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Introduction: the basics about TM

For Ω ⊂ RN a bounded smooth domain, some standard Sobolev
embeddings are

W 1,p
0 (Ω) ↪→ Lq(Ω) for

{
p < N and q ∈ [1,p∗ = p N

N−p ] ,

p = N and q ∈ [1,∞) .

The Trudinger-Moser inequalities consider the limiting case p = N:

actually W 1,N
0 (Ω) 6↪→ L∞(Ω).

Consider N = 2 and u(x) = log(1− log |x |) ∈W 1,2
0 (B1(0)).

Then one seeks a maximal growth function f (t) such that

u ∈W 1,N
0 ⇒

ˆ
Ω

f (u) <∞.
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u ∈W 1,N
0 ⇒

ˆ
Ω

f (u) <∞.

The growth f (t) ∼ |t |q is not maximal:

Pohozaev (’65), Trudinger (’67), Yudovich (’61), Peetre (’66)

(T ) u ∈W 1,N
0 (Ω)⇒

´
Ω e|u|

N
N−1

<∞,

In particular, let (from now on) N = 2:

u ∈ H1
0 (Ω)⇒

ˆ
Ω

e|u|
2
<∞,
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The maximal growth comes from

Trudinger - Moser inequality (Moser, 1970)

(TM) C(α) := sup
u∈H1

0 , ||u||≤1

ˆ
Ω

eαu2

{
≤ C|Ω| if α ≤ 4π
=∞ if α > 4π.

(||u||2 :=
´

Ω
|∇u|2)

A useful consequence is the logarithmic TM inequality:

There exists a constant C̃ > 0 such that

(LogTM) log
ˆ

Ω
e|u| ≤ 1

16π
||u||2 + C̃.

(ˆ
e

|u|
‖u‖ ‖u‖ ≤

ˆ
e4π

(
u

‖u‖

)2
+ 1

16π ‖u‖
2
≤ C|Ω|e

1
16π ‖u‖

2
)
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An application to a mean field equation
Consider the mean field equation of Liouville type (see Caglioti-Lions-
Marchioro-Pulvirenti (92), Chanillo-Kiessling (94))

−∆u = λ
eu´
Ω

eu
, in Ω ⊂⊂ R2

u = 0 on ∂Ω

The associated functional is

J(u) =
1
2

ˆ
Ω

|∇u|2 − λ log
ˆ

Ω

eu.

Li (99), Chen-Li (10)

If 0 < λ < 8π, the equation has a (positive) solution, which is a global
minimizer of J.

Actually, by the Logarithmic TM inequality, the functional is coercive for
λ < 8π.

Caglioti-Lions-Marchioro-Pulvirenti (92)

If λ ≥ 8π, Ω starshaped⇒ no solution (via a Pohozaev identity).

λ = 8π is a critical threshold.
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Weighted TM inequalities

Influence of weights on TM inequalities:
Weight in the integral: find maximal growth function f (t)
such that

u ∈ H1
0 (Ω)⇒

ˆ
Ω

f (u)w(x) dx <∞,

(Calanchi-Terraneo, Adimurthi-Sandeep, de Oliveira-do Ó,
do Ó- de Figueiredo-Dos Santos, mostly for w(x) = |x |α,
α ∈ R)
Weight in the norm: find maximal growth function f (t) such
that

u ∈ Hw (Ω)⇒
ˆ

Ω
f (u) <∞,

where Hw is the completion of C∞0 (Ω) with respect to the
norm

||u||w :=

(ˆ
B
|∇u|2 w(x) dx

)1/2
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Logarithmic radial weights

It turns out that a interesting case is when Ω = B = B1(0) ⊆ R2

wβ(x) =

(
log

e
|x |

)β
(β ≥ 0)

and one restricts to radial functions:

H̃β := cl
{

u ∈ C∞0,rad (B) ; ‖u‖2β :=

ˆ
B
|∇u|2wβ(x)dx <∞

}
:

Calanchi-Ruf (15) - Case 0 ≤ β < 1ˆ
B

e|u|
γ

dx <∞, ∀u ∈ H̃β, ⇐⇒ γ ≤ γβ :=
2

1− β
.

sup
u∈H̃β , ‖u‖β≤1

ˆ
B

eα|u|
γβ dx <∞ ⇐⇒ α ≤ αβ = 2 [2π(1− β)]

1
1−β .

(The case β = 0 is the classical TM: γ0 = 2, α0 = 4π).
When β → 1−, the exponent γβ →∞ ....
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The case β = 1 is again a limiting case:
ˆ

B
e|u|

γ
dx <∞, ∀u ∈ H̃β, ∀ γ > 0 .

