Eugenio Massa

The problem

Literature

Notation

Main theorem below above

Idea of the proofs below above Semilinear elliptic problems near resonance with a non-principal eigenvalue¹

> Francisco Odair de Paiva² Unicamp Eugenio Massa³ ICMC-USP

Workshop in Nonlinear Differential Equations PUC-RIO

²The author was supported by Fapesp/Brazil ³The author was supported by Fapesp/Brazil ¹Published in JMAA, 342 (2008) n.1

< 🗇 🕨

The problem

Elliptic problems near resonance

Eugenio Massa

The problem

Literature

Notation

Main theorem below above

ldea of the proofs below above

In this work we consider the problem

$$\begin{cases} -\Delta u = \lambda u \pm f(x, u) + h(x) & \text{in} \quad \Omega \\ u = 0 & \text{on} \quad \partial \Omega, \end{cases}$$

 $(1\pm$

where:

•
$$|f(x,t)| \leq C(1+|t|^{q-1})$$
 with $q \in (1,2)$,

•
$$h \in L^2(\Omega)$$
,

•
$$\Omega \subseteq \mathbb{R}^N$$
 is a smooth bounded domain.

• ...more hypotheses on *f*...

Observe that if $\lambda \notin \sigma(-\Delta)$ at least one solution exists, moreover if f = h = 0 then the solution is unique (the trivial one)

Question: which hypotheses to guarantee at least two solutions for λ near to an eigenvalue λ_k ? (almost resonant problem) (in particular, we want conditions on f only at infinity)

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

The problem

Elliptic problems near resonance

Eugenio Massa

The problem

Literature

Notation

Main theorem below above

ldea of the proofs below above

In this work we consider the problem

$$\begin{cases} -\Delta u = \lambda u \pm f(x, u) + h(x) & \text{in } \Omega \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$

 $(1\pm$

where:

•
$$|f(x,t)| \leq C(1+|t|^{q-1})$$
 with $q \in (1,2)$,

•
$$h \in L^2(\Omega)$$
,

• $\Omega \subseteq \mathbb{R}^N$ is a smooth bounded domain.

• ...more hypotheses on *f*...

Observe that if $\lambda \notin \sigma(-\Delta)$ at least one solution exists, moreover if f = h = 0 then the solution is unique (the trivial one)

Question: which hypotheses to guarantee at least two solutions for λ near to an eigenvalue λ_k ? (almost resonant problem) (in particular, we want conditions on f only at infinity)

ロト (得) (ヨト (ヨト))

The problem

Elliptic problems near resonance

Eugenio Massa

The problem

Literature

Notation

Main theorem below above

ldea of the proofs below above

In this work we consider the problem

$$\begin{cases} -\Delta u = \lambda u \pm f(x, u) + h(x) & \text{in} \quad \Omega \\ u = 0 & \text{on} \quad \partial \Omega, \end{cases}$$

 $(1\pm$

・ 同 ト ・ ヨ ト ・ ヨ ト

where:

•
$$|f(x,t)| \leq C(1+|t|^{q-1})$$
 with $q \in (1,2)$,

•
$$h \in L^2(\Omega)$$
,

• $\Omega \subseteq \mathbb{R}^N$ is a smooth bounded domain.

• ...more hypotheses on *f*...

Observe that if $\lambda \notin \sigma(-\Delta)$ at least one solution exists, moreover if f = h = 0 then the solution is unique (the trivial one)

Question: which hypotheses to guarantee at least two solutions for λ near to an eigenvalue λ_k ? (almost resonant problem) (in particular, we want conditions on f only at infinity)

Elliptic problems near resonance

Eugenio Massa

The problem

Literature

Notation

Main theorem below above

Idea of the proofs below above • λ_1 , *ODE*, bifurcation and degree.

- J. Mawhin, K. Schmitt, (1990)
- M. Badiale, D. Lupo, (1989)
- D. Lupo, M. Ramos, (1990)
- λ_1 , *PDE*, bifurcation and degree.
 - R. Chiappinelli, J. Mawhin, R. Nugari, (1992)
 - R. Chiappinelli, D. G. de Figueiredo, (1993)
- λ_1 , *PDE*, variational techniques.
 - M. Ramos, L. Sanchez, (1997)
 - T. F. Ma, M. Ramos, L. Sanchez, (1997)
 - T. F. Ma, M. L. Pelicer, (2002) (p-Laplacian)
- λ_k , *ODE*, bifurcation and degree.
 - D. Lupo, M. Ramos, (1990)

We study the case

λ_k , *PDE*, variational techniques.

