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The vibrating string equation:

If T is constant we have the D’alambert equation:

pUy = f+ To- Uxx



In (Kirchhoff, 1883) the tension depends on the length:

pug = f+ (To + kAL)UXX .
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In (Kirchhoff, 1883) the tension depends on the length:

pug = f+ (To + kAL)UXX .

Approximating the length:
LO Lo 1 1 Lo
~ 2 - ! 2
L_/o V1+u _/0 1+2UXL0+2/0 Uy

We get the Kirchhoff equation: (nonlocal equation)

k [t ,
puy =+ T0+2/ Uy | Uxx
0

and the stationary Kirchhoff equation:
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Stationary Kirchhoff equation

Stationary Kirchhoff equation

Here we consider the "Stationary Kirchhoff Equation": the
following (time independent) generalization of the Kirchhoff
vibrating string equation:

K
(K) u=~0 on 01,

{—M(||u||i,>Au= f(x,u) in Q,
@ Q c RN is a bounded and smooth domain,
@ M: nonlocal weight function,

@ |||y is the norm in H} (),

@ fis some nonlinearity.
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Comparison Principle, Sub- Supersolutions Method

Comparison principle for the Laplacian (weak form)

AL < —Aw in Q
{6— WSS L i< wing. (1)

< w on 09,

Question: Does it hold for Kirchhoff operator?

{—M(wuiw < -M(|w[3)aw in @, 2

< w on 09,

= (< win Q ?
Some answers:

@ (Alves and Corréa, 2001) : if M(t) > 0, M(t) nonincreasing,
M(t?)t increasing, then CP and SSM hold true.

o If M(t2)t; > M(t2)t, for some positive t; < tp, then CP is
false: take ¢ = b1 and w = t .

@ Several papers claiming CP and SSM hold true if
M(t) > my > 0, M(t) nondecreasing.
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Counterexamples:
@ (Garcia-Melian and lturriaga, 2016): if M “increases
enough”, then CP and SSM are false.

@ (Figueiredo and Suérez, 2018): for certain
M(t) = a+ b(t+ c)? CP and SSM are false.
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Comparison Principle and Sub- Supersolutions Method

Counterexamples:
@ (Garcia-Melian and lturriaga, 2016): if M “increases
enough”, then CP and SSM are false.

@ (Figueiredo and Suérez, 2018): for certain
M(t) = a+ b(t+ c)P CP and SSM are false.

(Garcia-Melian and lturriaga, 2016)
Assume N > 3 and M is continuous, positive and verifies:

(H) there exist R, > Ry > 0 such that

Then CP and SSM hold false in Q = B C RN.

Question: is it possible that CP and SSM hold true with some
growth condition on M?



Comparison Principle and Sub- Supersolutions Method

We answer in (lturriaga and M., 2018):!

Theorem ((lturriaga and M., 2018))

Let Q be a smooth bounded domain in RN. Suppose M is not
nonincreasing, that is, there exist positive t; < to such that
M(t) < M(t2). Then the Comparison Principle (both in its weak
and strong form) and the Sub and Supersolution Method do not
hold in Q, for the operator

~M(|lullF)Au.

'L. lturriaga and E. M. (2018). “On necessary conditions for the
comparison principle and the sub- and supersolution method for the
stationary Kirchhoff equation”. In: J. Math. Phys. 59.1; pp. 611506, 6



Comparison Principle - Garcia-Mellian & Iturriaga argument

M(RyY2) _ M(RY™?)

(H) there exist B> > Ry > 0 such that RS > R12
In Bp, take
né1 (x/Ry) |x] < Ry

where ¢4 is the first eigenfunction in the unitary ball.




Comparison Principle - Garcia-Mellian & Iturriaga argument

M(RyY2) _ M(RY™?)

>
R2 R

(H) there exist B> > Ry > 0 such that

In Bp, take

- {w (x/Ri) || < Ry (] = on (x/ o)

0 |X’ZR1

where ¢4 is the first eigenfunction in the unitary ball.

