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The problem

Elliptic problems . .
near resonance In this work we consider the problem

The problem —Au= A=t f(X, U) + h(X) in Q
{ u=0 on 01, (1)
where:
o [F(x )] < C(1+[¢]971) with g € (1,2),
e he [2(Q),

e Q C RV is a smooth bounded domain.
e ...more hypotheses on f...
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Observe that if A & o(—A) at least one solution exists,
moreover if f = h = 0 then the solution is unique (the trivial one)
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near resonance In this work we consider the problem

The problem —Au= A=t f(X, U) + h(X) in Q
{ u=0 on 01, (1)
where:
o [F(x )] < C(1+[¢]971) with g € (1,2),
e he [2(Q),

e Q C RV is a smooth bounded domain.
e ...more hypotheses on f...

Observe that if A & o(—A) at least one solution exists,
moreover if f = h = 0 then the solution is unique (the trivial one)

Question: which hypotheses to guarantee at least two solutions for
A near to an eigenvalue A\(? (almost resonant problem)
(in particular, we want conditions on f only at infinity)
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We study the case

Ak, PDE, variational techniques.
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Some notation

Elliptic problems
near resonance

JEHYQ) - R:
Jw) =3 [o (IVul? = Av?) dx F [, F(x,u) dx — [ hudx

Notation

V= span{(bl, seey ¢k71}7
Z= Span{¢k7 "'7¢k+m—1} = HA;( ’
W=(Ve2)",

Sv, Svz, Szw, the unit spheresin V, V& Z, Z W
By, Bvz, Bzy/, the unit balls.

If A\ & o(—A) there exists a solution from Saddle Point Theorem.
however, a suitable behaviour of f may give rise to a further solution.
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One solution

Elliptic problems
near resonance

Notation

A< X)) k-1 = inf  sup J(y(v)).
YE€lMk—1 veRBy

{7 € C%(RBv; Hy) s.t. 7lgs, = Id},

M1

A>X) o« = inf sup J(y(v)).
Y€l veRBy

{y € C°(RByz; H}) s.t. 7|gs,, = Id},
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The main theorem: hypotheses

Elliptic problems
near resonance

(. t)] < C(L+ [¢97) with q € (1,2),
he l*(Q),
Q CRM is a smooth bounded domain.

Main theorem

either (H1) (f2) : . IT f(x,t) = £oo uniformly x € Q;

or (H2) (f3):  lim F(x,t) = +oo uniformly x € Q,

[t| —o0

(f4) : F(Xa t) Z _CF7
/ hodx=0 Ve Hy,.
Q
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The main theorem: statement
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e M Theorem

Let Ay (k > 2) be an eigenvalue of multiplicity m and h € L?(Q).

Under the hypotheses (H) plus one of the sets of hypotheses (H1) or

(H2), one gets:

Main theorem a) there exists eg > 0 such that for \ € (\, — €0, \¢) there exist
two solutions of (1+);

b) there exists 1 > 0 such that for A € (Ax, \x + 1) there exist
two solutions of (1-).

equation (1+): —Au = Au =+ f(x, u) + h(x)
model (H1): f(x,u) = a(x)|u|9?u
model (H2): f(x, u) = a(x) arctan(u)
f(x,u) ~ a(X)%
(may be plus a lower order perturbation)
(0<éd<a(x) < Mand g€ (1,2))
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The case A < A\«

Elliptic problems

near resonance D)
R Proposition

If one of the sets of hypotheses (H1) or (H2) is satisfied, then:

IDw: Jt(u)>Dw for ue W,; (4.1)
there exist R, €9 > 0 such that, for any A € (Ax — €0, Ak)

J+(u) < Dw for u e R+sz, (4.2)
for ucV, ||ju| >R, @D (4.3)

if now we fix A € (Ax — €0, Ak) then

ADy: JT(u) > Dy for ue Zo W, (4.9)
Ipl>RT: JT(u)< Dy for ueplSy G
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but also

ck—1 < Dy,

then the solutions are
distinct.
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The case A > A\,

