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Kirchhoff equation

The vibrating string equation:

ρutt = f + (Tux )x

If T is constant we have the D’alambert equation:

ρutt = f + T0 · uxx
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Kirchhoff equation

In (Kirchhoff, 1883) the tension depends on the length:

ρutt = f + (T0 + k∆L)uxx .
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Stationary Kirchhoff equation

Stationary Kirchhoff equation

Here we consider the "Stationary Kirchhoff Equation": the
following (time independent) generalization of the Kirchhoff
vibrating string equation:

(K )

{
−M(‖u‖2H)∆u = f (x ,u) in Ω ,

u = 0 on ∂Ω ,

Ω ⊂ RN is a bounded and smooth domain,
M: nonlocal weight function,
‖·‖H is the norm in H1

0 (Ω),
f is some nonlinearity.
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Comparison Principle, Sub- Supersolutions Method

Comparison principle for the Laplacian (weak form){
−∆` ≤ −∆w in Ω ,

` ≤ w on ∂Ω ,
=⇒ ` ≤ w in Ω . (1)

Question: Does it hold for Kirchhoff operator?{
−M(‖`‖2H)∆` ≤ −M(‖w‖2H)∆w in Ω ,

` ≤ w on ∂Ω ,
(2)

=⇒ ` ≤ w in Ω ?

Some answers:
(Alves and Corrêa, 2001) : if M(t) ≥ 0, M(t) nonincreasing,
M(t2)t increasing, then CP and SSM hold true.
If M(t2

1 )t1 ≥ M(t2
2 )t2 for some positive t1 < t2, then CP is

false: take ` = t2φ1 and w = t1φ1.
Several papers claiming CP and SSM hold true if
M(t) ≥ m0 > 0, M(t) nondecreasing.
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Comparison Principle and Sub- Supersolutions Method

Counterexamples:
(García-Melián and Iturriaga, 2016): if M “increases
enough”, then CP and SSM are false.
(Figueiredo and Suárez, 2018): for certain
M(t) = a + b(t + c)p CP and SSM are false.

(García-Melián and Iturriaga, 2016)

Assume N ≥ 3 and M is continuous, positive and verifies:

(H) there exist R2 > R1 > 0 such that M(RN−2
2 )

R2
2

>
M(RN−2

1 )

R2
1

.

Then CP and SSM hold false in Ω = B ⊆ RN .

Question: is it possible that CP and SSM hold true with some
growth condition on M?
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Comparison Principle and Sub- Supersolutions Method

We answer in (Iturriaga and M., 2018):1

Theorem ((Iturriaga and M., 2018))

Let Ω be a smooth bounded domain in RN . Suppose M is not
nonincreasing, that is, there exist positive t1 < t2 such that
M(t1) < M(t2). Then the Comparison Principle (both in its weak
and strong form) and the Sub and Supersolution Method do not
hold in Ω, for the operator

−M(‖u‖2H)∆u .

1L. Iturriaga and E. M. (2018). “On necessary conditions for the
comparison principle and the sub- and supersolution method for the
stationary Kirchhoff equation”. In: J. Math. Phys. 59.1, pp. 011506, 6



Comparison Principle - García-Mellián & Iturriaga argument

(H) there exist R2 > R1 > 0 such that
M(RN−2

2 )

R2
2

>
M(RN−2

1 )

R2
1

.

In BR2 take

` =

{
ηφ1 (x/R1) |x | ≤ R1

0 |x | ≥ R1
w = φ1(x/R2)

where φ1 is the first eigenfunction in the unitary ball.

Then (H) allows to select η > 1 so that
−M(‖`‖2H)∆` ≤ −M(‖w‖2H)∆w in Ω , but ` ≤ w is false.
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Comparison Principle - Our argument

Idea (dimension 1: Ω = (−π/2, π/2)): take τ > 0 small and

w = min
{

cos
(

x
1 + τ

)
,
1
ε

cos(x)

}
,
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Comparison Principle - Our argument
Idea (dimension 1: Ω = (−π/2, π/2)): take τ > 0 small and

w = min
{

cos
(

x
1 + τ

)
,
1
ε

cos(x)

}
, ` = η cos(x),

finally choose ε, τ , rescale and find parameters so that

λτM(t2) > λ1M(t1), ‖w‖2H = t2 > t1 = ‖`‖2H , η > 1,

−M(‖w‖2H)∆w ≥ M(t2)λτw ≥ M(t1)λ1` = −M(‖`‖2H)∆`



Comparison Principle - Remarks

Higher dimension and general domain:
Same idea:

w = min
{
φτ ,

1
ε
φ1

}
, ` = ηφ1,

where
φ1 is the first eigenfunction in Ω,
φτ is the first eigenfunction in

Ωτ =
{

x ∈ RN : d(x ,Ω) < τ
}
.