Elliptic problems near resonance

Eugenio Massa

The problem

Literature

Notation

Main theorem below above

Idea of the proofs below above • λ_1 , *ODE*, bifurcation and degree.

- J. Mawhin, K. Schmitt, (1990)
- M. Badiale, D. Lupo, (1989)
- D. Lupo, M. Ramos, (1990)
- λ_1 , *PDE*, bifurcation and degree.
 - R. Chiappinelli, J. Mawhin, R. Nugari, (1992)
 - R. Chiappinelli, D. G. de Figueiredo, (1993)

• λ_1 , *PDE*, variational techniques.

- M. Ramos, L. Sanchez, (1997)
- T. F. Ma, M. Ramos, L. Sanchez, (1997)
- T. F. Ma, M. L. Pelicer, (2002) (p-Laplacian)
- λ_k , *ODE*, bifurcation and degree.
 - D. Lupo, M. Ramos, (1990)

We study the case

λ_k , *PDE*, variational techniques.

E > < E >

Elliptic problems near resonance

Eugenio Massa

The problem

Literature

Notation

Main theorem below above

ldea of the proofs below above

- λ_1 , *ODE*, bifurcation and degree.
 - J. Mawhin, K. Schmitt, (1990)
 - M. Badiale, D. Lupo, (1989)
 - D. Lupo, M. Ramos, (1990)
- λ_1 , *PDE*, bifurcation and degree.
 - R. Chiappinelli, J. Mawhin, R. Nugari, (1992)
 - R. Chiappinelli, D. G. de Figueiredo, (1993)
- λ_1 , *PDE*, variational techniques.
 - M. Ramos, L. Sanchez, (1997)
 - T. F. Ma, M. Ramos, L. Sanchez, (1997)
 - T. F. Ma, M. L. Pelicer, (2002) (p-Laplacian)

• λ_k , *ODE*, bifurcation and degree.

D. Lupo, M. Ramos, (1990)

We study the case

λ_k , *PDE*, variational techniques.

4 B M 4 B M

Elliptic problems near resonance

Eugenio Massa

The problem

Literature

Notation

Main theorem below above

ldea of the proofs below above

- λ_1 , *ODE*, bifurcation and degree.
 - J. Mawhin, K. Schmitt, (1990)
 - M. Badiale, D. Lupo, (1989)
 - D. Lupo, M. Ramos, (1990)
- λ_1 , *PDE*, bifurcation and degree.
 - R. Chiappinelli, J. Mawhin, R. Nugari, (1992)
 - R. Chiappinelli, D. G. de Figueiredo, (1993)
- λ_1 , *PDE*, variational techniques.
 - M. Ramos, L. Sanchez, (1997)
 - T. F. Ma, M. Ramos, L. Sanchez, (1997)
 - T. F. Ma, M. L. Pelicer, (2002) (p-Laplacian)
- λ_k , *ODE*, bifurcation and degree.
 - D. Lupo, M. Ramos, (1990)

We study the case

 λ_k , *PDE*, variational techniques.

4 3 b 4 3 b

Elliptic problems near resonance

Eugenio Massa

The problem

Literature

- Notation
- Main theorem below above
- Idea of the proofs below above

- λ_1 , *ODE*, bifurcation and degree.
 - J. Mawhin, K. Schmitt, (1990)
 - M. Badiale, D. Lupo, (1989)
 - D. Lupo, M. Ramos, (1990)
- λ_1 , *PDE*, bifurcation and degree.
 - R. Chiappinelli, J. Mawhin, R. Nugari, (1992)
 - R. Chiappinelli, D. G. de Figueiredo, (1993)
- λ_1 , *PDE*, variational techniques.
 - M. Ramos, L. Sanchez, (1997)
 - T. F. Ma, M. Ramos, L. Sanchez, (1997)
 - T. F. Ma, M. L. Pelicer, (2002) (p-Laplacian)
- λ_k , *ODE*, bifurcation and degree.
 - D. Lupo, M. Ramos, (1990)

We study the case

 λ_k , *PDE*, variational techniques.

