Blow-up of solutions of semilinear heat equations with almost Hénon-critical exponent¹

E. MASSA^a,

(joint work with S. $ALARCON^{b}$ AND L. ITURRIAGA^b)

^a ICMC-USP/Brazil.

^b Universidad Técnica Federico Santa María/Chile,

WENLU - João Pessoa, February 2018

¹Research partially supported by FAPESP/Brazil and Fondecyt/Chiles + () + ()

Introduction	$\begin{array}{l} \alpha = 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	α > 0 0000 00000000	References

The problem

We study the parabolic problem

$$\begin{cases} u_t - \Delta u = |x|^{\alpha} |u|^{p-1} u & \text{in } B_1 \times (0, T) \\ u = 0 & \text{on } \partial B_1 \times (0, T) \\ u = u_0 & \text{in } B_1 \times \{0\}, \end{cases}$$
(P_{\alpha})

where

- B_1 is the unit ball in \mathbb{R}^N , $N \geq 3$;
- T = T_{max}(u₀) ∈ (0, +∞]: the maximal existence time for the (classical) solution;
- α > 0, p > 1;
- $u_0 \in C_0(B_1) := \{ v \in C(\overline{B_1}) : v = 0 \text{ on } \partial B_1 \}.$

troduction	$\alpha = 0$		References
	00 0000	0000 00000000	

Background: case $\alpha = 0$

Consider the problem

$$\begin{aligned} u_t - \Delta u &= |u|^{p-1} u & \text{ in } \Omega \times (0, T) \\ u &= 0 & \text{ on } \partial \Omega \times (0, T) \\ u &= u_0 & \text{ in } \Omega \times \{0\}, \end{aligned}$$

where Ω is a smooth bounded domain in \mathbb{R}^N , N > 3, p > 1, $u_0 \in C_0(\Omega) = \{ v \in C(\overline{\Omega}) : v(x) = 0 \text{ for } x \in \partial \Omega \}.$

- The well-posedness and several useful results (comparison, regularity..)
- Our concern will be the study of the sets of initial data that produce

$$\begin{split} \mathcal{G} &= \{ u_0 \in C_0(\Omega) : \ T_{\max}(u_0) = \infty \} \\ \mathcal{F} &= \{ u_0 \in C_0(\Omega) : \ T_{\max}(u_0) < +\infty \} \, . \\ \mathcal{G}^+ &= \{ u_0 \in C_0(\Omega) : \ u_0 \geq 0, \ T_{\max}(u_0) = \infty \} \\ \mathcal{F}^+ &= \{ u_0 \in C_0(\Omega) : \ u_0 \geq 0, \ T_{\max}(u_0) < +\infty \} \end{split}$$

∃ >

troduction	lpha=0		References
	00 0000	0000 0000000	

Background: case $\alpha = 0$

Consider the problem

$$\begin{split} u_t - \Delta u &= |u|^{p-1} u & \text{ in } \Omega \times (0, T) \\ u &= 0 & \text{ on } \partial \Omega \times (0, T) \\ u &= u_0 & \text{ in } \Omega \times \{0\}, \end{split}$$

where Ω is a smooth bounded domain in \mathbb{R}^N , N > 3, p > 1, $u_0 \in C_0(\Omega) = \{ v \in C(\overline{\Omega}) : v(x) = 0 \text{ for } x \in \partial \Omega \}.$

- The well-posedness and several useful results (comparison, regularity..) for this equation can be found for example in (Quittner and Souplet, 2007).
- Our concern will be the study of the sets of initial data that produce

$$\begin{aligned} \mathcal{G} &= \{ u_0 \in C_0(\Omega) : \ T_{\max}(u_0) = \infty \} \\ \mathcal{F} &= \{ u_0 \in C_0(\Omega) : \ T_{\max}(u_0) < +\infty \} \\ \mathcal{G}^+ &= \{ u_0 \in C_0(\Omega) : \ u_0 \geq 0, \ T_{\max}(u_0) = \infty \} \\ \mathcal{F}^+ &= \{ u_0 \in C_0(\Omega) : \ u_0 \geq 0, \ T_{\max}(u_0) < +\infty \} \end{aligned}$$

ntroduction	lpha=0		References
	00 0000	0000 0000000	

Background: case $\alpha = 0$

Consider the problem

$$u_t - \Delta u = |u|^{p-1} u \quad \text{in } \Omega \times (0, T)$$

$$u = 0 \qquad \text{on } \partial\Omega \times (0, T) \qquad (P_0)$$

$$u = u_0 \qquad \text{in } \Omega \times \{0\},$$

where Ω is a smooth bounded domain in \mathbb{R}^N , N > 3, p > 1, $u_0 \in C_0(\Omega) = \{ v \in C(\overline{\Omega}) : v(x) = 0 \text{ for } x \in \partial \Omega \}.$

- The well-posedness and several useful results (comparison, regularity..) for this equation can be found for example in (Quittner and Souplet, 2007).
- Our concern will be the study of the sets of initial data that produce global solutions or blow-up solutions.

$$\begin{aligned} \mathcal{G} &= \{ u_0 \in C_0(\Omega) : \ T_{\max}(u_0) = \infty \} \\ \mathcal{F} &= \{ u_0 \in C_0(\Omega) : \ T_{\max}(u_0) < +\infty \} \\ \mathcal{G}^+ &= \{ u_0 \in C_0(\Omega) : \ u_0 \geq 0, \ T_{\max}(u_0) = \infty \} \\ \mathcal{F}^+ &= \{ u_0 \in C_0(\Omega) : \ u_0 \geq 0, \ T_{\max}(u_0) < +\infty \} \end{aligned}$$

Introduction	$\begin{array}{c} \alpha = 0 \\ \bullet 0 \\ \circ 0 \\ \circ 0 \\ \circ 0 \\ \circ 0 \end{array}$	∝ > 0 0000 00000000	References
First properties			
Known proper	ties of (P_0)		

- Let $w \in C_0(\Omega)$, $w \neq 0$ and consider $u_0 = \lambda w$, $\lambda \geq 0$:
 - if λ is small enough then $u_0 \in \mathcal{G}$
 - if λ is large enough then $u_0 \in \mathcal{F}$

Moreover, if $w \ge 0$, there exists $\bar{\lambda} > 0$ such that

- if $0 < \lambda < \overline{\lambda}$ then $u_0 \in \mathcal{G}$
- if $\lambda > \overline{\lambda}$ then $u_0 \in \mathcal{F}$
- if $\lambda = \overline{\lambda}$ both cases can occur
- Thus, \mathcal{G}^+ is star-shaped (in fact convex) with respect to 0.
- When the initial value changes sign, the situation is different. ¿Is *G* star-shaped?