Then (H) allows to select n > 1 so that
—M(||l|2)ar < —M(|w|Z)Aw  in Q,but ¢ < wis false.
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Idea (dimension 1: Q = (—x/2,7/2)): take 7 > 0 small and

w=minqcos | —— |,—cos(x); ,
1+7) ¢
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Comparison Principle - Our argument

Idea (dimension 1: Q = (—x/2,7/2)): take 7 > 0 small and

= min {cos <1j:7) ,1 cos(x)} , = ncos(x),

3




Comparison Principle - Our argument

Comparison Principle - Our argument

Idea (dimension 1: Q = (—n/2,7/2)): take 7 > 0 small and

= min {cos (ﬁ) ,;cos(x)} , = ncos(x),

finally choose ¢, 7, rescale and find parameters so that

NM() > MM(t),  wls =t >t =03, n>1,

~M(wlF)Aw = M(&)Xw > M(t)As€ = —M(||¢]F) A



Comparison Principle - Remarks

Higher dimension and general domain:
Same idea:

:min {¢T’:7¢1} ; :77¢1’

where
@ ¢ is the first eigenfunction in Q,
@ ¢, is the first eigenfunction in

QT:{XERN: d(x,Q)<r}.



Comparison Principle - Remarks

Some remarks:

@ counterexamples for Strong Comparison Principle and the
Sub and Supersolution method are obtained in a similar
way,

@ the same argument works for p-Laplacian,

@ versions of CP and SSM which work for a wider range of M
exist, but always require additional hypotheses (Alves and
Corréa, 2015; Figueiredo and Suérez, 2018).



Kirchhoff equation: variational approach

Kirchhoff equation: variational approach

~M(|ulffy)Bpu = f(x,u) in Q,
u=20 on 09,

<>; (ulf,) /qu ue WPQ). (@)

Here
@ Q c RN is a bounded and smooth domain,
o | HW is the norm in W, P(Q), p > 1,

o M(t) = [{M(s)ds and F(x,v) = [y f(x,s)ds

Several authors:

Alves, Ambrosetti, Anello, Arcoya, Cheng, Colasuonno, Corréa,
Figueiredo, Liu, Ma, Madeira, Nunes, Pucci, Santos J.,
Siciliano, Song, Tang, Wu.
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Holder versus Sobolev minimizers

Theorem ((Brezis and Nirenberg, 1993))

LetJ(u) =} [ |VUP? — [ F(x,u), ueH(Q) ()
If J(up) < J(up + V) for v € CA(Q) with ||v||o1 small
then J(up) < J(up + V) for v € H}(Q) with ||v|| 5 small

Analogous in Wg P by (Garcia Azorero, Peral Alonso, and
Manfredi, 2000; Guo and Zhang, 2003; Brock, lturriaga, and
Ubilla, 2008).
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@ If M(t) > my > 0 (non degenerate case) then an
analogous holds true. (Fan, 2010).
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Holder versus Sobolev minimizers

Theorem ((Brezis and Nirenberg, 1993))

LetJ(u) =} [, IVul? — [, F(x,u), ue H(Q) ()
lfJ(uo) § J(up + v) for v € C}(Q) with ||v||o1 small
then J(up) < J(up + V) for v € H}(Q) with ||v|| 5 small

Analogous in Wg P by (Garcia Azorero, Peral Alonso, and
Manfredi, 2000; Guo and Zhang, 2003; Brock, lturriaga, and

Ubilla, 2008).
Question: What happens for
J() = FM(llullfy) - fo F( ue WyP(Q)?

@ If M(t) > my > 0 (non degenerate case) then an
analogous holds true. (Fan, 2010).

We study the degenerate case, in particular we take
@ M > 0, M continuous, M(0) = 0.




Model problem: let p* >w >qg>1and r > p:

1 p 1 g A w
J(u) = llullw + g lullg = = vl ()

—lully® Apu = —|ul92u+ Au|*2u  in Q, ®)
u=20 on 09.




