Laplacian and autonomous nonlinearity, in order
to keep the presentation more clear and avoid some technicalities.

Our main results are the following.

Theorem 1.1. Assume the conditions (H0), (fsc), (f0), (M0), (KAR) and (M∞). Then
there exist a∗ > 0 and γ ∈ (0, 1) such that, if a ∈ (0, a∗), problem (Pa) has a positive
weak solution ua ∈ C1,γ(Ω).

Theorem 1.2. Assume the conditions (H0), (fsc), (f̃0), (M̃0) and (KC). Then there
exist a∗ > 0 and γ ∈ (0, 1) such that, if a ∈ (0, a∗), problem (Pa) has a positive weak
solution ua ∈ C1,γ(Ω).
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The paper is structured as follows. First, in Section 1.2, we present some model
problems that fit in the conditions of the main theorems. Then, in Section 2, we define
an auxiliary problem for which we obtain a solution for suitably small values of the
parameter a > 0; in Section 3 we obtain several estimates for such solutions, and in
particular we prove, in Lemma 3.2, that they are uniformly bounded in a suitable Hölder
space. Finally, in Section 4, we prove the main theorems by showing that the solutions
of the auxiliary problem are positive, and then they are actually solution of problem
(Pa), at least for small a.

Throughout the paper we will denote by ‖u‖ =
(∫

Ω
|∇u|2dx

)1/2
the norm in H1

0 (Ω)
and by ‖u‖s the Ls-norm.
We will also use the letters C, c to denote generic positive constants which may vary
from line to line.

1.2. Model problems. As stated in the introduction, the local prototype for the
equations we are considering is

(1.3) −∆u = uq−1 − a,
where, respectively, q ∈ (2, 2∗) for Theorem 1.1 and q ∈ (1, 2) for Theorem 1.2.

More in general, consider the nonlocal problem

(1.4) − (c+ b ‖u‖ω0−2)∆u = uq−1 − a
with c ≥ 0, b > 0 and ω0 > 2. For c > 0 and ω0 = 4, the left hand side is the original
nonlocal term proposed by Kirchhoff in [24]. On the other hand, if c = 0 then the
nonlocal term M in (1.4) is degenerate at the origin.
For (1.4) one hasM(t2) = ct2+ 2b

ω0
tω0 , then for Theorem 1.1 one can take 2 < ω0 < q < 2∗,

actually hypothesis (M0) holds true with r = ω0, while (KAR) and (M∞) hold with
ω0 ≤ θ1 < θ < q. For Theorem 1.2 instead, one can take q ∈ (1, 2) if c > 0 and

q ∈ (1, ω0) in the degenerate case c = 0, actually hypothesis (M̃0) holds true with r = 2,
but also with r = ω0 if c = 0, while (KC) holds with r̃ = ω0. It is worth noting that in
this last case it is possible to take a linear f :

−‖u‖ω0−2 ∆u = u− a.
A further model, where instead M is degenerate at infinity, is

(1.5) − ∆u(
‖u‖2 + 1

)1−ω∞/2
= uq−1 − a

with 1 < ω∞ < 2. In this case M(t2) = 2
ω∞

[
(t2 + 1)

ω∞/2 − 1
]
.

For Theorem 1.1 one can take q ∈ (2, 2∗): actually hypothesis (M0) holds true with
r = 2, while (KAR) and (M∞) hold with ω∞ ≤ θ1 < θ < q; on the other hand, for

Theorem 1.2 hypothesis (M̃0) holds true with r = 2 and (KC) with r̃ = ω∞, then we can
take q ∈ (1, ω∞).

By combining the above cases one can also consider a problems degenerate at both
the origin and infinity, such as

(1.6) −
(
min

{
‖u‖ω0−2 , ‖u‖ω∞−2})∆u = uq−1 − a
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with 1 < ω∞ < 2 < ω0: then for Theorem 1.1, one needs q ∈ (ω0, 2
∗), since hypothesis

(M0) holds true with r = ω0, and (KAR) and (M∞) with ω∞ ≤ θ1 < θ < q; for Theorem
1.2 instead one needs 1 < q < ω∞.

