Weighted Trudinger-Moser inequalities and

associated Liouville type equations

Eugenio Massa, ICMC - USP

joint work with Marta Calanchi and Bernhard Ruf
(Universita degli Studi di Milano).

ICM 2018 - Satellite Conference on Nonlinear Partial Differential Equations

(Research partially supported by FAPESP/Brazil)



Introduction: the basics about TM

For Q ¢ RN a bounded smooth domain, some standard Sobolev
embeddings are
pN

p<N and qe[1,p*:m ,

WIP(Q) — LI(Q) f
0" (@) = L) for {p—N and qge[1,00).



Introduction: the basics about TM

For Q ¢ RN a bounded smooth domain, some standard Sobolev
embeddings are
pN

p<N and qe[1,p*:m ,

WIP(Q) — LI(Q) f
0" (@) = L) for {p—N and qge[1,00).

The Trudinger-Moser inequalities consider the limiting case p = N:

actually W, ""(Q) 4 L=(Q).



Introduction: the basics about TM

For Q ¢ RN a bounded smooth domain, some standard Sobolev
embeddings are

p<N and qe[1,p*:% ,

WIP(Q) — LI(Q) f
0" (@) = L) for {p—N and ge[1,00).

The Trudinger-Moser inequalities consider the limiting case p = N:
actually W, ""(Q) 4 L=(Q).

Consider N = 2 and u(x) = log(1 — log |x|) € W, ?(Bs(0)). )




Introduction: the basics about TM

For Q c RN a bounded smooth domain, some standard Sobolev
embeddings are

p<N and qe[1,p*:% ,

WIP(Q) — LI(Q) f
0" (@) = L) for {p—N and qge[1,00).

The Trudinger-Moser inequalities consider the limiting case p = N:
actually W, ""(Q) 4 L=(Q).

Consider N = 2 and u(x) = log(1 — log |x|) € W, ?(Bs(0)). )

Then one seeks a maximal growth function f(t) such that

ue W(;’N:>/f(u)<oo.
Q



Then one seeks a maximal growth function f(t) such that

ue W(]’N:>/ f(u) < oo.
Q

The growth () ~ |t|9 is not maximal:



Then one seeks a maximal growth function f(t) such that

ue W(]’N:>/ f(u) < oo.
Q

The growth () ~ |{|9 is not maximal:

Pohozaev (’65), Trudinger ('67), Yudovich ('61), Peetre ('66)

_N
T ue WNQ) = [,elul™T < 00,
0 Q

In particular, let (from now on) N = 2:

ueH(Q) = / el < oo,
Q



The maximal growth comes from

Trudinger - Moser inequality (Moser, 1970)

(TM) C(a):= sup /eauz { < C|Q|
Q

ueH], |lul|<1 = 0

(lull? = JoIVul®)

if o <4n
if o> 4.




The maximal growth comes from

Trudinger - Moser inequality (Moser, 1970)

(M) C@= s [ o { <Clol if asér

UEH&, llul|<17/Q =0 if o> 4.

(ulf? == [ |Vul?)

A useful consequence is the logarithmic TM inequality:

There exists a constant C > 0 such that

(LogTM) Iog/ el!! < 1or ||u\|2 + C.

(/ ot il S/ ot () s 1 me#\\uu?)
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u =0 on 09

The associated functional is

J(u) = %/Q|Vu|2 - Alog/ﬂe”.

Li (99), Chen-Li (10)

If0 < X\ < 8m, the equation has a (positive) solution, which is a global
minimizer of J.

Actually, by the Logarithmic TM inequality, the functional is coercive for
A < 8.

Caglioti-Lions-Marchioro-Pulvirenti (92)

If A > 8m, Q starshaped = no solution (via a Pohozaev identity).

)\ = 8 is a critical threshold.
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@ Weight in the norm: find maximal growth function f(t) such
that

ue Hw(Q) = / f(u) < oo,
Q

where Hy, is the completion of C3°(Q2) with respect to the

norm
1/2
U] = </Byw2 w(x) dx)
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/e”'7 dx < oco,Yu € Hg, < 7 <3 :=
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(The case 8 = 0 is the classical TM: vg = 2, ag = 4n).
When g — 17, the exponent v53 — oo.,...
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The case 3 = 1 is again a limiting case:

/e'“'7 dx < oo, YU € Hp, Vv >0.
B

The maximal growth is now a double exponential:

Calanchi-Ruf (15) - 5 = 1

u2 =~
/ e® < +oo Vue Hg_q,
B

27 2
sup /eae"dx<oo<:>a§2.
ueHs_lullg—1<17B

The case § > 1 is less interesting:

For g > 1 Hg — L>(B) J




Proof of Weigthed TM inequalities
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The classical proof for TM inequality uses symmetrization,
which doesn’t work in the presence of a weight.
In this case one needs a radial Lemma:

Radial Lemma (Calanchi Ruf - 15)
Let u € Cj ,4(B)- Then

Illog (e/|x])]'~* — 1|2

e SLELES
o 1ol < /20 EMD) gy
o If ||u]|g=1 < 1 then

e < ™M) — (g/|x|)7,

which is integrable in Bfor1 —a> -1 (< a< 2)
7ru2 .
eifa>2then [, ™ o along a suitable sequence.
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Logarithmic TM inequality for g > 0

(Calanchi-Ruf-15)
a) B8 € [0,1): there exists a constant C(3) such that

1 O 1 _
_ |u|"8 < 2
9 (IBI /Be dx) S o, s+ CB) - VueHs,

where Mg :=7(1-pB)°2—-p)2P2'"# and 65 = % .
b) For g = 1, there exists a constant Cyg such that
1 olul 1 2 1 log Cus ~
i < _
Ioglog<|B|/Be dx) < 27T||u\|1+log (8+e§\lullf) Yu € H; .