Elliptic problems near resonance

Eugenio Massa

The problem

Literature

Notation

Main theorem below above

Idea of the proofs below above

$$\begin{array}{l} J^{\pm}: H_0^1(\Omega) \to \mathbb{R}: \\ J(u) = \frac{1}{2} \int_{\Omega} \left(|\nabla u|^2 - \lambda u^2 \right) dx \mp \int_{\Omega} F(x, u) \, dx - \int_{\Omega} h \, u \, dx \end{array}$$

$$V = span\{\phi_1, \dots, \phi_{k-1}\}, \\ Z = span\{\phi_k, \dots, \phi_{k+m-1}\} = H_{\lambda_k}, \\ W = (V \oplus Z)^{\perp},$$

 S_V , S_{VZ} , S_{ZW} , the unit spheres in V, $V \oplus Z$, $Z \oplus W$ B_V , B_{VZ} , B_{ZW} , the unit balls.

If $\lambda \notin \sigma(-\Delta)$ there exists a solution from Saddle Point Theorem. however, a suitable behaviour of f may give rise to a further solution.

・ 同 ト ・ ヨ ト ・ ヨ ト

Elliptic problems near resonance

Eugenio Massa

The problem

Literature

Notation

Main theorem below above

Idea of the proofs below above

$$\begin{array}{l} J^{\pm}: H^1_0(\Omega) \to \mathbb{R}: \\ J(u) = \frac{1}{2} \int_{\Omega} \left(|\nabla u|^2 - \lambda u^2 \right) dx \mp \int_{\Omega} F(x, u) \, dx - \int_{\Omega} h \, u \, dx \end{array}$$

$$V = span\{\phi_1, \dots, \phi_{k-1}\}, \\ Z = span\{\phi_k, \dots, \phi_{k+m-1}\} = H_{\lambda_k}, \\ W = (V \oplus Z)^{\perp},$$

 S_V , S_{VZ} , S_{ZW} , the unit spheres in V, $V \oplus Z$, $Z \oplus W$ B_V , B_{VZ} , B_{ZW} , the unit balls.

If $\lambda \notin \sigma(-\Delta)$ there exists a solution from Saddle Point Theorem. however, a suitable behaviour of f may give rise to a further solution.

- 4 同 6 4 日 6 4 日 6 - 三日

Elliptic problems near resonance

Eugenio Massa

The problem

Literature

Notation

Main theoren below above

Idea of the proofs below above

$$\begin{array}{l} J^{\pm}: H^1_0(\Omega) \to \mathbb{R}: \\ J(u) = \frac{1}{2} \int_{\Omega} \left(|\nabla u|^2 - \lambda u^2 \right) dx \mp \int_{\Omega} F(x, u) \, dx - \int_{\Omega} h \, u \, dx \end{array}$$

$$V = span\{\phi_1, \dots, \phi_{k-1}\},\$$

$$Z = span\{\phi_k, \dots, \phi_{k+m-1}\} = H_{\lambda_k},\$$

$$W = (V \oplus Z)^{\perp},$$

 S_V , S_{VZ} , S_{ZW} , the unit spheres in V, $V \oplus Z$, $Z \oplus W$ B_V , B_{VZ} , B_{ZW} , the unit balls.

If $\lambda \notin \sigma(-\Delta)$ there exists a solution from Saddle Point Theorem. however, a suitable behaviour of f may give rise to a further solution.

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Elliptic problems near resonance

Eugenio Massa

The problem

Literature

Notation

Main theoren below above

Idea of the proofs below above

$$\begin{array}{l} J^{\pm}: H^1_0(\Omega) \to \mathbb{R}: \\ J(u) = \frac{1}{2} \int_{\Omega} \left(|\nabla u|^2 - \lambda u^2 \right) dx \mp \int_{\Omega} F(x, u) \, dx - \int_{\Omega} h \, u \, dx \end{array}$$

$$V = span\{\phi_1, \dots, \phi_{k-1}\}, \\ Z = span\{\phi_k, \dots, \phi_{k+m-1}\} = H_{\lambda_k}, \\ W = (V \oplus Z)^{\perp},$$

 S_V , S_{VZ} , S_{ZW} , the unit spheres in V, $V \oplus Z$, $Z \oplus W$ B_V , B_{VZ} , B_{ZW} , the unit balls.