As a final example, with the same left hand side as (1.5) but with nonhomogeneous
functions f , one can consider in Theorem 1.1 an asymptotically linear nonlinearity, for
instance

(1.7) − ∆u(
‖u‖2 + 1

)1−ω/2 =
u2

1 + u
− a.

with 1 < ω < 2, actually the hypotheses now hold with q ∈ (2, 2∗), r = 2 and
ω ≤ θ1 < θ < 2.

In Theorem 1.2 one can also take a nonlinearity which goes to zero at infinity, for
instance

(1.8) − ∆u(
‖u‖2 + 1

)1−ω/2 =

√
u

1 + u
− a.

with 1 < ω < 2, actually the hypotheses now hold with q = 1/2, r = 2 and r̃ = ω.

2. Preliminary results

In the sequel, we say that u ∈ H1
0 (Ω) is a weak solution for (Pa) if u is a continuous

positive function that verifies

M

(∫
Ω

|∇u|2dx
)∫

Ω

∇u∇ϕdx =

∫
Ω

(f(u)− a)ϕdx, ϕ ∈ H1
0 (Ω).

In this section, we denote by fa : R −→ R the continuous functions given by

(2.1) fa(t) =

 f(t)− a if t ≥ 0,
−a(t+ 1) if t ∈ [−1, 0],

0 if t ≤ −1,

0 < a < 1, and −a = min
t∈R

fa(t).

Our intention is to prove the existence of a positive solution for the following auxiliary
problem

(APa)


−M

(∫
Ω

|∇u|2dx
)

∆u = fa(u) in Ω,

u(x) > 0 in Ω,
u = 0 on ∂Ω,

because such a solution is also a solution of (Pa).

Associated with (APa), we have the energy functional Ia : H1
0 (Ω) −→ R defined by

Ia(u) =
1

2
M
(∫

Ω

|∇u|2dx
)
−
∫

Ω

Fa(u)dx, u ∈ H1
0 (Ω)
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where

(2.2) Fa(t) =

∫ t

0

fa(τ)dτ =

 F (t)− at if t ≥ 0,
a
2

(1− (t+ 1)2) if t ∈ [−1, 0],
a
2

if t ≤ −1.

As a consequence we can always estimate

(2.3) − at+ ≤ Fa(t) ≤
{
F (t) if t ≥ 0,
a
2

if t ≤ 0,

where t+ = max{t, 0}.
The functional Ia is Fréchet differentiable with derivative I ′a given by

〈I ′a(u), v〉 = M

(∫
Ω

|∇u|2dx
)∫

Ω

∇u∇vdx−
∫

Ω

fa(u)vdx, v ∈ H1
0 (Ω).

2.1. Mountain pass geometry. Throughout this section we assume the hypotheses of
Theorem 1.1. The next two lemmas will be useful to prove that in this case Ia verifies
the mountain pass geometry.

Lemma 2.1. There exist ρ, a1, α > 0 such that

Ia(u) ≥ α, for ‖u‖ = ρ and any a ∈ [0, a1).

Proof. Notice that, in view of (f0), (fsc) and (2.3), given ε > 0, there exists Cε > 0 such
that

Fa(t) ≤ ε|t|r + Cε|t|q + a/2, for all t ∈ R.

On the other hand, (M0) implies that 1
2
M(s2) ≥ C1s

r for some C1 > 0 and s small
enough, then using also Sobolev embeddings, we get

Ia(u) ≥ 1

2
M
(∫

Ω

|∇u|2dx
)
−ε ‖u‖rr − Cε‖u‖

q
q −

a

2
|Ω|

≥ ρr
(
C1 − εC − CCερq−r

)
− a

2
|Ω| .

We first set ε = C1/2C and then we set ρ sufficiently small such that CCερ
q−r ≤ C1/4,

so that the term in parentheses is at least C1/4.
With this, the claim is satisfied by taking a1, α such that (C1/4)ρr − a1

2
|Ω| > α. �

Lemma 2.2. There exists v ∈ H1
0 (Ω) such that ‖v‖ > ρ and Ia(v) < 0, for all a ∈ [0, a1).