Hélder versus Sobolev minimizers

Model problem: let p* > w >qg>1and r > p:

1 p 1 g A w
J(u) = llullw + g lullg = = llulls ()

—lully® Apu = —|ul92u+ Au|*2u  in Q, ®)
u=20 on 09.

First result: a negative answer:

Theorem ((Iturriaga and M., 2019)")

Ifr > p* then
0 J(0) < J(v) forv e L N W, with |||~ small

o there exists a sequence uy in W, P(Q) with ||u,||,, — 0,
such that 7 (un) < 0.

'L. lturriaga and E. M. (2019). “Sobolev versus Hdlder local minimizers in
degenerate Kirchhoff type problems”. In: submitted, arXiv:#906.07685v1



Hélder versus Sobolev minimizers, negative result

Proof (simplified): Let ). be compact support approximations
of the generalized Talenti functions

N—p
1 o
=T
TZJE(X) = (CN,p p€pp> with € > 0, (7)
er—T + |x|p-T
take u, = €%, where e, — 0 and
Noogs Np-w >0,
p* p* r—w

then
@ upis unbounded in L*>°,

@ the last term in 7 dominates then 7 (un) < 0 as n — occ.

v
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Proof (simplified): Let ). be compact support approximations
of the generalized Talenti functions

N—p
1 o
=T
%(X) = (CN,p p€pp> with € > 0, (7)
er—T + |x|p-T
take up = €%1)., where ¢, — 0 and
N Np-w >0,
p* p* r—w

then
@ Upis unbounded in L,

@ the last term in 7 dominates then 7 (up) < 0 as n — oc.

v

J(un) < 0 holds true under more general hypotheses:
° 1pl\7l(sp) < Cys’,  for s small,
o F(x,v) > Cov¥ — C3vI, forx € Q, v>0.



Hélder versus Sobolev minimizers, positive result

Now a positive answer
Theorem ((lturriaga and M., 2019))

Suppose in (3-4)
@ f: QxR — R js continuous and there exist constants
D > 0 and/ € [p, p*) such that

f(x,v)sgn(v) < D|v[*",  V(x,v) € QxR.

@ M(t) > 0 forevery t > 0 and there exist constants ay,6 > 0
andr € (p, p*) such that

M(sP) > rjs"p (= M(s") > Cs'), for0 < sP < 6.
Then, If the origin is a local minimum for J with respect to the

L*> norm, then it is also a local minimum with respect to the
W, norm.




Hélder versus Sobolev minimizers, positive result

Steps of the proof:

@ Suppose the origin is not a local minimum.

@ Then there exist a sequence v, of minimizers in sets
By = { [, u’ < 1}, with J(vs) < 0, which satisfy the
equation (may be with an additional term due to a
Lagrange multiplier), moreover ||v,||,, — O.

@ By Moser’s iterations, f(x, v)sgn(v) < D|v|Z‘1 implies

*

||UHOO < C1 (E’ P, Q)

for weak solutions of —Apu = f(x, u).
@ For weak solutions of —M(||u|l})Apu = f(x, u),

using M(|[ullfy) " < & lullfy ", we get

5

Wallos < G- )IIVnH"* eIIVnII"* ‘

pr—r
pr—¢

< C() lIvally

@ Since ||vp||y — 0, then ||v,|, — O.
@ Then the origin is not a minimum w.r. to L> norm either.




Hélder versus Sobolev minimizers, positive result

For the more classical kind of result involving the C' norm, one
needs more restrictions, in particular a balance between r and
l:

pr -1

(C-10>0-p 5.
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For the more classical kind of result involving the C' norm, one
needs more restrictions, in particular a balance between r and
l:
pr -1
t—=1)>(r—p .
(L—=1)>( ) o —p

Steps of the proof:

@ Obtain the estimate for ||v,||,, as before,

@ obtain an estimate for M(||va[5,) =" [|f(x, Vn)|| oo

@ bootstrap to a uniform estimate for the ' norm (via
(Lieberman, 1988)),

@ apply Ascoli-Arzela Theorem to get a subsequence
converging in C1,

@ Then the origin is not a minimum w.r. to C' norm either.