If $\lambda \notin \sigma(-\Delta)$ there exists a solution from Saddle Point Theorem. however, a suitable behaviour of f may give rise to a further solution.

- 4 同 6 4 日 6 4 日 6 - 三日

One solution

$$\begin{aligned} (\lambda < \lambda_k) \quad c_{k-1} &= \inf_{\gamma \in \Gamma_{k-1}} \sup_{v \in RB_V} J(\gamma(v)) \, . \\ \Gamma_{k-1} &= \{\gamma \in \mathcal{C}^0(RB_V; H_0^1) \; s.t. \; \gamma|_{RS_V} = Id\} \, , \end{aligned}$$

$$\begin{aligned} (\lambda > \lambda_k) \quad c_k &= \inf_{\gamma \in \Gamma_k} \sup_{v \in RB_{VZ}} J(\gamma(v)) \, . \\ \Gamma_k &= \{\gamma \in \mathcal{C}^0(RB_{VZ}; H_0^1) \; s.t. \; \gamma|_{RS_{VZ}} = Id\} \, , \end{aligned}$$

ヘロト ヘ回ト ヘヨト ヘヨト

æ

The main theorem: hypotheses

Elliptic problems near resonance

Eugenio Massa

The problem

Literature

Notation

Main theorem

below above

Idea of the proofs below above $\begin{aligned} (\mathsf{H}) & |f(x,t)| \leq C(1+|t|^{q-1}) \text{ with } q \in (1,2) \,, \\ & h \in L^2(\Omega) \,, \\ & \Omega \subseteq \mathbb{R}^N \text{ is a smooth bounded domain.} \end{aligned}$

either (H1) (f2):
$$\lim_{t \to \pm \infty} f(x, t) = \pm \infty$$
 uniformly $x \in \Omega$;

or (H2) (f3):
$$\lim_{|t|\to\infty} F(x,t) = +\infty$$
 uniformly $x \in \Omega$,
(f4): $F(x,t) \ge -C_F$,
(h1): $\int_{\Omega} h \phi \, dx = 0 \quad \forall \phi \in H_{\lambda_k}.$

The main theorem: statement

Elliptic problems near resonance

Eugenio Massa

The problem

Literature

Notation

Main theorem

below above

ldea of the proofs below above

Theorem

Let λ_k ($k \ge 2$) be an eigenvalue of multiplicity m and $h \in L^2(\Omega)$. Under the hypotheses (H) plus one of the sets of hypotheses (H1) or (H2), one gets:

a) there exists ε₀ > 0 such that for λ ∈ (λ_k − ε₀, λ_k) there exist two solutions of (1+);

b) there exists ε₁ > 0 such that for λ ∈ (λ_k, λ_k + ε₁) there exist two solutions of (1−).

$$\begin{array}{l} \mbox{equation } (1\pm): \ -\Delta u = \lambda u \pm f(x,u) + h(x) \\ \mbox{model } ({\bf H1}): \ f(x,u) = a(x) |u|^{q-2}u \\ \mbox{model } ({\bf H2}): \ f(x,u) = a(x) \arctan(u) \\ f(x,u) \sim a(x) \frac{1}{u} \\ \mbox{(may be plus a lower order perturbation)} \\ (0 < \delta < a(x) < M \mbox{ and } q \in (1,2)) \end{array}$$

The case $\lambda < \lambda_{k}$

Eugenio Massa

The problem

Literature

Notation

Main theorem below above

Idea of the proofs below above

Proposition

If one of the sets of hypotheses (H1) or (H2) is satisfied, then:

$$\exists D_W: J^+(u) \ge D_W$$
 for $u \in W$; (4.1)

there exist $R^+, \varepsilon_0 > 0$ such that, for any $\lambda \in (\lambda_k - \varepsilon_0, \lambda_k)$

$$J^+(u) < D_W \qquad \text{for } u \in R^+S_{VZ}, \qquad (4.2)$$

for
$$u \in V$$
, $||u|| \ge R^+$; $\bullet \bullet$ (4.3)