Introduction	$\begin{array}{l} \alpha = 0 \\ \bullet 0 \\ \circ \circ \circ \circ \circ \end{array}$	lpha > 0 0000 00000000	References
First properties			
Known properties	of (P_0)		

- Let $w \in C_0(\Omega)$, $w \not\equiv 0$ and consider $u_0 = \lambda w$, $\lambda \ge 0$:
 - if λ is small enough then $u_0 \in \mathcal{G}$
 - if λ is large enough then $u_0 \in \mathcal{F}$

Moreover, if $w \ge 0$, there exists $\bar{\lambda} > 0$ such that

- if $0 < \lambda < \overline{\lambda}$ then $u_0 \in \mathcal{G}$
- if $\lambda > \overline{\lambda}$ then $u_0 \in \mathcal{F}$
- if $\lambda = \overline{\lambda}$ both cases can occur
- Thus, \mathcal{G}^+ is star-shaped (in fact convex) with respect to 0.
- When the initial value changes sign, the situation is different. ¿Is G star-shaped?

Introduction	$\begin{array}{l} \alpha \ = \ 0 \\ \bullet \ 0 \\ \circ \ \circ \ \circ \ \circ \end{array}$	lpha > 0 0000 00000000	References
First properties			
Known properties	of (P_0)		

- Let $w \in C_0(\Omega)$, $w \neq 0$ and consider $u_0 = \lambda w$, $\lambda \geq 0$:
 - if λ is small enough then $u_0 \in \mathcal{G}$
 - if λ is large enough then $u_0 \in \mathcal{F}$

Moreover, if $w \ge 0$, there exists $\bar{\lambda} > 0$ such that

- if $0 < \lambda < \overline{\lambda}$ then $u_0 \in \mathcal{G}$
- if $\lambda > \overline{\lambda}$ then $u_0 \in \mathcal{F}$
- if $\lambda = \overline{\lambda}$ both cases can occur
- Thus, \mathcal{G}^+ is star-shaped (in fact convex) with respect to 0.
- When the initial value changes sign, the situation is different. *i*ls *G* star-shaped?

Introduction	$\alpha = 0$ $\circ \circ$	$\alpha > 0$ 00000	References
First properties	0000		
Known properties	s of (P_0)		

Let $\psi \in C_0(\Omega) \ \psi \not\equiv 0$ be a stationary solution and $u_0 = \lambda \psi$, $\lambda \ge 0$:

• if $\psi \geq 0$ (via comparison and energy arguments)

• if $\lambda \leq 1$ then $u_0 \in \mathcal{G}$

• if $\lambda > 1$ then $u_0 \in \mathcal{F}$

OBS If $\mathit{N}=1$ (or in symmetric situations) this is true even if ψ changes sign

• if ψ changes sign and N > 1 no easy argument:

• if λ is small enough then $u_0 \in \mathcal{G}$

```
• if \lambda = 1 then u_0 \in \mathcal{G}
```

```
• if \lambda is large enough then u_0 \in \mathcal{F}
```

Introduction	$\alpha = 0$		References
	00		
	0000	00000000	
First properties			
Known pror	$artiac of (D_a)$		

Let $\psi \in C_0(\Omega) \ \psi \not\equiv 0$ be a stationary solution and $u_0 = \lambda \psi$, $\lambda \ge 0$:

- if $\psi \geq$ 0 (via comparison and energy arguments)
 - if $\lambda \leq 1$ then $u_0 \in \mathcal{G}$
 - if $\lambda > 1$ then $u_0 \in \mathcal{F}$

OBS If $\mathit{N}=1$ (or in symmetric situations) this is true even if ψ changes sign

• if ψ changes sign and N > 1 no easy argument:

• if λ is small enough then $u_0 \in \mathcal{G}$

- if $\lambda = 1$ then $u_0 \in \mathcal{G}$
- if λ is large enough then $u_0 \in \mathcal{F}$

Introduction	$\alpha = 0$	$\alpha > 0$	References
	0000		
First properties			
Known pror	perties of (P_0)		

Let $\psi \in C_0(\Omega) \ \psi \neq 0$ be a stationary solution and $u_0 = \lambda \psi$, $\lambda \ge 0$:

- if $\psi \geq$ 0 (via comparison and energy arguments)
 - if $\lambda \leq 1$ then $u_0 \in \mathcal{G}$
 - if $\lambda > 1$ then $u_0 \in \mathcal{F}$

OBS If $\mathit{N}=1$ (or in symmetric situations) this is true even if ψ changes sign

• if ψ changes sign and N > 1 no easy argument:

• if λ is small enough then $u_0 \in \mathcal{G}$

- if $\lambda = 1$ then $u_0 \in \mathcal{G}$
- if λ is large enough then $u_0 \in \mathcal{F}$

Introduction	$\begin{array}{c} \alpha = 0 \\ \circ \bullet \\ \circ \circ \circ \circ \circ \end{array}$	lpha > 0 0000 00000000	References
First properties			
Known prope	erties of (P_0)		

Let $\psi \in C_0(\Omega) \ \psi \neq 0$ be a stationary solution and $u_0 = \lambda \psi$, $\lambda \ge 0$:

- if $\psi \geq$ 0 (via comparison and energy arguments)
 - if $\lambda \leq 1$ then $u_0 \in \mathcal{G}$
 - if $\lambda > 1$ then $u_0 \in \mathcal{F}$

OBS If $\mathit{N}=1$ (or in symmetric situations) this is true even if ψ changes sign

- if ψ changes sign and N > 1 no easy argument:
 - if λ is small enough then $u_0 \in \mathcal{G}$
 - if $\lambda = 1$ then $u_0 \in \mathcal{G}$
 - if λ is large enough then $u_0 \in \mathcal{F}$

Introduction	lpha=0		References
	00 ●000	0000 0000000	
CaDiWe - MaPaSc			

${\cal G}$ is not starshaped - 1

(Cazenave, Dickstein, and Weissler, 2009) consider radial solutions in $\Omega = B_1$:

Theorem

There $\exists p^* < p_0 := \frac{N+2}{N-2}$ such that if $p^* and <math>\psi_p$ is a radial sign changing stationary solution of (P_0) , that is,

$$\left\{ \begin{array}{ll} -\Delta\psi_{p} = |\psi_{p}|^{p-1}\psi_{p} & \text{ in } B_{1} \\ \psi_{p} = 0 & \text{ on } \partial B_{1} \end{array} \right.$$

then there exists $\eta > 0$ such that

$$0 < |1 - \lambda| < \eta \Rightarrow u_0 = \lambda \psi_p \in \mathcal{F}$$

i.e. the solution of (P₀), with Ω = B₁ and u₀ = λψ_p, blows up in finite time both for λ slightly greater than 1 and λ slightly less than 1. Hence G is not star-shaped with respect to the origin.

