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The first problem (Iturriaga Sanchez Ubilla)

u=20 in 09,

—A,u=MAh(x,u); u>0 in Q
(P,\) { P ( )

the problem

where A > 0, Q bounded smooth domain in RV,
(Hy) h:Q x[0,+00) — [0,+00) is continuous, h(x,0) = 0.
(Hy) Exists a € WYP(Q) N C(Q) with —A,a > 0 and

0 < ap <a(x) <A

h(x,t) =0 if t = a(x),
h(x,t) >0 ift#a(x), t>0

. h(x,u)
(H3) UEPOJr up—1
be L>*(Q) and 0 < by < b(x) < By .
(M>) there exists a constant k > 0 such that V x € Q the map
s+ h(x,s) + ksP~! is increasing.

= b(x) uniformly with respect to x € Q with



lim (x, u)
u—-s—+o00 uc

= p uniformly with respect to x € Q.

withp>0ece(p—1,p.—1),




Existence

lim h(x, v)

u—->~+00 uc

= p uniformly with respect to x € Q.

existemce

withp>0ece(p—1,p.—1),

In these hypotheses exists a solution for every A > 0



Existence

lim h(x, v)

u—->~+00 uc

= p uniformly with respect to x € Q.

existemce

withp>0ece(p—1,p.—1),

In these hypotheses exists a solution for every A > 0

m For A > A;(b) exists a subsolution (e¢1(b)); a is supersolution

m For A < A1(b) origin is a minimum, superlinearity implies
mountain pass geometry

m For A = \;(b) taking limit of the above, with A < A1(b)



Multiplicity

Eugenio Massa -

ICMC USP
Theorem

In the same hypotheses, if one of the following holds,

Multiplicity (a) P = 2.

(b) a(x) =73, (positive constant) ;
exists C > 0: h(x,t) < Cla—t[P~L for t <3a.

(c) —Apa e L®°(Q) and —A,a(x) >e >0 ae x €.
(d) aeC* and Va0 infQ.

the there exist a second positive solution for A > \1(b).
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Theorem

In the same hypotheses, if one of the following holds,

Multiplicity (a) P = 2.

(b) a(x) =73, (positive constant) ;

exists C > 0: h(x,t) < Cla—t[P~L for t <3a.
(c) —Apa e L®°(Q) and —A,a(x) >e >0 ae x €.
(d) aeC* and Va0 infQ.

the there exist a second positive solution for A > \1(b).

m using a,b,c,d, one shows that first solution satisfies u < a.
m then it is a local minimum (De Figueiredo Gossez Ubilla)

m second solution via mountain pass.



Asymptotical behavior when A — oo

Asymptotical
In the above hypotheses, plus:
(H7) exists v > 0 such that h(x,t) > y|t — a(x)|? for t > a(x),

then uy — a poointwise in Q when X — +oo.




Proof:

m get an a-priori estimate for the solutions when X large (blow-up
technique):

suppose A, — 00, [[Un|| o = Un(xn) = 00;

Wn(y) := un(Any + xn)/Sn converges to a solution of

—Aw =w?, w>0in RN or half space;

then (Liouville-type theorem) w=0: contradiction.



Proof:

m get an a-priori estimate for the solutions when X large (blow-up
technique):
R suppose A, = 00, |[Un|l o, = Un(Xn) — 00;
Wn(y) := un(Any + xn)/Sn converges to a solution of
—Aw =w?, w>0in RN or half space;
then (Liouville-type theorem) w=0: contradiction.
m similar blow-up argument:
fix xp € €, suppose \, — o0;
Wi (y) = un(Any + xo) converges to a solution of
—Aw = h(xg,w), w >0 in RN,
then (Liouville-type theorem) w = a(xp): pointwise convergence.



any growth at infinity

Remark: if we put w,(y) := u,(A,y + x,) we would get a bound
from above, then we could truncate. However we do not know
if the limit problem is in RN and we have no Liouville-type
theorem in the half space.

We need a moving plane type result!

(Damascelli) Q convexo, h(x,u) = f(u) locally Lipschitz in
(0,00), f(u) >0 for u >0,

remark



second problem (lturriaga Lorca)

(M) —Apu=A(u) in Q,
u=20 em 0%,

Q bounded smooth convex domain in RY, \ > 0.

(F1) f:]0,+00) — [0,400) continuous and
new problem |Oca||y LIpSChItZ in (07 OO),
f(0) =f(1) =0 and f(x) > 0 for x & {0; 1}.

.. f(s
(F2) I|r1||1f p(_) > 1.

=~v,withy>0eoce(p—1,p. —1)

(F4) Exist k >0 and T > 1 such that t — f(t) + ktP~! is increasing
for t € [0, T].

( no restriction on the growth at infinity )

example: f(u) = uP~te!|l — ul® with o € (p— 1, p —

1).




Theorem

There exists \* > 0 such that the problem (I1y) has at least two

new problem

positive solutions uy x, Uz x, for A > \*.
moreover ||uy x|, — 17 and |luzx|l,, — 1T, when X — oc.
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sketch of the
proof

truncate the nonlinearity above T > 1

m let 7 > 0 and consider the positive nonlinearity fr(u)+7(u*)P~!

m then for A large solution below T (original problem).

1 is no more supersolution, but one find a family of
supersolutions near 1

first solution via sub-supersolutions (strictly below 1)
second solution via degree argument
By Damascelli the maxima are far from the boundary

taking limit 7 — 0 we get solutions with 7 = 0 and still maxima
are far from the boundary

then ||u|| ., — 1 when A — oo
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