Hélder versus Sobolev minimizers, positive result

For the more classical kind of result involving the C' norm, one
needs more restrictions, in particular a balance between r and
l:

pr -1

(C-10>0-p 5.

Steps of the proof:
@ Obtain the estimate for ||v,||,, as before,
@ obtain an estimate for M(||va[5,) =" [|f(x, Vn)|| oo

@ bootstrap to a uniform estimate for the ' norm (via
(Lieberman, 1988)),

@ apply Ascoli-Arzela Theorem to get a subsequence
converging in C1,

@ Then the origin is not a minimum w.r. to C' norm either.

In fact, a-priori estimates as in (Lieberman, 1988) may not hold
true due to the nonlocal term.



Applications
Applications

Consider the problem

u#>0, in Q, (8)

—|lully® Apu = —|ul92u + Au|*~2u in Q,
u=20 on 09,

with1 <g<w<p*, A>0.
@ Nonnegative solutions are critical points of
1 1 g A w
THW) =l + g ety = Sl @

@ They are positive if g > p.
@ PS condition holds for w # r > p.



Applications - coercive case

First case: If r > w > g then J7 is coercive.

Let1 <g<w<p*, r>wandX > 0.

@ Ifr e (w,p*), then

@ no solution (even sign changing) for A << 1

e at least two nonnegative nontrivial solutions for A >> 1.
@ Ifr = p*, then

@ no solution (even sign changing) for A << 1

e at least one nonnegative nontrivial solution for A >> 1.
@ Ifr > p*, then there exists at least one nonnegative

nontrivial solution for every A > 0.
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First case: If r > w > g then J7 is coercive.

Let1 <g<w<p*, r>wandX > 0.

@ Ifr e (w,p*), then

@ no solution (even sign changing) for A << 1

e at least two nonnegative nontrivial solutions for A >> 1.
@ Ifr = p*, then

@ no solution (even sign changing) for A << 1

e at least one nonnegative nontrivial solution for A >> 1.
@ Ifr > p*, then there exists at least one nonnegative

nontrivial solution for every A > 0.

v

@ If r = p, similar (more precise) result in (Anello, 2012),
using sub and supersolution method.

e if r € (p, p*), the 0 — 2 solution situation is maintained

@ ir r > p*, things change!




Applications - coercive case

@ r > w > gthen J7 is coercive.
e if r > p* then infJ™ < 0. Then at least one solution
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@ r > w > gthen J7 is coercive.

e if r > p* then infJ™ < 0. Then at least one solution
@ if r < p* then the origin is a local minimum.

o With some estimates

w

w r—w —q
< ——|ul9 a8
lully < 7= : llullg + q(CIIUHw)

r —
Then a necessary condition is

0

lully + llullg = Alull;

_ w—q r _ r—w q.
(1 Ar_qC)u||W+(1 )\r_q>||u|q.

No nontrivial solution for X\ small
e infJ* < 0for X large enough, then global minimum +
Mountain pass solution.
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Applications - coercive case

@ r > w > gthen J7 is coercive.
e if r > p* then infJ™ < 0. Then at least one solution
@ if r < p* then the origin is a local minimum.

o With some estimates

w

w r—w —q
< ——||lull? 7
lully < 7= : ullg + q(CIIUHw)

rf

Then a necessary condition is

0 lully + llullg = Xull

Z\Y oA r = q.
(1 Ar_qC)u||W+(1 )\r_q>||u|q.

No nontrivial solution for X\ small
e infJ < 0 for X large enough, then global minimum +
Mountain pass solution.
e if r = p* then for X large enough we still have the global
minimum .

IV




Applications - non coercive case

Second case: If r < w then J1 is not coercive.

Suppose1 < q<w < p*andr € [p,w).
Then at least one nonnegative nontrivial solution for all A > 0.




Applications - non coercive case

Second case: If r < w then J1 is not coercive.

Suppose1 < q<w < p*andr € [p,w).
Then at least one nonnegative nontrivial solution for all A > 0.

| A

Proof:
@ PS holds true,
@ Jt(tu) » —cift - coand u > 0,
@ the origin is a minimum.