ヘロン 人間と 人口と 人口と

3

if now we fix $\lambda \in (\lambda_k - \varepsilon_0, \lambda_k)$ then

$$\exists D_{\lambda}: J^{+}(u) \ge D_{\lambda} \quad \text{for } u \in Z \oplus W, \qquad (4.4)$$
$$\exists \rho_{\lambda}^{+} > R^{+}: J^{+}(u) < D_{\lambda} \quad \text{for } u \in \rho_{\lambda}^{+}S_{V}.$$

The case $\lambda > \lambda_k$

Eugenio Massa

The problem

Literature

Notation

Main theorem below above

Idea of the proofs below above

Proposition

If one of the sets of hypotheses (H1) or (H2) is satisfied, then

$$\exists K_V: J^-(u) < K_V \quad \text{for } u \in V; \qquad (4.6)$$

there exists $R^-, \varepsilon_1 > 0$ such that, for any $\lambda \in (\lambda_k, \lambda_k + \varepsilon_1)$

$$J^{-}(u) \geq K_V \qquad \text{for } u \in R^{-}S_{ZW}, \qquad (4.7)$$

for
$$u \in W$$
, $||u|| \ge R^-$; (4.8)

イロト 不得 ト イヨト イヨト

3

also 🕩

$$\exists E: J^{-}(u) > E \quad for \ u \in R^{-}B_{ZW}, \qquad (4.9)$$

$$\exists \xi: J^{-}(u) < E \quad for \ u \in \xi S_{V}; \qquad (4.10)$$

Eugenio Massa

The problem

Literature

Notation

Main theorem below above

Idea of the proofs below above

Proposition (continuation)

if now we fix $\lambda \in (\lambda_k, \lambda_k + \varepsilon_1)$ then \frown

 $\exists K_{\lambda} : J^{-}(u) \geq K_{\lambda} \quad \text{for } u \in W, \qquad (4.11)$ $\exists \rho_{\lambda}^{-} > R^{-} : J^{-}(u) < K_{\lambda} \quad \text{for } u \in \rho_{\lambda}^{-} S_{VZ}. \qquad (4.12)$

イロト 不得 とくほ とくほ とうほ

Theorem (From theorem 8.1 of A. Marino, A. M. Micheletti, A. Pistoia, (1994) - see also M. Frigon (1999))

With the geometry given by (4.6), (4.7), (4.9), (4.10), \checkmark there exists a critical point u_0 such that $J^-(u_0) \in [E, K_V)$.

The main claim in the case $\lambda < \lambda_k$

Elliptic problems near resonance

Eugenio Massa

Claim

The problem

Literature

Notation

Main theorem below above

Idea of the proofs below above

Given $D_W \in \mathbb{R}$, there exist $R^+, \varepsilon_0 > 0$ such that, for any $\lambda \in (\lambda_k - \varepsilon_0, \lambda_k)$

 $J^+(u) < D_W$ for $u \in R^+S_{VZ}$

case H1
Let
$$2\tau = 1 - \frac{\lambda}{\lambda_k} > 0;$$

(H1): $\lim_{t\to\pm\infty} f(x,t) = \pm\infty$ $\Rightarrow \int F(x,u) \ge M ||u|| - C_M,$

then for $u \in V \oplus Z$, ||u|| = R $J^+(u) \le \tau R^2 - (M - ||h||)R + C_M$

・ 戸 ト ・ ヨ ト ・ ヨ ト …

The main claim in the case $\lambda < \lambda_k$

Elliptic problems near resonance

Eugenio Massa

Claim

- The problem
- Literature
- Notation
- Main theoren below above
- Idea of the proofs below above

Given $D_W \in \mathbb{R}$, there exist $R^+, \varepsilon_0 > 0$ such that, for any $\lambda \in (\lambda_k - \varepsilon_0, \lambda_k)$

 $J^+(u) < D_W$ for $u \in R^+S_{VZ}$

case H1Let
$$2\tau = 1 - \frac{\lambda}{\lambda_k} > 0;$$

(H1):
$$\lim_{t\to\pm\infty} f(x,t) = \pm\infty$$

 $\Rightarrow \int F(x,u) \ge M ||u|| - C_M$,

then for $u \in V \oplus Z$, ||u|| = R $J^+(u) \le \tau R^2 - (M - ||h||)R + C_M$