Introduction	lpha=0		References
	00 0●00	0000 0000000	
CaDiWe - MaPaSc			

${\cal G}$ is not starshaped - 2

(Marino, Pacella, and Sciunzi, 2015) extended the previous result by considering a general bounded smooth domain $\Omega\subset\mathbb{R}^N$

Theorem

There $\exists p^* < p_0 := \frac{N+2}{N-2}$ such that if $p^* and <math>\psi_p$ is a sign changing stationary solution of (P_0) in Ω , satisfying

$$\int_{\Omega} |\nabla \psi_p|^2 \to 2S_0^{\frac{N}{2}} \quad \text{as } p \to p_0 \tag{2.1}$$

$$\frac{\max \psi_p}{\min \psi_p} \to -\infty \quad \text{as } p \to p_0. \tag{2.2}$$

then there exists $\eta > 0$ such that

$$0 < |1 - \lambda| < \eta \Rightarrow u_0 = \lambda \psi_p \in \mathcal{F}$$

 Existence of solutions as above were proved in [(Pistoia and Weth, 2007; Musso and Pistoia, 2010)]

Introduction	lpha = 0		References
	00 00●0	0000 0000000	

CaDiWe - MaPaSc

Sketch of the argument

The argument for both results is in three steps:

let ψ_p be a sign-changing stationary solution of (P₀):

- step 3 (proved in (Gazzola and Weth, 2005)): if $\exists t \geq 0$: $u(\cdot, t) \geq \neq \psi_p$ then u blows-up (positively). if $\exists t > 0$: $u(\cdot, t) \leq \neq \psi_p$ then it blows-up (negatively).
- step 2: (proved in (Cazenave, Dickstein, and Weissler, 2009)): Proposition. let $\varphi_{1,\rho}$ be a first eigenfunction of the linearized problem around ψ_{ρ} :

$$\begin{split} -\Delta \varphi - \rho |\psi_{\rho}|^{\rho-1} \varphi &= \lambda \varphi \text{ in } \Omega \\ \varphi &= 0 \text{ on } \partial \Omega, \end{split}$$

and assume that

$$\int_{\Omega}\psi_{p}arphi_{1,p}>0.$$

Then

- for λ > 1 near 1, the solution u^λ_ρ of (P₀) with initial value u₀ = λψ_ρ, satisfy u^λ_ρ(·, t) ≥ ∉ ψ_ρ for t large enough.
- for λ < 1 near 1, the solution u^λ_ρ of (P₀) with initial value u₀ = λψ_ρ, satisfy u^λ_ρ(·, t) ≤ ∉ ψ_ρ for t large enough.
- step 1: prove that for $p < p_0$ near p_0

$$\int_{\Omega}\psi_{\rho}\varphi_{1,\rho}>0.$$

Introduction	lpha=0		References
	00 00●0	0000 0000000	

CaDiWe - MaPaSc

Sketch of the argument

The argument for both results is in three steps:

let ψ_p be a sign-changing stationary solution of (P₀):

- step 3 (proved in (Gazzola and Weth, 2005)):
 - if $\exists t \geq 0$: $u(\cdot, t) \geq \neq \psi_p$ then *u* blows-up (positively).
 - if $\exists t \geq 0$: $u(\cdot, t) \leq \neq \psi_p$ then it blows-up (negatively).
- step 2: (proved in (Cazenave, Dickstein, and Weissler, 2009)): **Proposition.** let $\varphi_{1,p}$ be a first eigenfunction of the linearized problem around ψ_p :

$$\begin{aligned} & (-\Delta \varphi - p |\psi_p|^{p-1} \varphi = \lambda \varphi \text{ in } \Omega \\ & (\varphi = 0 \text{ on } \partial \Omega, \end{aligned}$$

and assume that

$$\int_{\Omega}\psi_{p}\varphi_{1,p}>0.$$

Then

- for λ > 1 near 1, the solution u^λ_ρ of (P₀) with initial value u₀ = λψ_ρ, satisfy u^λ_ρ(·, t) ≥ ≠ ψ_ρ for t large enough.
- for $\lambda < 1$ near 1, the solution u_{ρ}^{λ} of (P₀) with initial value $u_0 = \lambda \psi_{\rho}$, satisfy $u_{\rho}^{\lambda}(\cdot, t) \leq \neq \psi_{\rho}$ for t large enough.

step 1: prove that for p < p₀ near p₀

$$\int_{\Omega}\psi_{p}\varphi_{1,p}>0.$$

Introduction	lpha=0		References
	00 00●0	0000 0000000	

CaDiWe - MaPaSc

Sketch of the argument

The argument for both results is in three steps:

let ψ_p be a sign-changing stationary solution of (P₀):

