
Estimates on the derivatives and analyticity of positive
definite functions on Rm

E. Massa∗, A. P. Peron§
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Abstract
In this paper we obtain some results about derivatives of positive definite functions in Rm, using
known properties of positive definite kernels. We prove, by purely algebraic methods, that certain
derivatives of such functions are also positive definite and we show that simple conditions on their
even order derivatives at the origin strongly determine their global properties. In particular, one
can obtain an estimate for f and its derivatives at any point and a condition for real analyticity,
using only the value of these derivatives at the origin.
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1. Introduction

Let m be a positive integer and f : Rm → C a positive definite function, that is,
s∑

µ=1

s∑
ν=1

cµcνf(xµ − xν) ≥ 0, (1.1)

for all positive integers s, complex numbers c1, c2, . . . , cs and points x1, x2, . . . , xs in Rm.
In this paper we obtain some results about derivatives of positive definite functions in Rm, exploiting

known properties of positive definite kernels. Actually, given a positive definite function f defined in
Rm, the kernel K(x, y) := f(x− y) is a positive definite kernel defined in Rm × Rm, that is,

s∑
µ=1

s∑
ν=1

cµcνK(xµ, xν) ≥ 0, (1.2)

for all positive integers s, complex numbers c1, c2, . . . , cs and points x1, x2, . . . , xs in Rm.
Historically, positive definite functions and kernels have been studied by many authors in vari-

ous branches of Mathematics, such as Fourier analysis, probability theory, operator theory, complex
function-theory, integral equations, boundary-value problems for partial differential equations, approx-
imation theory and others (the reader can see [5, 9, 10, 11, 14, 16, 17, 19] and the references therein).
In particular, differentiability of positive definite kernels is related to the decay rates of the eigenvalues
and the singular values of integral operators generated by the kernel; in fact, in order to improve the
decay rates one usually need to assume the existence and boundedness of certain derivatives of the
kernel (see for example in [4, 8]). Differentiability of positive definite functions is also related to the
reproducing kernel Hilbert spaces generated by the associated kernels, which appear in many problems
from learning theory (see [2, 7, 18]).

Recently, Buescu and Paixão ([3]) considered the case m = 1 and proved that if some even order
derivative at the origin of a positive definite function (defined in R) vanishes, then the function is
constant; moreover, if all even order derivatives at the origin are non-zero and satisfy a certain natural
growth condition, then the function is real-analytic and it extends holomorphically to a stripe of the
complex plane.
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Our main purpose in this paper is to obtain the same kind of result as in [3], but in the general
case of positive definite functions defined in Rm. In particular, by using results about positive definite
kernels, we prove that certain derivatives of f are also positive (or negative) definite and we obtain a
condition on even order derivatives of f at the origin that implies that f is constant. Furthermore, we
obtain sufficient conditions for real-analyticity of positive definite functions. In fact, our results show
that the global behavior of a smooth positive definite function is strongly determined by certain even
order derivatives at the origin.

2. Statement of the main results

In this section we introduce the basic notation, we give a brief introduction to the matter and we state
our main results, along with some remarks.

From now on, points in Rm will be written as x = (x1, . . . , xm). Multi-index notation will be used
throughout the paper, namely, if α = (α1, . . . , αm) ∈ Zm+ , then |α| := α1 + · · · + αm, α! := α1! . . . αm!
and xα := xα1

1 . . . xαm
m ; we will denote by ej , j = 1, 2, . . . ,m, the multi-index with j-th component equal

to 1 and all the others equal to 0. The following relation ([12, p. 55]) about multi-indexes will be used:

α! ≤ |α|! ≤ m|α|α! . (2.1)

If O denotes an open subset of Rm, then C2n(O×O) is the classic set of the kernels K : O×O → C
for which all the derivatives

Dα,β
x,yK(x, y) :=

∂|α+β|K

∂xα∂yβ
(x, y) =

∂|α+β|K

∂xα1
1 . . . ∂xαm

m ∂yβ11 . . . ∂yβmm
(x, y), (2.2)

|α|, |β| ≤ n, exist and are continuous in O×O. Also, we say that f : O → C belongs to the class C2n(O)
(resp. C∞(O)) when it is 2n times (resp. infinite times) continuously differentiable in O.

It follows immediately by the definition (1.1) that a positive definite function f satisfies the following
properties (see [5]):

f(0) ≥ 0 , (2.3)

f(−x) = f(x) , x ∈ Rm , (2.4)

|f(x)| ≤ f(0) , x ∈ Rm . (2.5)

Another remarkable property of positive definite functions is related to their smoothness:

Proposition 2.1. Let f : Rm → C be a positive definite function. If f is of class C2n for some
n nonnegative integer (resp. C∞), in some neighborhood of the origin, then f ∈ C2n(Rm) (resp.
C∞(Rm)).