Open question from Calanchi-Ruf-15

—
—

Are the values — and — optimal?
2)\3 ™

(this is the case if 5 = 0: Caglioti-Lions-Marchioro-Pulvirenti-92)
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) = (5= 1) lull = A0(0)

and

1 A 1 logC
h@) = (5 - 50 )l - vlog (5 + 2204
olot
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> (5~ 52) 101} - Xog (5 +10 Cua)

Moreover Jy and /, are still bounded from below when A < A\g
(resp. A < ).
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For 6 > 0 and k large we can estimate

log((1 + k)'2° — 2k) > log((1 + k)'*°) = (1 4 6) log(1 + k).
Given A\ =m+¢e¢ > mlet C=1+24(¢) and then

I(auk) < (14 20)27log(1 + k) — (7 + €)(1 4 6) log(1 + k) ;

if § > 0is small then (1 +26)%7 < (7 +¢)(1 + 6),
then I.1.((1 + 29)ux) — —cc.



Mean field equations with weight

Consider the following problem, w(x) = log” (&), 8 > 0

—di \Y% = )A—— in B
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and the associated functional

J(u) = 1||u||§ —Alog [ e'dx J: FIB —R.
2 B
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—di \Y% = )A—— in B
" iv(w(x)Vu) I in

and the associated functional

J(u):%||u||%—)\log/8e“dx J:Hy >R,

As we have seen, for 3 =0, J is
@ coercive for A < 87
@ unbounded from below for A > 8«

@ no critical point for A > 87 and Q a ball.

For 5 > 0, J is coercive for every A > 0 and there always exists a
solution of (L).
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Increasing the growth

The “interesting” problems are the ones associated with the above

functionals:
0
pe©1) | _g4 _ e
For 5 div(w(x)Vu) = A o in B @)
0= B
2-7 u=0 on 9B
eV e
i _,_ & &€ e
For 8 =1: aiv (w(x) Vu) log f5e® [ge® " (3)
u=20 on 0B

Theorem (subcritical case)[CMR18]

The problem (2) has a weak radial positive solution for every A < Ag.
The problem (3) has a weak radial positive solution for every \ < .

Both solutions correspond to a global minimum of the (coercive) associated
functional.

(one needs a compactness result from deFigueiredo-Miyagaki-Ruf (95) and
to prove the minimum is not the origin)
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Critical case: A > \s.

@ For 5 =0 we had

Theorem (Caglioti-Lions-Marchioro-Pulvirenti-Chen-Li)

u
—Au = Aﬁ in B, u=0o0n0dB, has a solution if and only if
B
A < 8.

The nonexistence came from a Pohozaev identity.

@ For g € (0, 1) we do not know if a solution exist for A > A3
(no Pohozaev identity)

@ For 8 =1 we can prove existence also for A = = and
slightly above.
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Existence of a solutionfor 5 =1and A\ =«

They key point is the particular form of the LogTM inequality
when 5 = 1:
1

h(u) = §||u||g — Mloglog (][ ee“> dx  (loglog TM!)

> (752 ) i - Aog <8+ ) > (5 ) i - ¢

ez

For A\ = 7 the functional is still bounded from below. Instead of
coercivity we exploit the second term:

1
I.(u) > —mlog ( + 12) > log8 > 0, for ||u||g large.

8 eﬂ”u‘lg
Then again, since inf [, < 0, minimizing sequences are bounded and
we have a global minimum.
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For A = 7 + e the minimum persists if € > 0 is small. (now it is only a local
minimum).
Actually, using

1 7w+e 2 1 C
T+e > A - o )
Leye(u) > (2 5 ) [|ullz — (m +¢€)log (8 + HUH%)

1
ea2r
for a suitable R > 0 and small enough > 0 one has, for ||u||z = R.

g

€ p2 1\ _ 2 _
/W+E(U)Z—ZR —(m+¢)log (Z) = 27TR +(m+¢e)log4 > 0 = I--(0),

Then there exists a local minimum in the ball |ju|; < R.

Finally, since /. is unbounded from
below, for # < A < w + ¢ the functional
has a mountain-pass structure.

This suggests the possibility of a second solution.
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The second solution.

Now the problem is that we could not prove the (PS) condition!!!
We used a generalization of a result by L. Jeanjean, based on
the so called monotonicity trick by Struwe.

This shows that for almost every \ € [7, 7 + £¢), there exists a

bounded PS-sequence for [, at the Mountain pass level.
Summing up

Theorem (Critical and supercritical case) [CMR18]

There exists € > 0 such that the equation
. e e e .
—div(log—Vu) = \X\—— ——— in B,
{ (fog |X] ) log {5 6% [5e* (4)
u =0 on 0B,
has a positive radial solution, which is a local minimizer for I, X € [r, 7 + €).

Moreover for a.e. A € (w,w + ¢), there is a second positive radial solution
which is of mountain-pass type.
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