Comparison Principle - Remarks

Some remarks:
counterexamples for Strong Comparison Principle and the
Sub and Supersolution method are obtained in a similar
way,
the same argument works for p-Laplacian,
versions of CP and SSM which work for a wider range of M
exist, but always require additional hypotheses (Alves and
Corrêa, 2015; Figueiredo and Suárez, 2018).



Kirchhoff equation: variational approach

Kirchhoff equation: variational approach

{
−M(‖u‖pW )∆pu = f (x ,u) in Ω ,
u = 0 on ∂Ω ,

(3)

J(u) =
1
p

M̂(‖u‖pW )−
ˆ

Ω
F (x ,u) , u ∈W 1,p

0 (Ω) . (4)

Here T4

Ω ⊂ RN is a bounded and smooth domain,
‖·‖W is the norm in W 1,p

0 (Ω), p > 1,

M̂(t) =
´ t

0 M(s) ds and F (x , v) =
´ v

0 f (x , s) ds.

Several authors:
Alves, Ambrosetti, Anello, Arcoya, Cheng, Colasuonno, Corrêa,
Figueiredo, Liu, Ma, Madeira, Nunes, Pucci, Santos J.,
Siciliano, Song, Tang, Wu.



Hölder versus Sobolev minimizers

Hölder versus Sobolev minimizers

Theorem ((Brezis and Nirenberg, 1993))

Let J(u) = 1
2

´
Ω |∇u|2 −

´
Ω F (x ,u), u ∈ H1

0 (Ω) (..)
If J(u0) ≤ J(u0 + v) for v ∈ C1

0(Ω) with ‖v‖C1 small
then J(u0) ≤ J(u0 + v) for v ∈ H1

0 (Ω) with ‖v‖H1 small

Analogous in W 1,p
0 by (García Azorero, Peral Alonso, and

Manfredi, 2000; Guo and Zhang, 2003; Brock, Iturriaga, and
Ubilla, 2008).
Question: What happens for
J(u) = 1

p M̂(‖u‖pW )−
´

Ω F (x ,u), u ∈W 1,p
0 (Ω) ?

If M(t) ≥ m0 > 0 (non degenerate case) then an
analogous holds true. (Fan, 2010).

We study the degenerate case, in particular we take
M ≥ 0, M continuous, M(0) = 0.
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Hölder versus Sobolev minimizers

Model problem: let p∗ > ω > q ≥ 1 and r > p:

J (u) =
1
r
‖u‖rW +

1
q
‖u‖qq −

λ

ω
‖u‖ωω , (5)

{
−‖u‖r−p

W ∆pu = −|u|q−2u + λ|u|ω−2u in Ω ,
u = 0 on ∂Ω .

(6)

First result: a negative answer:

Theorem ((Iturriaga and M., 2019)1)

If r > p∗ then
J (0) ≤ J (v) for v ∈ L∞ ∩W 1,p

0 with ‖v‖L∞ small

there exists a sequence un in W 1,p
0 (Ω) with ‖un‖W → 0,

such that J (un) < 0.

1L. Iturriaga and E. M. (2019). “Sobolev versus Hölder local minimizers in
degenerate Kirchhoff type problems”. In: submitted, arXiv:1906.07685v1
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Hölder versus Sobolev minimizers, negative result

Proof (simplified): Let ψε be compact support approximations
of the generalized Talenti functions

ψε(x) =

(
CN,p

ε
1

p−1

ε
p

p−1 + |x |
p

p−1

)N−p
p

with ε > 0, (7)

take un = εσnψεn where εn → 0 and

N
p∗

> σ >
N
p∗

p∗ − ω
r − ω

≥ 0,

then
un is unbounded in L∞,
the last term in J dominates then J (un) < 0 as n→∞.