The main claim in the case $\lambda < \lambda_k$

Elliptic problems near resonance

Eugenio Massa

The problem

Literature

Notation

Main theorem below above

Idea of the proofs below above

Claim
Given
$$D_W \in \mathbb{R}$$
, there exist R^+ , $\varepsilon_0 > 0$ such that, for any
 $\lambda \in (\lambda_k - \varepsilon_0, \lambda_k)$
 $J^+(u) < D_W$ for $u \in R^+ S_{VZ}$

$$\begin{bmatrix} case H1 \\ Let $2\tau = 1 - \frac{\lambda}{\lambda_k} > 0; \\ \hline (H1): \lim_{t \to \pm\infty} f(x, t) = \pm \infty \\ \Rightarrow \int F(x, u) \ge M \|u\| - C_M, \\ \hline then for $u \in V \oplus Z, \|u\| = R$
 $J^+(u) \le \tau R^2 - (M - \|h\|)R + C_M$$$$

Eugenio Massa

The problem

Literature

Notation

Main theorem below above

Idea of the proofs **below** above

$$\begin{array}{c} \hline \text{case H2} : \quad \lim_{|t| \to \infty} F(x,t) = +\infty \,, \quad F(x,t) \geq -C_F \,, \\ \hline \int_{\Omega} h \, \phi \, dx = 0 \quad \forall \, \phi \in H_{\lambda_k}. \end{array}$$

Lemma

There exists a nondecreasing function $D: (0, +\infty) \to \mathbb{R}$ such that $\lim_{R \to +\infty} D(R) = +\infty$ and $\inf_{u \in RS_{VZ}} \int_{\Omega} F(x, u) dx > D(R)$

for $u = v + z \in V \oplus Z$, ||u|| = R one gets $J^+(u) \le \varepsilon ||z||^2 - \tau ||v||^2 - \int hv - \int F(x, u)$ $\le \varepsilon R^2 - D(R) + C$

イロト 不得 とくき とくき とうせい

Eugenio Massa

The problem

Literature

Notation

Main theorem below above

Idea of the proofs below above

$$\begin{array}{c} \hline \text{case H2} : & \lim_{|t| \to \infty} F(x,t) = +\infty \,, \quad F(x,t) \geq -C_F \,, \\ \hline \int_{\Omega} h \, \phi \, dx = 0 \quad \forall \, \phi \in H_{\lambda_k}. \end{array}$$

Lemma

There exists a nondecreasing function $D: (0, +\infty) \to \mathbb{R}$ such that $\lim_{R \to +\infty} D(R) = +\infty$ and $\inf_{u \in RS_{VZ}} \int_{\Omega} F(x, u) dx > D(R)$

for $u = v + z \in V \oplus Z$, ||u|| = R one gets $J^+(u) \le \varepsilon ||z||^2 - \tau ||v||^2 - \int hv - \int F(x, u)$ $\le \varepsilon R^2 - D(R) + C$

(本語) (本語) (本語) (語)

The main claim in the case $\lambda > \lambda_k$

Elliptic problems near resonance

Eugenio Massa

Claim

The problem

Literature

Notation

Main theorem below above

Idea of the proofs below above

Given $K_V \in \mathbb{R}$, there exist $R^-, \varepsilon_1 > 0$ such that, for any $\lambda \in (\lambda_k, \lambda_k + \varepsilon_1)$

 $J^-(u) \ge K_V$ for $u \in R^-S_{ZW}$

Suppose that for any two sequences $R_n > 0$ and $\varepsilon_n \to 0^+$ there exist $u_n \in Z \oplus W$ with $||u_n|| = R_n$ such that

$$J^{-}_{\lambda_{k}+\varepsilon_{n}}(u_{n}) < K_{V}$$
(5.1)

イロト 不得 とくほ とくほ とうほ

Eugenio Massa

The problem

Literature

Notation

Main theorer below above

Idea of the proofs below above With no loss of generality let $R_n \to +\infty$ and $\varepsilon_n R_n^2 \to 0$. write $u_n = z_n + w_n$, divide (5.1) by R_n^2 ,

obtain $\frac{\|w_n\|^2}{R_n^2} \to 0$, and deduce that $\|z_n\| \to R_n$ this implies that exists $\delta > 0$: for *n* large $\{|\{x \in \Omega : |u_n(x)| > \delta R_n\}| > \delta$

for case H1) $\int F(x, u_n) \ge MR_n - C_M$ for case H2) $\int F(x, u_n) \to +\infty$

and the result follows....