- step 3 (proved in (Gazzola and Weth, 2005)):
 - if $\exists t \ge 0$: $u(\cdot, t) \ge \neq \psi_p$ then *u* blows-up (positively).
 - if $\exists t \geq 0$: $u(\cdot, t) \leq \neq \psi_p$ then it blows-up (negatively).
- step 2: (proved in (Cazenave, Dickstein, and Weissler, 2009)): **Proposition.** let $\varphi_{1,p}$ be a first eigenfunction of the linearized problem around ψ_p :

$$\begin{aligned} & (-\Delta \varphi - p |\psi_p|^{p-1} \varphi = \lambda \varphi \text{ in } \Omega \\ & (\varphi = 0 \text{ on } \partial \Omega, \end{aligned}$$

and assume that

$$\int_{\Omega}\psi_{p}\varphi_{1,p}>0.$$

Then

- for λ > 1 near 1, the solution u^λ_ρ of (P₀) with initial value u₀ = λψ_ρ, satisfy u^λ_ρ(·, t) ≥ ≠ ψ_ρ for t large enough.
- for $\lambda < 1$ near 1, the solution u_{ρ}^{λ} of (P₀) with initial value $u_0 = \lambda \psi_{\rho}$, satisfy $u_{\rho}^{\lambda}(\cdot, t) \leq \neq \psi_{\rho}$ for t large enough.
- step 1: prove that for p < p₀ near p₀

$$\int_{\Omega}\psi_{p}\varphi_{1,p}>0$$

Introduction	lpha=0		References
	00	0000	
	0000	0000000	
CaDiWe - MaPaSc			
Rlow-up me	chanism		

Stationary sign changing solution ψ_p with $\int_{\Omega} \psi_p \varphi_{1,p} > 0$.

Introduction	lpha = 0		References
	00	0000	
CaDiWe - MaPaSc			
Blow-up med	chanism		

프 > 프

Introduction	lpha = 0		References
	00	0000	
CaDiWe - MaPaSc			
Blow-up med	chanism		

프 > 프

Introduction	lpha = 0		References
	00	0000	
CaDiWe - MaPaSc			
Blow-up med	chanism		

< ∃ > ____

Introduction	lpha = 0		References
	00	0000	
CaDiWe - MaPaSc			
Blow-up med	chanism		

▲ 臣 ▶ 臣 • • • • •

Introduction	$\alpha = 0$		References
	00	0000	
	0000	0000000	
CaDiWe - MaPaSc			
Blow-up me	chanism		

Introduction	lpha = 0		References
	00	0000	
CaDiWe - MaPaSc			
Blow-up med	chanism		

프 > 프

The problem with $\alpha > 0$

We study the parabolic problem

$$\begin{array}{ll} & u_t - \Delta u = |x|^{\alpha} |u|^{p-1} u & \text{ in } B_1 \times (0, T) \\ & u = 0 & \text{ on } \partial B_1 \times (0, T) \\ & u = u_0 & \text{ in } B_1 \times \{0\}, \end{array}$$

where B_1 is the unit ball in \mathbb{R}^N , $N \ge 3$, p > 1, $\alpha > 0$.

• We restrict to B_1 and radial solutions because we need to work near the "relevant" critical exponent: $p_{\alpha} = \frac{N+2+2\alpha}{N-2}$ Actually,

$$H^1(\mathbb{R}^N) \hookrightarrow L^p(\mathbb{R}^N), \;\; ext{for}\; 2 \leq p \leq p_0+1$$

but

$$H^1(\mathbb{R}^N) \not\hookrightarrow L^{p_{\alpha}+1}(\mathbb{R}^N), \quad H^1(B_1) \not\hookrightarrow L^{p_{\alpha}+1}(B_1,|x|^{\alpha})$$

$$\mathcal{H}^1_{rad}(\mathbb{R}^N) \hookrightarrow L^p(\mathbb{R}^N, |x|^{lpha}), \ ext{ for } 2+rac{lpha}{N-1} \leq p \leq p_{lpha}+1$$

Introduction		lpha > 0	References
	00 0000	0000 0000000	
Ingredeints of the proof			

- Problem (P_{α}) is well posed for $u_0 \in C_0(B_1)$ (see (Wang, 1993)).
- Classical results (comparison, energy, ..) still hold or can be adapted.
- Step 3 was based on these methods then can be adapted.
- Step 2 ... see below...
- So we need to prove step 1:

Proposition

Given $\alpha > 0$ there exists $p^* > 0$ such that for each $p \in (p^*, p_\alpha)$ the exists a radial sign-changing solution $\psi_p \in C_0(B_1)$ of the elliptic problem

such that, if $\varphi_{1,p}$ is a first eigenfunction of the linearized problem around ψ_p :

$$\begin{bmatrix} -\Delta \varphi - \rho |x|^{\alpha} |\psi_{\rho}|^{\rho-1} \varphi = \lambda \varphi \text{ in } B_{1} \\ \varphi = 0 \text{ on } \partial B_{1}, \end{bmatrix}$$

then

$$\int_{B_1} \psi_p \varphi_{1,p} > 0. \tag{3.2}$$

Introduction		$\alpha > 0$	References
	00 0000	• 000 0000000	
Ingradaints of the proof			

- Problem (P_{α}) is well posed for $u_0 \in C_0(B_1)$ (see (Wang, 1993)).
- Classical results (comparison, energy, ..) still hold or can be adapted.
- Step 3 was based on these methods then can be adapted.
- Step 2 ...see below...
- So we need to prove step 1:

Proposition

Given $\alpha > 0$ there exists $p^* > 0$ such that for each $p \in (p^*, p_\alpha)$ the exists a radial sign-changing solution $\psi_p \in C_0(B_1)$ of the elliptic problem

$$\begin{pmatrix} -\Delta u = |x|^{\alpha} |u|^{p-1} u & \text{in } B_1 \\ u = 0 & \text{on } \partial B_1, \end{cases}$$

$$(3.1)$$

such that, if $\varphi_{1,p}$ is a first eigenfunction of the linearized problem around ψ_p :

$$\left[\begin{array}{c} -\Delta \varphi - p |x|^{\alpha} |\psi_{\rho}|^{\rho-1} \varphi = \lambda \varphi \text{ in } B_{1} \\ \varphi = 0 \text{ on } \partial B_{1}, \end{array} \right]$$

then

$$\int_{B_1} \psi_p \varphi_{1,p} > 0. \tag{3.2}$$

Introduction		$\alpha > 0$	References
	00 0000	0000 0000000	
Ingredeints of the proof			
Step 2			

• Let u_p^{λ} be the solution of (P_{α}) with $u_0 = \lambda \psi_p$ and define

$$z_p^{\lambda}(\cdot,t) = rac{u_p^{\lambda}(\cdot,t) - \psi_p}{\lambda - 1} \quad ext{ in } B_1 imes (0,T).$$