Proof. Let ϕ ∈ C∞0 (Ω) be a function verifying

ϕ > 0 in Ω and ||ϕ|| = 1.

Note that for all t > 0,

Ia(tϕ) =
1

2
M
(
t2
)
−
∫

Ω

Fa(tϕ)dx

=
1

2
M
(
t2
)
−
∫

Ω

F (tϕ) dx+ a

∫
Ω

tϕ dx.

Estimating with (1.1) and (1.2) we get

Ia(tϕ) ≤ A1t
θ1 +B1 − A1t

θ‖ϕ‖θθ + ta‖ϕ‖1 +B1|Ω|.(2.4)
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Since θ > max {θ1, 1} and a ∈ [0, a1), we can fix t1 > ρ large enough so that Ia(v) < 0,
where v = t1ϕ ∈ H1

0 (Ω).
�

In the sequel, we are going to study the boundedness of (PS) sequences of Ia. To
do this, observe that (KAR-i) yields that also fa satisfies the famous condition due to
Ambrosetti-Rabinowitz, that is, there exists Ta1 ∈ R, dependeing on a1, such that

(2.5) θFa(t) ≤ tfa(t) + Ta1 , t ∈ R and a ∈ [0, a1) .

Lemma 2.3. The functional Ia satisfies the Palais-Smale condition for all a > 0.

Proof. The proof was already given in [22, Proposition 4.1]. We give it here for sake of
completeness.

Let {un} be a sequence in H1
0 (Ω) such that |Ia(un)| ≤ Υ, for some Υ > 0 and

I ′a(un)→ 0. We then estimate |θIa(un)− I ′a(un)[un]| as∣∣∣∣(θ2M (
‖un‖2)−M (

‖un‖2) ‖un‖2

)
−
∫

Ω

(θFa(x, un)− fa(x, un)un) dx

∣∣∣∣ ≤ C+εn ‖un‖ ,

with εn → 0, so that, using (KAR-ii) and (2.5), we obtain

(2.6) β ‖un‖ ≤ C ′ + εn ‖un‖ ,
which implies that ‖un‖ is bounded.

Now by standard arguments, in view of the subcriticality of f given in (fsc), it
follows that, up to a subsequence, un converges weakly in H1

0 (Ω) to some u and from
|I ′a(un)[un − u]| → 0 and (fsc), one obtains

M(‖un‖2)

∫
Ω

∇un∇(un − u) dx→ 0 (n→∞).

By (H0) we may assume that either un → 0 in H1
0 (Ω) or M

(
‖un‖2) → c > 0. In the

latter case we have
∫

Ω
∇un∇(un − u) dx→ 0 and then un → u strongly in H1

0 (Ω). �

We will now obtain a solution for Problem (APa), by the Mountain Pass Theorem.
Below we will make explicit the dependence of the constants on the bounded interval

[0, a) where the parameter a is taken, by using as subscript its endpoint, which we still
have to fix, while we will not mention their dependence on M,Ω and f .

Lemma 2.4. There exists a constant Ca1 > 0 such that (APa) has a solution ua ∈ H1
0 (Ω)

satisfying 0 < α ≤ Ia(ua) ≤ Ca1, for every a ∈ [0, a1).

Proof. The Lemmas 2.1, 2.2 and 2.3 guarantee that we can apply the Mountain
Pass Theorem due to Ambrosetti-Rabinowitz [7] to show the existence of a solution
ua ∈ H1

0 (Ω) for all a ∈ [0, a1) with Ia(ua) = da ≥ α > 0, where da is the mountain pass
level associated with Ia.

Now, taking ϕ ∈ C∞0 (Ω) as in the proof of Lemma 2.2, t > 0, and estimating as
in (2.4), we see that Ia(tϕ) is bounded from above, uniformly if a ∈ [0, a1). Then the
mountain pass level is also estimated in the same way:

0 < α ≤ da = Ia(ua) ≤ max{Ia(tϕ); t ≥ 0} ≤ Ca1 .