The maximal growth is now a double exponential:

Calanchi-Ruf (15) - β = 1ˆ
B

eeu2

< +∞ ∀u ∈ H̃β=1,

sup
u∈H̃β=1‖u‖β=1≤1

ˆ
B

ea e2πu2

dx <∞ ⇐⇒ a ≤ 2.

The case β > 1 is less interesting:

For β > 1 H̃β ↪→ L∞(B)
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Proof of Weigthed TM inequalities

The classical proof for TM inequality uses symmetrization,
which doesn’t work in the presence of a weight.
In this case one needs a radial Lemma:

Radial Lemma (Calanchi Ruf - 15)

Let u ∈ C1
0,rad (B). Then

• |u(x)| ≤
∣∣[log (e/|x |)]1−β − 1

∣∣1/2√
2π|1− β|

||u||β, 0 ≤ β < 1

• |u(x)| ≤
√

log (log (e/|x |))

2π
||u||β, β = 1.

• If ||u||β=1 ≤ 1 then

eae2πu2

≤ ea log(e/|x|) = (e/|x |)a,

which is integrable in B for 1− a > −1 (⇐⇒ a < 2)

• if a > 2 then
´

B ea e2πu2

→∞ along a suitable sequence.
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Logarithmic TM inequality for β ≥ 0

(Calanchi-Ruf-15)
a) β ∈ [0,1): there exists a constant C(β) such that

log
(

1
|B|

ˆ
B

e|u|
θβ dx

)
≤ 1

2λβ
‖u‖2

β + C(β) ∀u ∈ H̃β ,

where λβ := π(1− β)β(2− β)2−β21−β and θβ =
2

2− β
.

b) For β = 1, there exists a constant CMB such that

log log
( 1
|B|

ˆ
B

ee|u|
dx
)
≤ 1

2π
‖u‖2

1 + log
(1

8
+

log CMB

e
1

2π ‖u‖
2
1

)
∀u ∈ H̃1 .

Open question from Calanchi-Ruf-15

Are the values
1

2λβ
and

1
2π

optimal?

(this is the case if β = 0: Caglioti-Lions-Marchioro-Pulvirenti-92)
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Two associated functional

In view of the LogTM inequality we will consider the following
functionals:

i) for β ∈ [0,1), let

Jλ : H̃β → R, Jλ(u) :=
1
2
‖u‖2β − λ log

( 
B

euθβ dx
)∗

:

it is coercive for λ ∈ [0, λβ) and it is bounded from below if
λ ≤ λβ.

ii) for β = 1, let

Iλ : H̃1 → R, Iλ(u) :=
1
2
‖u‖21 − λ log log

( 
B

eeu
dx
)

:

it is coercive for λ ∈ [0, λβ) and it is bounded from below if
λ ≤ λβ.

∗ here uθ := |u|θ−1u
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Coercivity

Coercivity for λ < λβ (resp. λ < π) is an immediate
consequence of the LogTM inequality: for λ ≥ 0

Jλ(u) ≥
(1

2
− λ

2λβ

)
‖u‖2β − λC(β)

and

Iλ(u) ≥
(1

2
− λ

2π

)
‖u‖21 − λ log

(
1
8

+
log CMB

e
‖u‖21

2π

)
≥
(1

2
− λ

2π

)
‖u‖21 − λ log

(
1
8

+ log CMB

)
.

Moreover Jλ and Iλ are still bounded from below when λ ≤ λβ
(resp. λ ≤ π).
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Sharpness (β = 1) [CMR18]

Sharpness (case β = 1): we produce a sequence uk such that
Iπ+ε(uk )→ −∞: take a generalized Moser sequence:

uk (x) =

log log
(

e
|x |

)
for e−k ≤ |x | < 1 ,

log(1 + k) for |x | < e−k .
(1)
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log(1 + k) for |x | < e−k .
(1)



Then ‖uk‖β=1 = 2π log(1 + k)→∞ and
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2
‖Cuk‖21 − λ log log
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B

eeCuk dx
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2
‖Cuk‖21 − λ log log
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ˆ
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eeC log(1+k)
dx
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≤ C2π log(1 + k)− λ

[
log
(
(1 + k)C − 2k

)]
.

For δ > 0 and k large we can estimate

log((1 + k)1+2δ − 2k) ≥ log((1 + k)1+δ) = (1 + δ) log(1 + k).