By continuous dependence, given 0 < τ < T < ∞, for |1 − λ| > 0 small enough, u^λ_ρ is well defined on [0, T] and

$$z^\lambda_
ho o z_
ho$$
 in $\mathcal{C}([au, T], \mathcal{C}^1(\overline{B_1}))$ as $\lambda o 1$,

with z_p being a solution of the limiting problem

$$\begin{cases} (z_p)_t = \Delta z_p + p_\alpha |x|^\alpha |\psi_p|^{p_\alpha - 1} z_p & \text{in } B_1 \times (0, T) \\ z_p = 0 & \text{on } \partial B_1 \times (0, T) \\ z_p = \psi_p & \text{in } B_1 \times \{0\}. \end{cases}$$

But

$$\int_{B_1} \psi_p \varphi_{1,p} > 0$$

then at some $t_0 > 0$

Introduction		$\alpha > 0$	References
	00 0000	0000 0000000	
Ingredeints of the proof			
Step 2			

• Let u_p^{λ} be the solution of (P_{α}) with $u_0 = \lambda \psi_p$ and define

$$z_p^{\lambda}(\cdot,t) = rac{u_p^{\lambda}(\cdot,t) - \psi_p}{\lambda - 1} \qquad ext{in } B_1 imes (0,T).$$

• By continuous dependence, given $0 < \tau < T < \infty$, for $|1 - \lambda| > 0$ small enough, u_{ρ}^{λ} is well defined on [0, T] and

$$z_{
ho}^{\lambda}
ightarrow z_{
ho} \quad ext{in } \mathcal{C}([au, T], \mathcal{C}^1(\overline{B_1})) \ \, ext{as } \lambda
ightarrow 1 \ ,$$

with z_p being a solution of the limiting problem

$$\begin{cases} (z_p)_t = \Delta z_p + p_\alpha |x|^\alpha |\psi_p|^{p_\alpha - 1} z_p & \text{in } B_1 \times (0, T) \\ z_p = 0 & \text{on } \partial B_1 \times (0, T) \\ z_p = \psi_p & \text{in } B_1 \times \{0\}. \end{cases}$$

But

$$\int_{B_1} \psi_p \varphi_{1,p} > 0$$

then at some $t_0 > 0$

Introduction		$\alpha > 0$	References
	00 0000	0000 0000000	
Ingredeints of the proof			
Step 2			

• Let u_p^{λ} be the solution of (P_{α}) with $u_0 = \lambda \psi_p$ and define

$$z_p^{\lambda}(\cdot,t) = rac{u_p^{\lambda}(\cdot,t) - \psi_p}{\lambda - 1} \qquad ext{in } B_1 imes (0,T).$$

• By continuous dependence, given $0 < \tau < T < \infty$, for $|1 - \lambda| > 0$ small enough, u_{ρ}^{λ} is well defined on [0, T] and

$$z_{
ho}^{\lambda}
ightarrow z_{
ho} \quad ext{in } \mathcal{C}([au, T], \mathcal{C}^1(\overline{B_1})) \ \, ext{as } \lambda
ightarrow 1 \ ,$$

with z_p being a solution of the limiting problem

$$\begin{cases} (z_p)_t = \Delta z_p + p_\alpha |x|^\alpha |\psi_p|^{p_\alpha - 1} z_p & \text{ in } B_1 \times (0, T) \\ z_p = 0 & \text{ on } \partial B_1 \times (0, T) \\ z_p = \psi_p & \text{ in } B_1 \times \{0\}. \\ \int_{B_1} \psi_p \varphi_{1,p} > 0 \end{cases}$$

But

then at some
$$t_0 > 0$$

$$z^\lambda_
ho(\cdot,t_0)>0 \quad ext{for } |\lambda-1|\leq \delta$$

(日本) 日日

roduction $\alpha = 0$	a / 0	Reference
00 0000	0000 0000000	

Ingredeints of the proof

Step 1 - The sign changing solutions

The radial sign-changing solutions ψ_p were found in (Alarcón, 2017) in the form

$$\psi_{\rho}(x) = + PU_{M_{1}\varepsilon^{3/(N-2)},\alpha} - PU_{M_{2}\varepsilon^{1/(N-2)},\alpha} + \sigma_{\rho}(x) \qquad x \in B_{1},$$

where

۲

$$U_{\lambda,\alpha}(x) = \gamma_{N,\alpha} \left(\frac{\lambda^{\frac{2+\alpha}{2}}}{\lambda^{2+\alpha} + |x|^{2+\alpha}} \right)^{\frac{N-2}{2+\alpha}}$$

are the "bubbles of order α ": all the radial classical solutions of the problem

$$\begin{cases} -\Delta U = |x|^{\alpha} U^{p_{\alpha}} & \text{ in } \mathbb{R}^{N} \\ U > 0 & \text{ in } \mathbb{R}^{N}, \end{cases}$$
(3.3)

- *P* is the projection on $H^1(B_1)$;
- ε = p_α − p , M₁, M₂ are positive constants depending only on N and α, and σ_p is a function which is of a lower order than the other terms (in C¹ norm) as p ≯ p_α.

Introduction		$\alpha > 0$	References
	00 0000	000 0000000	
Inconductors of the suppl			

- These solutions are called Bubble towers: the superposition of two bubbles that, as p
 ∧ p_α, concentrate at the origin at different speeds.
- They are obtained via the Lyapunov-Schmidt finite dimensional reduction.
- They satisfy $\psi_p(0) > 0$,

$$\int_{B_1} |\nabla \psi_p|^2 \to 2 S_\alpha^{\frac{N+\alpha}{2+\alpha}} \quad \text{as } p \nearrow p_\alpha,$$

$$\max\psi_p, \ -\min\psi_p \to +\infty,$$

$$\frac{\max\psi_p}{\min\psi_p} \to -\infty \quad \text{ as } p \nearrow p_\alpha,$$

Introduction		$\alpha > 0$	References
	00 0000	000 0000000	
Inconductors of the suppl			

- These solutions are called Bubble towers: the superposition of two bubbles that, as p
 ∧ p_α, concentrate at the origin at different speeds.
- They are obtained via the Lyapunov-Schmidt finite dimensional reduction.
- They satisfy $\psi_p(0) > 0$,

$$\int_{B_1} |\nabla \psi_p|^2 \to 2 S_\alpha^{\frac{N+\alpha}{2+\alpha}} \quad \text{as } p \nearrow p_\alpha,$$

$$\max\psi_{p},\ -\min\psi_{p}\to+\infty,$$

$$\frac{\max\psi_p}{\min\psi_p} \to -\infty \quad \text{ as } p \nearrow p_\alpha,$$