�
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The next lemma establishes a very important estimate involving the Sobolev norm of
the solution ua for a ∈ [0, a1).

Lemma 2.5. There exist constants ka1 , Ka1, such that 0 < ka1 ≤ ‖ua‖ ≤ Ka1 for all
a ∈ [0, a1).

Proof. By Lemma 2.4 we have

Ca1 ≥ Ia(ua)−
1

θ
I ′a(ua)ua

=
1

2
M(‖ua‖2)− 1

θ
M(‖ua‖2)‖ua‖2

+

∫
Ω

(
1

θ
fa(ua)ua − Fa(ua)

)
dx.

Then from (2.5) and (KAR-ii) we get

Ca1 ≥
1

θ
(β ‖ua‖ −D − Ta1) .

and then we obtain the claimed estimate from above.
For the estimate from below, just note that by (2.3) and Sobolev embeddings

α ≤ Ia(ua) ≤
1

2
M
(
‖ua‖2)+ a

∫
Ω

u+
a dx

≤ 1

2
M
(
‖ua‖2)+ Ca1 ‖ua‖

and the right hand side goes to zero if ‖ua‖ goes to zero. �

2.2. Gobal minimum geometry. Throughout this section we assume the hypotheses
of Theorem 1.2. The next two lemmas will prove that Ia has a global minimum at a
negative level.

Lemma 2.6. There exist a1, α > 0 and u0 ∈ H1
0 (Ω) such that

Ia(u0) ≤ −α, for any a ∈ [0, a1).

Proof. Let ϕ ∈ C∞0 (Ω) be as in the proof of Lemma 2.2. As there, for t > 0,

Ia(tϕ) =
1

2
M
(
t2
)
−
∫

Ω

F (tϕ) dx+ a

∫
Ω

tϕ dx.

From (M̃0) and (f̃0) we have that, for t0 small enough and some constant A > 0,

1

2
M
(
t20

)
≤ Atr0 and

∫
Ω

F (t0ϕ) dx ≥ 2Atr0 .

Then we get

Ia(t0φ) ≤ −Atr0 + at0

∫
Ω

ϕdx.

Let now α = 1
2
Atr0 > 0 and then fix a1 = a1(t0) such that a1t0

∫
Ω
ϕdx ≤ α, to obtain

Ia(t0φ) ≤ −α for a ∈ [0, a1).
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�

Lemma 2.7. Ia is coercive, uniformly with respect to a ∈ [0, a1), in fact, there exist
H, ρ > 0 independents of a such that Ia(u) ≥ H whenever ‖u‖ ≥ ρ and a ∈ [0, a1).

Proof. By (fsc), (KC) and using (2.3), we get, for suitable constants c, C > 0,

(2.7) Ia(u) ≥ c

2
‖u‖r̃ − C − C ‖u‖q − a

2
|Ω| ,

then the claim follows easily since r̃ > q. �

Lemma 2.8. For every a ∈ R, Ia is weakly lower semicontinuos.

Proof. The proof is classical in view of (H0) and (fsc), observing that M ≥ 0 implies
that M is nondecreasing and then M(‖u‖2) ≤ lim infM(‖un‖2) along a sequence un
that converges weakly to u. �

We will now obtain a solution for Problem (APa) by minimization.

Lemma 2.9. There exists a constant Ca1 > 0 such that Problem (APa) has a solution
ua ∈ H1

0 (Ω) satisfying 0 > −α ≥ Ia(ua) ≥ −Ca1, for every a ∈ [0, a1).

Proof. The solution is obtained by minimization in view of the above Lemmas. Actually
the global minimum of Ia stays below −α by Lemma 2.6, while the bound from below
is a consequence of (2.7) with a < a1. �

We now prove that the same kind of estimate obtained in Lemma 2.5, holds true also
in this case.

Lemma 2.10. There exist constants ka1 , Ka1, such that 0 < ka1 ≤ ‖ua‖ ≤ Ka1 for all
a ∈ [0, a1).

