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The problem

In this work we consider the problem

{

−∆u = λu ± f (x , u) + h(x) in Ω
u = 0 on ∂Ω,

(1±)

where:
• |f (x , t)| ≤ C (1 + |t|q−1) with q ∈ (1, 2),
• h ∈ L2(Ω),
• Ω ⊆ R

N is a smooth bounded domain.
• ...more hypotheses on f ...

Observe that if λ 6∈ σ(−∆) at least one solution exists,
moreover if f = h = 0 then the solution is unique (the trivial one)

Question: which hypotheses to guarantee at least two solutions for
λ near to an eigenvalue λk? (almost resonant problem)
(in particular, we want conditions on f only at infinity)
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Existing literature for almost resonant problems

λ1, ODE , bifurcation and degree.

J. Mawhin, K. Schmitt, (1990)
M. Badiale, D. Lupo, (1989)
D. Lupo, M. Ramos, (1990)

λ1, PDE , bifurcation and degree.

R. Chiappinelli, J. Mawhin, R. Nugari, (1992)
R. Chiappinelli, D. G. de Figueiredo, (1993)

λ1, PDE , variational techniques.

M. Ramos, L. Sanchez, (1997)
T. F. Ma, M. Ramos, L. Sanchez, (1997)
T. F. Ma, M. L. Pelicer, (2002) (p-Laplacian)

λk , ODE , bifurcation and degree.

D. Lupo, M. Ramos, (1990)

We study the case

λk , PDE , variational techniques.
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Some notation

J± : H10 (Ω)→ R :
J(u) = 1

2

∫

Ω

(

|∇u|2 − λu2
)

dx ∓
∫

Ω
F (x , u) dx −

∫

Ω
h u dx

V = span{φ1, ... , φk−1} ,
Z = span{φk , ... , φk+m−1} = Hλk

,

W = (V ⊕ Z )⊥ ,

SV , SVZ , SZW , the unit spheres in V , V ⊕ Z , Z ⊕W
BV , BVZ , BZW , the unit balls.

If λ 6∈ σ(−∆) there exists a solution from Saddle Point Theorem.
however, a suitable behaviour of f may give rise to a further solution.
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One solution

V

Z

W

�

�

RSV

Z ⊕
W

V

Z

W

RSVZ

W

(λ < λk ) ck−1 = inf
γ∈Γk−1

sup
v∈RBV

J(γ(v)) .

Γk−1 = {γ ∈ C0(RBV ;H
1
0 ) s.t. γ|RSV

= Id} ,

(λ > λk) ck = inf
γ∈Γk

sup
v∈RBVZ

J(γ(v)) .

Γk = {γ ∈ C0(RBVZ ;H
1
0 ) s.t. γ|RSVZ

= Id} ,

Eugenio Massa Elliptic problems near resonance



Elliptic problems
near resonance

Eugenio Massa

The problem

Literature

Notation

Main theorem

below

above

Idea of the
proofs

below

above

The main theorem: hypotheses

(H) |f (x , t)| ≤ C (1 + |t|q−1) with q ∈ (1, 2) ,

h ∈ L2(Ω) ,

Ω ⊆ R
N is a smooth bounded domain.

either (H1) (f2) : lim
t→±∞

f (x , t) = ±∞ uniformly x ∈ Ω ;

or (H2) (f3) : lim
|t|→∞

F (x , t) = +∞ uniformly x ∈ Ω ,

(f4) : F (x , t) ≥ −CF ,

(h1) :

∫

Ω

h φ dx = 0 ∀φ ∈ Hλk
.
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The main theorem: statement

Theorem

Let λk (k ≥ 2) be an eigenvalue of multiplicity m and h ∈ L2(Ω).
Under the hypotheses (H) plus one of the sets of hypotheses (H1) or
(H2), one gets:

a) there exists ε0 > 0 such that for λ ∈ (λk − ε0, λk) there exist
two solutions of (1+);

b) there exists ε1 > 0 such that for λ ∈ (λk , λk + ε1) there exist
two solutions of (1–).

equation (1±): −∆u = λu ± f (x , u) + h(x)
model (H1): f (x , u) = a(x)|u|q−2u
model (H2): f (x , u) = a(x) arctan(u)

f (x , u) ∼ a(x) 1
u

(may be plus a lower order perturbation)

(0 < δ < a(x) < M and q ∈ (1, 2))
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The case λ < λk