Elliptic problems

near resonance D)
R Proposition

If one of the sets of hypotheses (H1) or (H2) is satisfied, then

IKy: J(u)<Ky for ueV,; (4.6)

there exists R~ ,e1 > 0 such that, for any X € (Ag, Ak + 1)

J (v) > Ky for ue€ R™Syy , (4.7)
for ue W, |ul| >R~ ; (4.8)
also @H
JE: J (u)>E for ue R Bzw, (4.9)
J for u€ &Sy ;
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EUGENIO MASS

Proposition (continuation)

if now we fix A € (Ax, A\x + €1) then @D

JKyv: J(u)>Kyn for ue W, (4.11)
dpy >R J(u)y<Kn for ucp,Syz. (4.12)

Theorem (From theorem 8.1 of A. Marino, A. M. Micheletti,

A. Pistoia, (1994) - see also M. Frigon (1999) )

With the geometry given by (4.6),(4.7),(4.9),(4.10), @D
there exists a critical point ug such that J=(up) € [E, Kv).

Elliptic problems near resonance



Elliptic problems
near resonance

We have

cump € [E, Kv),
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c > Ky,
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We have
c > Ky,

cump € [E, Kv),
< K,

<E
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We have

c > Ky,

cump € [E, Kv),

but also
< E

< K,

c > Ky;

then the solutions are
distinct.
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The main claim in the case A < A\,
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Given Dy, € R, there exist R, ey > 0 such that, for any
A€ ()\k = 80,)\k)

J+(u) < Dw for ue R+SVZ
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A€ ()\k = 80,)\k)

J+(u) < Dw for ue R+SVZ
Let2T:1—)%k>0; \

(H1): limpoo F(x, t) = £00
= [ F(x,u) = M|lu|| - Cu,
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JH(u) < 7R?— (M — ||h[)R+ Cum
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Let2T:1—)%k>0; \
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Dw
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: limgj—oo F(x,t) = 400, F(x,t) > —CF,

Johddx=0 Ve Hy,.

There exists a nondecreasing function
D : (0,400) — R such that limg ... D(R) = +0oc and
infucrs,, [q F(x,u)dx > D(R)
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: limgj—oo F(x,t) = 400, F(x,t) > —CF,

Johddx=0 Ve Hy,.

There exists a nondecreasing function
D : (0,400) — R such that limg ... D(R) = +0oc and
infucrs,, [q F(x,u)dx > D(R)

foru=v+zeVaZ ||ul| =R one gets
JH) <ellzl® = rlvl® — [ hv — [ F(x,u)
<eR?-D(R)+C
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The main claim in the case A > A\,

Elliptic problems
near resonance

Given Ky € R, there exist R—,e1 > 0 such that, for any
A€ (Ak, Ak +¢€1)

J_(u) > Ky for ue R~ Sy

Suppose that for any two sequences R, > 0 and €, — 0T there exist
u, € Z& W with [|u,|| = R, such that
-

te, (Un) < Ky (5.1)
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With no loss of generality let R, — +oco and £,R? — 0.
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With no loss of generality let R, — +oco and £,R? — 0.
write u, = z, + w,, divide (5.1) by R2,

2
w,
AN

obtain
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With no loss of generality let R, — +oco and £,R? — 0.
write u, = z, + w,, divide (5.1) by R2,

,
obtain “",V?"z‘l — 0, and deduce that ||z,|| — R,.

this implief's that exists § > 0: for n large
{[{x € Q: up(x)| > 6Rp}| > 6
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With no loss of generality let R, — +oco and £,R? — 0.
write u, = z, + w,, divide (5.1) by R2,

,
obtain “",V?"z‘l — 0, and deduce that ||z,|| — R,.

this implief's that exists § > 0: for n large
{[{x € Q: up(x)| > 6Rp}| > 6

for case H1) [ F(x,u,) > MR, — Cy
for case H2) [ F(x, u,) — +00

and the result follows....
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