Proof. The bound from above for the norm of ua is a consequence of the uniform
coercivity proved in Lemma 2.7, since Ia(u0) < 0.

The bound from below follows by the same argument as in Lemma 2.5. Actually, by
(2.3), Sobolev embeddings and estimating Fa(t) ≤ F (t+) + a|t|, we get

0 > −α ≥ Ia(ua) =
1

2
M
(
‖ua‖2)− ∫

Ω

Fa(ua) dx

≥ −a1 ‖ua‖1 −
∫

Ω

F (u+
a ) dx

and again the right hand side goes to zero if ‖ua‖ goes to zero. �

3. Further estimates for the solutions ua

From now on ua will be the solution of Problem (APa) obtained either in Lemma 2.4
or in Lemma 2.9.

As an immediate consequence of Lemma 2.5 and Lemma 2.10, in view of condition
(H0), we obtain the following

Corollary 3.1. There exist constants ha1 , Ha1, such that 0 < ha1 ≤ M (‖ua‖2) ≤ Ha1

for all a ∈ [0, a1).



10 GIOVANY M. FIGUEIREDO, EUGENIO MASSA AND JEFFERSON A. SANTOS

This estimate is very important because it implies that from now on we can work as if
the nonlocal term were nondegenerate and bounded, making the next steps very similar
to the local case M ≡ 1.

Our next result ensures that ua belongs to L∞(Ω), and that the family {ua}a∈[0,a) is a
bounded set in L∞(Ω) for a small enough. This fact is crucial in our approach.

Lemma 3.2. There exists a2 ∈ (0, a1] and β ∈ (0, 1) such that {ua}a∈[0,a2) ⊆ C1,β(Ω)

and is a bounded set in C1,β(Ω). In particular, there exists C∞a2 > 0 such that

(3.1) ‖ua‖∞ ≤ C∞a2 , ∀a ∈ [0, a2).

Proof. In order to prove the lemma, it is enough to show that for any sequence aj → 0,
the sequence of solutions uj = uaj from Lemma 2.4 (resp. Lemma 2.9) possesses a

subsequence, still denoted by itself, which is bounded in C1,β(Ω). We will do this by
showing that a suitable subsequence of uj satisfies the conditions in [18, Proposition 3.7],
which provides the claimed boundedness as a consequence of [20, 25,26].

As uj is bounded in H1
0 (Ω) by Lemma 2.5 (resp. Lemma 2.10), there is a subsequence

of {uj}, still denoted by itself, and u ∈ H1
0 (Ω) such that uj → u weakly in H1

0 (Ω),
strongly in Lτ (Ω) for τ < 2∗ and a.e. in Ω.
Proceeding similar to the proof of Lemma 2.3, from |I ′aj(uj)[uj − u]| = 0 and (fsc), since

faj(uj(x))→ f0(u(x)) a.e. for x ∈ Ω one obtains

M(‖uj‖2)

∫
Ω

∇uj∇(uj − u) dx→ 0 .

Now we know that uj does not tend to zero and then M
(
‖uj‖2) → c > 0 so that∫

Ω
∇uj∇(uj − u) dx→ 0 and then uj → u strongly in H1

0 (Ω) and also in L2∗(Ω). Hence

up to further subsequence, u2∗
j is uniformly integrable.

Finally, from Corollary 3.1 we get the estimate, in the weak sense,

(3.2) | −∆ua| =
∣∣∣∣ 1

M(‖ua‖2)
fa(ua)

∣∣∣∣ ≤ 1

ha1
(f(ua) + |a|) ,

where f is subcritical by (fsc). �

In what follows, we show an estimate from below of the norm L∞(Ω) of ua for a small
enough.

Lemma 3.3. There exists a3 ∈ (0, a2) and δ > 0 that does dependent on a ∈ [0, a3),
such that ‖ua‖∞ ≥ δ for all a ∈ [0, a3).