Eugenio Massa

. . . .

The problem

Literature

Notation

Main theorer below above

Idea of the proofs below above With no loss of generality let $R_n \to +\infty$ and $\varepsilon_n R_n^2 \to 0$. write $u_n = z_n + w_n$, divide (5.1) by R_n^2 ,

obtain $\frac{\|w_n\|^2}{R_n^2} \to 0$, and deduce that $\|z_n\| \to R_n$. this implies that exists $\delta > 0$: for *n* large $\{|\{x \in \Omega : |u_n(x)| > \delta R_n\}| > \delta$

for case H1) $\int F(x, u_n) \ge MR_n - C_M$ for case H2) $\int F(x, u_n) \to +\infty$

and the result follows...

・ 戸 ト ・ ヨ ト ・ ヨ ト …

Eugenio Massa

The problem

Literature

Notation

Main theorer below above

Idea of the proofs below above With no loss of generality let $R_n \to +\infty$ and $\varepsilon_n R_n^2 \to 0$. write $u_n = z_n + w_n$, divide (5.1) by R_n^2 ,

obtain $\frac{\|w_n\|^2}{R_n^2} \to 0$, and deduce that $\|z_n\| \to R_n$. this implies that exists $\delta > 0$: for *n* large $\{|\{x \in \Omega : |u_n(x)| > \delta R_n\}| > \delta$

for case H1) $\int F(x, u_n) \ge MR_n - C_M$ for case H2) $\int F(x, u_n) \to +\infty$

and the result follows...

・ 戸 ト ・ ヨ ト ・ ヨ ト …

Eugenio Massa

The problem

Literature

Notation

Main theore below above

Idea of the proofs below above With no loss of generality let $R_n \to +\infty$ and $\varepsilon_n R_n^2 \to 0$. write $u_n = z_n + w_n$, divide (5.1) by R_n^2 ,

obtain $\frac{\|w_n\|^2}{R_n^2} \to 0$, and deduce that $\|z_n\| \to R_n$. this implies that exists $\delta > 0$: for *n* large $\{|\{x \in \Omega : |u_n(x)| > \delta R_n\}| > \delta$

for case H1) $\int F(x, u_n) \ge MR_n - C_M$ for case H2) $\int F(x, u_n) \to +\infty$

and the result follows....

・ 同 ト ・ ヨ ト ・ ヨ ト …

Eugenio Massa

The problem

Literature

Notation

Main theore below above

Idea of the proofs below above With no loss of generality let $R_n \to +\infty$ and $\varepsilon_n R_n^2 \to 0$. write $u_n = z_n + w_n$, divide (5.1) by R_n^2 ,

obtain $\frac{\|w_n\|^2}{R_n^2} \to 0$, and deduce that $\|z_n\| \to R_n$. this implies that exists $\delta > 0$: for *n* large $\{|\{x \in \Omega : |u_n(x)| > \delta R_n\}| > \delta$

for case H1) $\int F(x, u_n) \ge MR_n - C_M$ for case H2) $\int F(x, u_n) \to +\infty$

and the result follows...

・ 同 ト ・ ヨ ト ・ ヨ ト …

Eugenio Massa

The problem

Literature

Notation

Main theore below above

Idea of the proofs below above With no loss of generality let $R_n \to +\infty$ and $\varepsilon_n R_n^2 \to 0$. write $u_n = z_n + w_n$, divide (5.1) by R_n^2 ,

obtain $\frac{\|w_n\|^2}{R_n^2} \to 0$, and deduce that $\|z_n\| \to R_n$. this implies that exists $\delta > 0$: for *n* large $\{|\{x \in \Omega : |u_n(x)| > \delta R_n\}| > \delta$

for case H1) $\int F(x, u_n) \ge MR_n - C_M$ for case H2) $\int F(x, u_n) \to +\infty$

and the result follows....