J(un) < 0 holds true under more general hypotheses:
1
p M̂(sp) ≤ C1sr , for s small,

F (x , v) ≥ C2vω − C3vq, for x ∈ Ω, v ≥ 0.
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Hölder versus Sobolev minimizers, positive result

Now a positive answer

Theorem ((Iturriaga and M., 2019))

Suppose in (3-4)
f : Ω× R→ R is continuous and there exist constants
D > 0 and ` ∈ [p,p∗) such that

f (x , v)sgn(v) ≤ D|v |`−1, ∀ (x , v) ∈ Ω× R.

M(t) ≥ 0 for every t ≥ 0 and there exist constants a1, δ > 0
and r ∈ (p,p∗) such that

M(sp) ≥ r a1

p
sr−p (⇒ M̂(sp) ≥ Csr ), for 0 ≤ sp < δ.

Then, If the origin is a local minimum for J with respect to the
L∞ norm, then it is also a local minimum with respect to the
W 1,p

0 norm.



Hölder versus Sobolev minimizers, positive result

Steps of the proof:
Suppose the origin is not a local minimum.
Then there exist a sequence vn of minimizers in sets
Bn =

{´
Ω u` ≤ 1

n

}
, with J(vn) < 0, which satisfy the

equation (may be with an additional term due to a
Lagrange multiplier), moreover ‖vn‖W → 0.
By Moser’s iterations, f (x , v)sgn(v) ≤ D|v |`−1 implies

‖u‖∞ ≤ C1(`,p,Ω)D
1

p∗−` ‖u‖
p∗−p
p∗−`
p∗

for weak solutions of −∆pu = f (x ,u).
For weak solutions of −M(‖u‖pW )∆pu = f (x ,u),
using M(‖u‖pW )−1 ≤ p

ra1
‖u‖p−r

W , we get

‖vn‖∞ ≤ C1(....) ‖vn‖
p−r

p∗−`
W ‖vn‖

p∗−p
p∗−`
p∗

≤ C(....) ‖vn‖
p∗−r
p∗−`
W .

Since ‖vn‖W → 0, then ‖vn‖∞ → 0.
Then the origin is not a minimum w.r. to L∞ norm either.



Hölder versus Sobolev minimizers, positive result

For the more classical kind of result involving the C1 norm, one
needs more restrictions, in particular a balance between r and
`:

(`− 1) > (r − p)
p∗ − 1
p∗ − p

.

Steps of the proof:
Obtain the estimate for ‖vn‖∞ as before,
obtain an estimate for M(‖vn‖pW )−1 ‖f (x , vn)‖∞,
bootstrap to a uniform estimate for the C1,α norm (via
(Lieberman, 1988)),
apply Ascoli-Arzela Theorem to get a subsequence
converging in C1,
Then the origin is not a minimum w.r. to C1 norm either.

In fact, a-priori estimates as in (Lieberman, 1988) may not hold
true due to the nonlocal term.
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Applications

Applications

Consider the problem T5 (10) T6 −‖u‖
r−p
W ∆pu = −|u|q−2u + λ|u|ω−2u in Ω ,

u 6≡≥ 0, in Ω ,
u = 0 on ∂Ω ,

(8)

with 1 < q < ω < p∗, λ > 0.
Nonnegative solutions are critical points of

J +(u) =
1
r
‖u‖rW +

1
q
∥∥u+

∥∥q
q −

λ

ω

∥∥u+
∥∥ω
ω
. (9)

They are positive if q ≥ p.
PS condition holds for ω 6= r > p.



Applications - coercive case

First case: If r > ω > q then J + is coercive.

Theorem

Let 1 < q < ω < p∗, r > ω and λ > 0. (8)

If r ∈ (ω,p∗), then
no solution (even sign changing) for λ << 1
at least two nonnegative nontrivial solutions for λ >> 1.

If r = p∗, then
no solution (even sign changing) for λ << 1
at least one nonnegative nontrivial solution for λ >> 1.

If r > p∗, then there exists at least one nonnegative
nontrivial solution for every λ > 0.

Remark
If r = p, similar (more precise) result in (Anello, 2012),
using sub and supersolution method.
if r ∈ (p,p∗), the 0− 2 solution situation is maintained
ir r > p∗, things change!
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Proof:
r > ω > q then J + is coercive. (8)

if r > p∗ then infJ + < 0. Then at least one solution
if r < p∗ then the origin is a local minimum.