Proof. By using ua as a test function we have

M(‖ua‖2)

∫
Ω

|∇ua|2 dx =

∫
Ω

fa(ua)ua dx,

By Lemma 2.5 (resp. Lemma 2.10) and Corollary 3.1 the left hand side is bounded
from below by ha1k

2
a1

.
Let now δ be such that f(t)t < ha1k

2
a1
/|Ω| for t ∈ [0, δ], it follows that there exists

a3 such that for a ∈ [0, a3) fa(t)t < ha1k
2
a1
/|Ω| for t ∈ (−∞, δ]. Then if ‖ua‖∞ < δ and

a ∈ [0, a3) we are lead to the contradiction
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ha1k
2
a1
≤M(‖ua‖2)

∫
Ω

|∇ua|2 dx =

∫
Ω

fa(ua)ua dx < ha1k
2
a1

and then the claim is proved. �

4. Proof of the main Theorems

In order to conclude the proof of Theorem 1.1 and 1.2, we need to show that the
solution ua is positive for a ∈ (0, a3), decreasing a3 if necessary. Indeed, let {aj} ⊂ (0, a3)
be a sequence with aj → 0 as j → ∞, and let uj be a solution of (APa) with a = aj.
Setting fj(uj) = faj(uj), we have{

−M(‖uj‖2)∆uj = fj(uj) in Ω,
uj = 0 on ∂Ω.

From Lemma 3.2 we know that uj is bounded in C1,β(Ω) for some β ∈ (0, 1). By
the compact inclusion C1,β(Ω) ⊆ C1,γ(Ω) for 0 < γ < β, we obtain a subsequence (still
denoted by uj) and a function u ∈ C1,γ(Ω) such that uj → u in C1,γ(Ω).

Now using corollary 3.1 we can estimate

−∆uj =
fj(uj)

M(‖uj‖2)
≥ −aj

ha3

Let vj be the solution of the problem{
−∆vj = kj :=

−aj
ha3

in Ω,

uj = 0 on ∂Ω,

so that then −∆vj ≤ −∆uj and by the comparison principle for the Laplacian we
conclude that

vj ≤ uj in Ω .

Since vj ↗ 0 uniformly this implies that u ≥ 0.
Now notice that

• ∇uj(x)→ ∇u(x) uniformly in Ω,

• ‖uj‖ → ‖u‖ and then M(‖uj‖2)→M(‖u‖2)
• {fj(uj)} is bounded in Ls(Ω), s > 1,
• fj(uj) ⇀ z in Ls(Ω),
• fj(uj(x))→ f0(u(x)) a.e. x ∈ Ω

where f0(t) = f(t) if t ≥ 0, and f0(t) = 0 if t < 0.
Having this in mind, we deduce that z = f0(u) ≥ 0, and for any ϕ ∈ C∞0 (Ω)

M(‖u‖2)

∫
Ω

∇u∇ϕdx = lim
j→+∞

M(‖uj‖2)

∫
Ω

∇uj∇ϕdx(4.1)

= lim
j→+∞

∫
Ω

fj(uj)ϕdx

=

∫
Ω

zϕdx.
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As ‖uj‖∞ ≥ δ for all j ∈ N, by Lemma 3.3, we derive that ||u||∞ ≥ δ, and so u 6≡ 0,
consequently M(‖u‖2) > 0, and from (4.1) we get

−∆u = z
M(‖u‖2)

in Ω,

u ≥ 0 in Ω,
u = 0 on ∂Ω.

As z ≥ 0, we obtain  −∆u ≥ 0 in Ω,
u ≥ 0 in Ω,
u = 0 on ∂Ω.

Now by the strong comparison principle for the Laplacian,

u > 0 in Ω and
∂u

∂η
< 0 on ∂Ω,

where ∂/∂η denotes the exterior normal derivative. This information together with the
limit

uj → u in C1,τ (Ω)

leads to uj(x) > 0, x ∈ Ω, for j large enough. Decreasing a3 if necessary, the above
analysis guarantees that ua is positive for a ∈ (0, a3). This completes the proof of the
main Theorems.
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