Introduction		$\alpha > 0$	References
	00 0000	000 0000000	
Inconductors of the suppl			

- These solutions are called Bubble towers: the superposition of two bubbles that, as p
 ∧ p_α, concentrate at the origin at different speeds.
- They are obtained via the Lyapunov-Schmidt finite dimensional reduction.
- They satisfy $\psi_p(0) > 0$,

$$\int_{B_1} |\nabla \psi_p|^2 \to 2 S_\alpha^{\frac{N+\alpha}{2+\alpha}} \quad \text{as } p \nearrow p_\alpha,$$

$$\max\psi_p, \ -\min\psi_p \to +\infty,$$

$$\frac{\max\psi_p}{\min\psi_p} \to -\infty \quad \text{ as } p \nearrow p_\alpha,$$

Introduction		$\alpha > 0$	References
	00 0000	0000 0000000	
Final argument			
Step 1			

We compare these four problems:

$$\begin{split} \psi_{p} \text{ radial solution of } & \left\{ \begin{array}{ll} -\Delta u = |x|^{\alpha} |u|^{p-1} u & \text{in } B_{1} \\ u = 0 & \text{on } \partial B_{1}, \end{array} \right. \\ & \mathcal{U} \in \mathcal{D}_{rad}^{1,2}(\mathbb{R}^{N}) \text{ the radial positive solution of } \begin{cases} -\Delta U = |x|^{\alpha} U^{p_{\alpha}} & \text{in } \mathbb{R}^{N} \\ U(0) = 1, \end{cases} \end{split}$$

$$\varphi_{1,p} \text{ is a radial first eigenfunction of } \begin{cases} -\Delta \varphi - p|x|^{\alpha}|\psi_p|^{p-1}\varphi = \lambda \varphi & \text{ in } B_1 \\ \varphi = 0 & \text{ on } \partial B_1, \end{cases}$$

 $\varphi_1^* \in H^1_{\rm rad}(\mathbb{R}^N) \text{ is a first eigenfunction of } -\Delta \varphi - p|x|^{\alpha} U^{p-1} \varphi = \lambda \varphi \text{ in } \mathbb{R}^N,$

글 > 글

Introduction		$\alpha > 0$	References
	00 0000	0000 0 000000	
Final argument			
The rescaling			

Set

 $M_{\rho} := \psi_{\rho}(0) = \|\psi_{\rho}\|_{L^{\infty}}$ $\widetilde{B}_{\rho} = M_{\rho}^{\frac{p-1}{2+\alpha}} B_{1}$ $\widetilde{\psi}_{\rho}(x) := \frac{1}{M_{\rho}} \psi_{\rho} \left(\frac{x}{M_{\rho}^{\frac{p-1}{2+\alpha}}}\right) \quad \text{in } \widetilde{B}_{\rho}$ $\widetilde{\varphi}_{1,\rho}(x) = \left(\frac{1}{M_{\rho}^{\frac{p-1}{2+\alpha}}}\right)^{\frac{N}{2}} \varphi_{1,\rho} \left(\frac{x}{M_{\rho}^{\frac{p-1}{2+\alpha}}}\right) \quad \text{in } \widetilde{B}_{\rho}$

E. MASSA, S. ALARCON, L. ITURRIAGA Blow-up of solut

Blow-up of solutions of semilinear heat equations

< ∃ →

э

Introduction		$\alpha > 0$	References
	00 0000	0000 0000000	

Final argument

The rescaling

Set

 $M_p:=\psi_p(0)=\|\psi_p\|_{L^\infty}$

p-1

$$B_{p} = M_{p}^{p+\alpha} B_{1}$$
$$\widetilde{\psi}_{p}(x) := \frac{1}{M_{p}} \psi_{p} \left(\frac{x}{M_{p}^{\frac{p-1}{2+\alpha}}} \right) \quad \text{in } \widetilde{B}_{p}$$
$$\widetilde{\varphi}_{1,p}(x) = \left(\frac{1}{M_{p}^{\frac{p-1}{2+\alpha}}} \right)^{\frac{N}{2}} \varphi_{1,p} \left(\frac{x}{M_{p}^{\frac{p-1}{2+\alpha}}} \right) \quad \text{in}$$

 \widetilde{B}_{p}

Introduction		$\alpha > 0$	References
	00 0000	0000 0000000	

Final argument

The rescaling

Set

 $M_{p}:=\psi_{p}(0)=\|\psi_{p}\|_{L^{\infty}}$

$$\begin{split} \widetilde{B}_p &= M_p^{\frac{p-1}{2+\alpha}} B_1 \\ \widetilde{\psi}_p(x) &:= \frac{1}{M_p} \psi_p\left(\frac{x}{M_p^{\frac{p-1}{2+\alpha}}}\right) \qquad \text{in } \widetilde{B}_p \end{split}$$

$$\widetilde{\varphi}_{1,p}(x) = \left(\frac{1}{M_p^{\frac{p-1}{2+\alpha}}}\right)^{\frac{N}{2}} \varphi_{1,p}\left(\frac{x}{M_p^{\frac{p-1}{2+\alpha}}}\right) \qquad \text{in } \widetilde{B}_p$$

< ≣ >

æ

Introduction		$\alpha > 0$	References
	00 0000	0000 0000000	

Final argument

The rescaling

Set

 $M_p:=\psi_p(0)=\|\psi_p\|_{L^\infty}$

$$\widetilde{B}_p = M_p^{rac{p-1}{2+lpha}} B_1$$

$$\begin{split} \widetilde{\psi}_{p}(x) &:= \frac{1}{M_{p}} \psi_{p} \left(\frac{x}{M_{p}^{\frac{p-1}{2+\alpha}}} \right) & \text{ in } \widetilde{B}_{p} \\ \widetilde{\varphi}_{1,p}(x) &= \left(\frac{1}{M_{p}^{\frac{p-1}{2+\alpha}}} \right)^{\frac{N}{2}} \varphi_{1,p} \left(\frac{x}{M_{p}^{\frac{p-1}{2+\alpha}}} \right) & \text{ in } \widetilde{B}_{p} \end{split}$$

< 注 → 注

Introduction	lpha = 0 00 0000	α > 0 0000 00●00000	References
Final argument			
Estimates on ψ_r	, and $\widetilde{\psi}_{p}$		

One needs some estimates on the solutions ψ_p :

$$\max_{B_1} |x|^{\alpha} (\psi_p(x)^+)^{p-1} = O(\varepsilon^{-\frac{6}{N-2}})$$
$$\max_{B_1} |x|^{\alpha} (\psi_p(x)^-)^{p-1} = O(\varepsilon^{-\frac{2}{N-2}})$$

as $\varepsilon = p_{\alpha} - p \rightarrow 0$.