With some estimates

‖u‖ωω ≤
r − ω
r − q

‖u‖q
q +

ω − q
r − q

(C ‖u‖W )r .

Then a necessary condition is

0 = ‖u‖r
W + ‖u‖q

q − λ ‖u‖
ω
ω

≥
(

1− λω − q
r − q

Cr
)
‖u‖r

W +

(
1− λ r − ω

r − q

)
‖u‖q

q :

No nontrivial solution for λ small
infJ + < 0 for λ large enough, then global minimum +
Mountain pass solution.

if r = p∗ then for λ large enough we still have the global
minimum .
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Applications - non coercive case

Second case: If r < ω then J + is not coercive.

Theorem

Suppose 1 < q < ω < p∗ and r ∈ [p, ω). (8)

Then at least one nonnegative nontrivial solution for all λ > 0.

Proof:
PS holds true,
J +(tu)→ −∞ if t →∞ and u > 0,
the origin is a minimum.

=⇒ Mountain pass solution.
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Applications - M not a pure power

Third case: M not a pure power.

Theorem

Let 1 < q < ω < p∗ and
M(sp) = min {sr0−p; sr∞−p}
with r∞ ∈ (p, ω),

Then the problem{
−M(‖u‖pW )∆pu = −|u|q−2u + λ|u|ω−2u in Ω ,
u = 0 on ∂Ω ,

(10)

has at least one nonnegative nontrivial solution for λ > 0 small
enough. Moreover,

1 if r0 < p∗, then the nonnegative nontrivial solution exists for
every λ > 0,

2 if r0 > p∗, then a further nonnegative nontrivial solution
exists for λ > 0 small enough.
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Applications - M not a pure power

Proof:
PS holds true for the associated J + (r∞ < ω)
J +(tu)→ −∞ if t →∞ and u > 0, (ω largest power)

Since J +(u) ≥ 1
p M̂(‖u‖pW )− λC ‖u‖ωW , there exist

Λ,S, ρ > 0 such that

J +(u) ≥ S > 0 for ‖u‖W = ρ and λ ∈ [0,Λ).

=⇒ Mountain pass solution for λ ∈ [0,Λ).

If r0 < p∗ the origin is a local minimum,
=⇒ MP solution ∀λ > 0.
If r0 > p∗ the origin is NOT a local minimum,
=⇒ for λ ∈ [0,Λ), MP solution + local minimum in Bρ.
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A-priori estimates

A-priori estimates

Consider the nonlocal problem (Pa){
−‖u‖r−2

W ∆u = ga(u) = −auq−1 + uω−1 in Ω ,

u = 0 on ∂Ω ,
(Pa)

with parameter a ∈ (0,A] and suitable 1 < q < ω < 2.

If r = 2, there exists Λ > 0 such that
|ga(s)| ≤ Λ for every s ∈ [−D,D], a ∈ (0,A].

Then by (Lieberman, 1988:Theorem 1) there exist
β(Λ,N) ∈ (0,1) and C(Λ,D,N,Ω) > 0, such that

‖u‖C1,β ≤ C

for any weak solution satisfying ‖u‖∞ < D.

Question: does the same hold with r > 2?



A-priori estimates

Writing the nonlocal problem as

−∆u = ‖u‖2−r
W ga(u)

the RHS is not bounded if ‖u‖W → 0. Then one cannot directly
apply (Lieberman, 1988) result.
Actually,

Proposition ((Iturriaga and M., 2019))

If r ∈ (2 + 2
N ,2

∗), N ≥ 3, then there exists a family of functions,
satisfying problem (Pa) with a ∈ (0,1], which is bounded in L∞

but unbounded in C1.

Idea of the proof: By (Il’yasov and Egorov, 2010), for suitable
1 < q < ω,b0, there exists a compact support solution Φ for{

−∆u = −uq−1 + b0uω−1 in B,
u = 0 on ∂B,
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A-priori estimates

Then consider for λ ≥ 1, µ ∈ (0,1], the family of functions

Φλ,µ(x) :=

{
µΦ(λx) in B1/λ ,

0 in Ω \ B1/λ ,

where B1/λ is the ball centered at the origin with radius 1/λ.
setting µ(λ) = λ−α, for suitable α ∈ (0,1), one obtains the
family in the claim.
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THE END!
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