Given λ = π + ε > π let C = 1 + 2δ(ε) and then

Iλ(αuk ) ≤ (1 + 2δ)2π log(1 + k)− (π + ε)(1 + δ) log(1 + k) ;

if δ > 0 is small then (1 + 2δ)2π < (π + ε)(1 + δ),
then Iπ+ε((1 + 2δ)uk )→ −∞.
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Mean field equations with weight
Consider the following problem, w(x) = logβ

( e
|x|
)
, β > 0

(L)


−div

(
w(x)∇u

)
= λ

eu´
B eu in B

u = 0 on ∂B

and the associated functional

J(u) =
1
2
‖u‖2

β − λ log
ˆ

B
eu dx J : H̃β → R .

As we have seen, for β = 0, J is

coercive for λ < 8π

unbounded from below for λ > 8π

no critical point for λ ≥ 8π and Ω a ball.

For β > 0, J is coercive for every λ > 0 and there always exists a
solution of (L).
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Increasing the growth

The “interesting” problems are the ones associated with the above
functionals:

For
β ∈ (0,1)

θ =
2

2− β
:

−div
(
w(x)∇u

)
= λ

θ|u|θ−1 euθ

´
B euθ in B

u = 0 on ∂B
(2)

For β = 1:

−div
(
w(x)∇u

)
= λ

eu

log
ffl

B eeu

eeu

´
B eeu in B

u = 0 on ∂B
(3)

Theorem (subcritical case)[CMR18]

The problem (2) has a weak radial positive solution for every λ < λβ .
The problem (3) has a weak radial positive solution for every λ < π.

Both solutions correspond to a global minimum of the (coercive) associated
functional.
(one needs a compactness result from deFigueiredo-Miyagaki-Ruf (95) and
to prove the minimum is not the origin)
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Critical case: λ ≥ λβ.

For β = 0 we had

Theorem (Caglioti-Lions-Marchioro-Pulvirenti-Chen-Li)

−∆u = λ
eu´
B eu in B, u = 0 on ∂B, has a solution if and only if

λ < 8π.

The nonexistence came from a Pohozaev identity.
For β ∈ (0,1) we do not know if a solution exist for λ ≥ λβ
(no Pohozaev identity)
For β = 1 we can prove existence also for λ = π and
slightly above.
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Existence of a solution for β = 1 and λ = π

They key point is the particular form of the LogTM inequality
when β = 1:

Iλ(u) =
1
2
||u||2β − λ log log

( 
eeu
)

dx (log log TM!)

≥
(
π − λ

2π

)
||u||2β − λ log

(
1
8

+
C

e
‖u‖2

β
2π

)
≥
(
π − λ

2π

)
||u||2β − C.

For λ = π the functional is still bounded from below. Instead of
coercivity we exploit the second term:

Iπ(u) ≥ −π log
(

1
8

+
C

e
1

2π ‖u‖
2
β

)
≥ π

2
log 8 > 0, for ||u||β large.

Then again, since inf Iπ ≤ 0, minimizing sequences are bounded and
we have a global minimum.
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Existence of a solution for β = 1 and λ > π
For λ = π + ε the minimum persists if ε > 0 is small. (now it is only a local
minimum).
Actually, using

Iπ+ε(u) ≥
(

1
2
− π + ε

2π

)
||u||2β − (π + ε) log

(
1
8

+
C

e
1

2π ‖u‖
2
β

)
,

for a suitable R > 0 and small enough ε > 0 one has, for ||u||β = R.

Iπ+ε(u) ≥ − ε

2π
R2− (π+ ε) log

(
1
4

)
= − ε

2π
R2 + (π+ ε) log 4 > 0 = Iπ+ε(0),

Then there exists a local minimum in the ball ‖u‖β ≤ R.

Finally, since Iπ+ε is unbounded from
below, for π < λ < π + ε the functional
has a mountain-pass structure.

 

R

v1

v0

This suggests the possibility of a second solution.
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The second solution.

Now the problem is that we could not prove the (PS) condition!!!
We used a generalization of a result by L. Jeanjean, based on
the so called monotonicity trick by Struwe.
This shows that for almost every λ ∈ [π, π + ε0), there exists a
bounded PS-sequence for Iλ at the Mountain pass level.
Summing up

Theorem (Critical and supercritical case) [CMR18]

There exists ε > 0 such that the equation −div
(

log
e
|x | ∇u

)
= λ

eu

log
ffl

B eeu

eeu

´
B eeu in B ,

u = 0 on ∂B ,
(4)

has a positive radial solution, which is a local minimizer for Iλ, λ ∈ [π, π + ε).
Moreover for a.e. λ ∈ (π, π + ε), there is a second positive radial solution
which is of mountain-pass type.
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