For the rescaled $\widetilde{\psi}_{\mathbf{P}}$ this implies

$$\begin{split} \max_{\widetilde{B}_p} |x|^{\alpha} (\widetilde{\psi}_p(x)^+)^{p-1} &= O(1) \\ \max_{\widetilde{B}_p} |x|^{\alpha} (\widetilde{\psi}_p(x)^-)^{p-1} &= O(\varepsilon^{4/(N-2)}) \\ \text{as } \varepsilon &= p_{\alpha} - p \to 0. \end{split}$$

글 > 글

Introduction		$\alpha > 0$	References
	00 0000	0000 0000000	
Final argument			
about $arphi_1^*$			

Consider the Rayleigh functional

$$\mathcal{R}^*(\mathbf{v}) = \int_{\mathbb{R}^N} (|\nabla \mathbf{v}|^2 - \mathbf{p}_\alpha |\mathbf{x}|^\alpha |U|^{\mathbf{p}_\alpha - 1} \mathbf{v}^2)$$

and define

$$\lambda_1^* := \inf_{\substack{\nu \in H_{\mathrm{rad}}^1(\mathbb{R}^N) \\ \|\nu\|_{L^2(\mathbb{R}^N)} = 1}} \mathcal{R}^*(\nu).$$
(3.4)

Then

- $\bullet \ -\infty < \lambda_1^* < \mathbf{0}$
- There exists a unique positive minimizer φ_1^* associated to λ_1^* .

Introduction		$\alpha > 0$	References
	00 0000	0000 0000000	
Final argument			
about $\varphi_{1,p}$			

Consider the Rayleigh functional

$$\mathcal{R}(\mathbf{v}) = \int_{\mathcal{B}_1} \left(|\nabla \mathbf{v}|^2 - \mathbf{p} |\mathbf{x}|^{lpha} |\psi_{\mathbf{p}}|^{\mathbf{p}-1} \mathbf{v}^2
ight)$$

and define

$$\lambda_{1,p} := \inf_{\substack{\nu \in H_{0, rad}^{1}(B_{1}) \\ \|\nu\|_{L^{2}(B_{1})} = 1}} \mathcal{R}(\nu).$$
(3.5)

Then

- $-\infty < \lambda_{1,p} < 0$
- There exists a unique positive minimizer $\varphi_{1,p}$ associated to $\lambda_{1,p}$.

After rescaling:

- $\|\widetilde{\varphi}_{1,p}\|_{L^2(\mathbb{R}^N)} = 1$
- $\tilde{\varphi}_{1,p}$ is the first eigenfunction of the following linearized problem:

$$\begin{cases} -\Delta \widetilde{\varphi}_{1,p} - p |\mathbf{x}|^{\alpha} |\widetilde{\psi}_{p}|^{p-1} = \widetilde{\lambda}_{1,p} \widetilde{\varphi}_{1,p} & \text{in } \widetilde{B}_{p} \\ \widetilde{\varphi}_{1,p} = 0 & \text{on } \partial \widetilde{B}_{p} , \end{cases}$$
with $\widetilde{\lambda}_{1,p} = \frac{\lambda_{1,p}}{M_{p}^{\frac{2(p-1)}{2+\alpha}}}.$

$$(3.6)$$

Introduction		$\alpha > 0$	References
	00 0000	0000 0000000	
Final argument			
about $\varphi_{1,p}$			

Consider the Rayleigh functional

$$\mathcal{R}(\mathbf{v}) = \int_{\mathcal{B}_1} \left(|\nabla \mathbf{v}|^2 - \mathbf{p} |\mathbf{x}|^{lpha} |\psi_{\mathbf{p}}|^{\mathbf{p}-1} \mathbf{v}^2
ight)$$

and define

$$\lambda_{1,p} := \inf_{\substack{\nu \in H_{0, rad}^{1}(B_{1}) \\ \|\nu\|_{L^{2}(B_{1})} = 1}} \mathcal{R}(\nu).$$
(3.5)

Then

- $-\infty < \lambda_{1,p} < 0$
- There exists a unique positive minimizer $\varphi_{1,p}$ associated to $\lambda_{1,p}$.

After rescaling:

- $\|\widetilde{\varphi}_{1,p}\|_{L^2(\mathbb{R}^N)} = 1$
- $\tilde{\varphi}_{1,p}$ is the first eigenfunction of the following linearized problem:

$$\begin{cases} -\Delta \widetilde{\varphi}_{1,p} - p|x|^{\alpha} |\widetilde{\psi}_{p}|^{p-1} = \widetilde{\lambda}_{1,p} \widetilde{\varphi}_{1,p} & \text{in } \widetilde{B}_{p} \\ \widetilde{\varphi}_{1,p} = 0 & \text{on } \partial \widetilde{B}_{p} , \end{cases}$$
with $\widetilde{\lambda}_{1,p} = \frac{\lambda_{1,p}}{\frac{2(p-1)}{M_{p}^{2+\alpha}}}.$

≣⇒

Introduction		$\alpha > 0$	References
	00 0000	0000 00000000	
Final argument			
final argument			

In order to conclude one has to prove:

- $\widetilde{\psi}_{\rho} \to U$ in $\mathcal{C}^2_{loc}(\mathbb{R}^N)$ (U is the unique solution of the limiting problem).
- $\lambda_{1,p} \to \lambda_1^*$ (Several computations comparing the two minimization problems and using the properties of ψ_p)
- $\widetilde{\varphi}_{1,p} \to \varphi_1^*$ in $L^2(\mathbb{R}^N)$ (follows from the previous, considering the minimizing sequence $\widetilde{\varphi}_{1,p_n}$)