Proposition

If one of the sets of hypotheses (H1) or (H2) is satisfied, then:

∃ DW : J+(u) ≥ DW for u ∈W ; (4.1)

there exist R+, ε0 > 0 such that, for any λ ∈ (λk − ε0, λk)

J+(u) < DW for u ∈ R+SVZ , (4.2)

for u ∈ V , ‖u‖ ≥ R+ ; D (4.3)

if now we fix λ ∈ (λk − ε0, λk) then

∃ Dλ : J+(u) ≥ Dλ for u ∈ Z ⊕W , (4.4)

∃ ρ+
λ
> R+ : J+(u) < Dλ for u ∈ ρ+

λ
SV . D (4.5)
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E E

V

Z

W

< DW

≥ DW
We have

ck ≥ DW ,

ck−1 ≥ Dλ ,

but also

ck−1 < DW ,

then the solutions are
distinct.
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The case λ > λk

Proposition

If one of the sets of hypotheses (H1) or (H2) is satisfied, then

∃ KV : J−(u) < KV for u ∈ V ; (4.6)

there exists R−, ε1 > 0 such that, for any λ ∈ (λk , λk + ε1)

J−(u) ≥ KV for u ∈ R−SZW , (4.7)

for u ∈W , ‖u‖ ≥ R− ; (4.8)

also D

∃ E : J−(u) > E for u ∈ R−BZW , (4.9)

∃ ξ : J−(u) < E for u ∈ ξSV ; (4.10)
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Proposition (continuation)

if now we fix λ ∈ (λk , λk + ε1) then D

∃ Kλ : J−(u) ≥ Kλ for u ∈W , (4.11)

∃ ρ−
λ
> R− : J−(u) < Kλ for u ∈ ρ−

λ
SVZ . (4.12)

Theorem (From theorem 8.1 of A. Marino, A. M. Micheletti,
A. Pistoia, (1994) - see also M. Frigon (1999) )

With the geometry given by (4.6),(4.7),(4.9),(4.10), D

there exists a critical point u0 such that J−(u0) ∈ [E ,KV ).
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E E T

V

Z

W
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�

�

< E

>
E

We have

ck ≥ Kλ ,

cMMP ∈ [E ,KV ) ,

but also

ck ≥ KV ;

then the solutions are
distinct.
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The main claim in the case λ < λk

Claim

Given DW ∈ R, there exist R+, ε0 > 0 such that, for any
λ ∈ (λk − ε0, λk)

J+(u) < DW for u ∈ R+SVZ

case H1

Let 2τ = 1− λ

λk
> 0;

(H1): limt→±∞ f (x , t) = ±∞
⇒
∫

F (x , u) ≥ M ‖u‖ − CM ,

then for u ∈ V ⊕ Z , ‖u‖ = R
J+(u) ≤ τR2− (M −‖h‖)R +CM

bck
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case H2 : lim|t|→∞ F (x , t) = +∞ , F (x , t) ≥ −CF ,
∫

Ω
h φ dx = 0 ∀φ ∈ Hλk

.

Lemma

There exists a nondecreasing function
D : (0,+∞)→ R such that limR→+∞ D(R) = +∞ and
infu∈RSVZ

∫

Ω
F (x , u)dx > D(R)

for u = v + z ∈ V ⊕ Z , ‖u‖ = R one gets

J+(u) ≤ ε ‖z‖
2
− τ ‖v‖

2
−
∫

hv −
∫

F (x , u)
≤ εR2 − D(R) + C jmp
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The main claim in the case λ > λk

Claim

Given KV ∈ R, there exist R−, ε1 > 0 such that, for any
λ ∈ (λk , λk + ε1)

J−(u) ≥ KV for u ∈ R−SZW

Suppose that for any two sequences Rn > 0 and εn → 0+ there exist
un ∈ Z ⊕W with ‖un‖ = Rn such that

J−
λk+εn

(un) < KV (5.1)
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With no loss of generality let Rn → +∞ and εnR
2
n → 0.

write un = zn + wn, divide (5.1) by R
2
n ,

....
obtain ‖wn‖

2

R2
n
→ 0, and deduce that ‖zn‖ → Rn.

this implies that exists δ > 0: for n large
{
∣

∣{x ∈ Ω : |un(x)| > δRn}
∣

∣ > δ

for case H1)
∫

F (x , un) ≥ MRn − CM

for case H2)
∫

F (x , un)→ +∞

and the result follows....
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