— Mountain pass solution.

\




Third case: M not a pure power.

Let1 < g <w < p* and
M(sP) = min{s"o—P; sl=—P}
with 1. € (p,w),

Then the problem

{ —M(|lully)Bpu = —[u|T2u+ Au[*"2u in Q,

u=0 on 09, (10)

has at least one nonnegative nontrivial solution for A > 0 small
enough.




Third case: M not a pure power.

Let1 < g <w < p* and
M(sP) = min{s"o—P; sl=—P}
with 1. € (p,w),

Then the problem

{ —M(|lully)Bpu = —[u|T2u+ Au[*"2u in Q,

u=0 on 09, (10)

has at least one nonnegative nontrivial solution for A > 0 small
enough. Moreover,

@ ifry < p*, then the nonnegative nontrivial solution exists for
every A > 0,

@ ifry > p*, then a further nonnegative nontrivial solution
exists for A > 0 small enough.




Applications - M not a pure power

@ PS holds true for the associated J* (r < w)
@ Jt(tu) - —ooift - oo and u > 0, (w largest power)

@ Since J*(u) > ;—)I\A/I(HUH‘,;V) — AC|ull}y, there exist
A, S, p > 0 such that

JH(u)>8>0 for ||ull,, = p and X € [0, A).

— Mountain pass solution for A € [0, A).




Applications - M not a pure power

@ PS holds true for the associated J* (r < w)
@ Jt(tu) - —ooift - oo and u > 0, (w largest power)

@ Since J*(u) > ;—)I\A/I(HUH‘,;V) — AC|ull}y, there exist
A, S, p > 0 such that

JH(u)>8>0 for ||ull,, = p and X € [0, A).

— Mountain pass solution for A € [0, A).

@ If rp < p* the origin is a local minimum,
—> MP solution V A > 0.

@ If iy > p* the origin is NOT a local minimum,
= for A € [0, A), MP solution + local minimum in B,,.




A-priori estimates

A-priori estimates

Consider the nonlocal problem (P3)

P
u=20 on 0%, (Fa)

{— ull'y2 Au = ga(u) = —aud" + v~ inQ,
with parameter a € (0, A] and suitable 1 < g < w < 2.

If r = 2, there exists A > 0 such that

|9a(s)| < Aforevery s e [-D, D], ac (0,A].
Then by (Lieberman, 1988:Theorem 1) there exist
B(A,N) € (0,1) and C(A, D, N,Q) > 0, such that

ullgs < C

for any weak solution satisfying ||u|| ., < D.

Question: does the same hold with r > 2?



A-priori estimates

Writing the nonlocal problem as
—Au = ||ulfy " ga(u)

the RHS is not bounded if ||u||,,, — 0. Then one cannot directly
apply (Lieberman, 1988) result.
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Proposition ((lturriaga and M., 2019))

Ifr € (2+ £,2%), N > 3, then there exists a family of functions,
satisfying problem (P3) with a € (0, 1], which is bounded in L>°
but unbounded in C'.




Writing the nonlocal problem as

—Au = |[ullfy " ga(u)

the RHS is not bounded if ||u||,,, — 0. Then one cannot directly
apply (Lieberman, 1988) result.
Actually,

Proposition ((lturriaga and M., 2019))

Ifr € (2+ £,2%), N > 3, then there exists a family of functions,
satisfying problem (P3) with a € (0, 1], which is bounded in L>°
but unbounded in C'.

Idea of the proof: By (I'yasov and Egorov, 2010), for suitable
1 < g < w, by, there exists a compact support solution ¢ for

—Au=—u?"+byu' inB,
u=20 on 0B,




A-priori estimates

Then consider for A > 1, u € (0, 1], the family of functions

® (X) L lu’q)()\x) in B1/)\7
M 0 inQ\ By,

where By, is the ball centered at the origin with radius 1/).
setting u(\) = A=, for suitable o € (0, 1), one obtains the
family in the claim.
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THE END!
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