Finally,

• $\int_{B_1} \psi_p \varphi_{1,p}$, has the same sign as $\int_{B_1} |x|^{\alpha} |\psi_p|^{p-1} \psi_p \varphi_{1,p}$

• $\int_{B_1} |x|^{\alpha} |\psi_p|^{p-1} \psi_p \varphi_{1,p} = \int_{\widetilde{B}_p} |x|^{\alpha} |\widetilde{\psi}_p|^{p-1} \widetilde{\psi}_p \widetilde{\varphi}_{1,p} \to \int_{\mathbb{R}^N} |x|^{\alpha} U^{p_{\alpha}} \varphi_1^* > 0$ THEN

$$\int_{\mathsf{B}_1}\psi_\mathsf{p}arphi_{1,\mathsf{p}}>\mathsf{0}\,.$$

Introduction		$\alpha > 0$	References
	00 0000	0000 00000000	
Final argument			
final argument			

In order to conclude one has to prove:

- $\widetilde{\psi}_{\rho} \to U$ in $\mathcal{C}^2_{loc}(\mathbb{R}^N)$ (U is the unique solution of the limiting problem).
- $\lambda_{1,p} \to \lambda_1^*$ (Several computations comparing the two minimization problems and using the properties of ψ_p)
- $\widetilde{\varphi}_{1,p} \to \varphi_1^*$ in $L^2(\mathbb{R}^N)$ (follows from the previous, considering the minimizing sequence $\widetilde{\varphi}_{1,p_n}$)

Finally,

- $\int_{B_1} \psi_p \varphi_{1,p}$, has the same sign as $\int_{B_1} |\mathbf{x}|^{\alpha} |\psi_p|^{p-1} \psi_p \varphi_{1,p}$
- $\int_{B_{1}} |x|^{\alpha} |\psi_{p}|^{p-1} \psi_{p} \varphi_{1,p} = \int_{\widetilde{B}_{p}} |x|^{\alpha} |\widetilde{\psi}_{p}|^{p-1} \widetilde{\psi}_{p} \widetilde{\varphi}_{1,p} \to \int_{\mathbb{R}^{N}} |x|^{\alpha} U^{p_{\alpha}} \varphi_{1}^{*} > 0$ THEN

물 위 위 물 위 이 물

Introduction		$\alpha > 0$	References
	00 0000	0000 00000000	
Final argument			
final argument			

In order to conclude one has to prove:

- $\widetilde{\psi}_{\rho} \to U$ in $\mathcal{C}^2_{loc}(\mathbb{R}^N)$ (U is the unique solution of the limiting problem).
- $\lambda_{1,p} \to \lambda_1^*$ (Several computations comparing the two minimization problems and using the properties of ψ_p)
- $\widetilde{\varphi}_{1,p} \to \varphi_1^*$ in $L^2(\mathbb{R}^N)$ (follows from the previous, considering the minimizing sequence $\widetilde{\varphi}_{1,p_n}$)

Finally,

- $\int_{B_1} \psi_p \varphi_{1,p}$, has the same sign as $\int_{B_1} |\mathbf{x}|^{\alpha} |\psi_p|^{p-1} \psi_p \varphi_{1,p}$
- $\int_{B_1} |x|^{\alpha} |\psi_p|^{p-1} \psi_p \varphi_{1,p} = \int_{\widetilde{B}_p} |x|^{\alpha} |\widetilde{\psi}_p|^{p-1} \widetilde{\psi}_p \widetilde{\varphi}_{1,p} \to \int_{\mathbb{R}^N} |x|^{\alpha} U^{p_{\alpha}} \varphi_1^* > 0$ THEN

$$\int_{\mathsf{B}_1}\psi_{\mathsf{p}}arphi_{1,\mathsf{p}}>\mathsf{0}\,.$$

물 제 문 제 문 문

Introduction		$\alpha > 0$	References
	00	0000	
Final argument	0000	0000000	
Conclusion			

Theorem

There exists $p^* < p_{\alpha} = \frac{N+2+2\alpha}{N-2}$ with the following property: If $p^* , then$

 \exists sign-changing radial stationary solution ψ_p of (P_α) and $\delta_p > 0$

such that:

If $0 < |\lambda - 1| < \delta_p$, then the classical solution u of (P_α) with initial value $u_0 = \lambda \psi_p$ blows up in finite time. That is,

$$0 < |1 - \lambda| < \delta_p \Rightarrow u_0 = \lambda \psi_p \in \mathcal{F}$$

Then also for (P_{α}) the set \mathcal{G} is not starshaped with respect to the origin.

★ 글 ▶ - 글

Introduction		$\alpha > 0$	References
	00 0000	0000 0000000	
Final argument			

Thank you very much for your attention.

Introduction	$\begin{array}{c} \alpha = 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	lpha > 0 0000 00000000	References
Main reference	s I		

- Alarcón, S. (2017). "Multiple Sign changing solutions at the almost Hénon critical exponent". In: Preprint.
- Cazenave, T., F. Dickstein, and F. B. Weissler (2009). "Sign-changing stationary solutions and blowup for the nonlinear heat equation in a ball". In: *Math. Ann.* 344.2, pp. 431–449.
 - Gazzola, F. and T. Weth (2005). "Finite time blow-up and global solutions for semilinear parabolic equations with initial data at high energy level". In: *Differential Integral Equations* 18.9, pp. 961–990.
- Marino, V., F. Pacella, and B. Sciunzi (2015). "Blow up of solutions of semilinear heat equations in general domains". In: Commun. Contemp. Math. 17.2, pp. 1350042, 17.
- Musso, Monica and Angela Pistoia (2010). "Tower of bubbles for almost critical problems in general domains". In: J. Math. Pures Appl. (9) 93.1, pp. 1–40.

Introduction			References
	00 0000	0000 0000000	

Main references II

- Pistoia, A. and T. Weth (2007). "Sign changing bubble tower solutions in a slightly subcritical semilinear Dirichlet problem". In: Ann. Inst. H. Poincaré Anal. Non Linéaire 24.2, pp. 325–340.
- Quittner, P. and P. Souplet (2007). Superlinear parabolic problems. Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Blow-up, global existence and steady states. Birkhäuser Verlag, Basel, pp. xii+584.
- Wang, X. (1993). "On the Cauchy problem for reaction-diffusion equations". In: *Trans. Amer. Math. Soc.* 337.2, pp. 549–590.