This property is a consequence of Bochner’s characterization and can be found, for example, in [6,
p.186] or [17, p.77].

Inequality (2.5) implies that if f(0) = 0 then f vanishes identically. Our first result extends this
property by showing that if a positive definite function has certain even order derivatives null at the
origin then it is constant:

Theorem 2.2. Let f : Rm → C be a positive definite function of class C2n in some neighborhood
of the origin, for some positive integer n. Assume that there exist numbers lj ∈ {1, . . . , n} such that

D2ljejf(0) = 0, for j = 1, . . . ,m. Then f is constant in Rm.

In the case m = 1 this theorem coincides with Theorem 3.1 in [3]. We remark that no mixed
derivative appears in the statement, but only even order derivatives with respect to the same variable
xj , j = 1, . . . ,m, not necessarily of the same order. This theorem is proved in Section 3.

In Section 4, we provide a condition that guarantees real-analyticity of a positive definite function.
In order to guarantee that a general function of class C∞ is real-analytic one usually needs to estimate
all its derivatives in a whole open set (see equation (4.1)); however, in the case of positive definite
functions, it turns out that real-analyticity can be guaranteed by the following condition, involving only
even order derivatives with respect to one single variable, and only at the origin:
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Hypothesis Hra: there exist positive constants d and R̃ such that

|D2lejf(0)| ≤ d(2l)!

R̃2l
, (2.6)

for every l ≥ 0 and j = 1, . . . ,m.

Theorem 2.3. Let f : Rm → C be a positive definite function of class C∞ in some neighborhood of the
origin, satisfying Hypothesis Hra. Then, f is real-analytic in Rm. In fact, Hypothesis Hra implies that
there exist constants M and r such that

|Dαf(x)| ≤M α!

r|α|
, x ∈ Rm,

for all multi-indexes α ∈ Zm+ .

Again, this theorem reduces to Theorem 4.3-(i) in [3] when m = 1.
The fundamental tool for proving all the above results is a property similar to (2.5), but involving

derivatives of f , and is obtained in Proposition 3.2 in Section 3. Roughly speaking, it says that any
derivative of a smooth positive definite function f can be estimated in terms of the even order derivatives
at the origin. This estimate is a consequence of known results about positive definite kernels in Rm×Rm
(see Proposition 3.1).

3. Differentiability

The purpose of this section is to transpose some results about positive definite kernels from [1, 7, 15],
to the case of positive definite functions, and then to prove Theorem 2.2. In particular, we make use of
the following Proposition, which extends to Rm a result from [2]:

Proposition 3.1. If K ∈ C2n(O ×O) is a positive definite kernel, then:

(i) ([15]) Dα,αK is a positive definite kernel of class C2(n−|α|)(O ×O), whenever |α| ≤ n;
(ii) ([1]) the following inequality holds:

|Dα,β
x,yK(x, y)|2 ≤ Dα,α

x,yK(x, x)Dβ,β
x,yK(y, y), x, y ∈ O , (3.1)

whenever |α|, |β| ≤ n.

The inequality in (ii) was proved in [7] for the case where the kernel admits a Mercer-like expansion.
However, it was proved in more general contexts in [1, 2], relying on positive definiteness only.

For the case of a positive definite function, we obtain the following result, exploiting also Proposition
2.1.

Proposition 3.2. Let f : Rm → C be a positive definite function. Assume that f is of class C2n in
some neighborhood of the origin, for some positive integer n. Then

(i) each function

fα := (−1)|α|D2αf, |α| ≤ n, (3.2)

is positive definite of class C2(n−|α|)(Rm);
(ii) the following inequality holds:

|Dα+βf(x)|2 ≤ (−1)|α+β|D2αf(0)D2βf(0), x ∈ Rm, (3.3)

whenever |α|, |β| ≤ n.

Proof. By Proposition 2.1, f ∈ C2n(Rm) and then K(x, y) := f(x− y) is a positive definite kernel of
class C2n(Rm × Rm). Using the chain rule it is easy to see that

Dα,β
x,yK(x, y) = D0,β

x,y [(Dαf)(x− y)] = (−1)|β|Dα+βf(x− y), x, y ∈ Rm. (3.4)

In particular, for |α| ≤ n,

(−1)|α|D2αf(x− y) = Dα,α
x,yK(x, y), x, y ∈ Rm. (3.5)
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Since Dα,α
x,yK is a positive definite kernel of class C2(n−|α|)(Rm × Rm) (by Proposition 3.1), equation

(3.5) implies that fα is a positive definite function in Rm. Finally, from (3.1) and (3.4), it follows that

|Dα+βf(x)|2 = |Dα,β
x,yK(x, 0)|2

≤ Dα,α
x,yK(x, x)Dβ,β

x,yK(0, 0) = (−1)|α|+|β|D2αf(0)D2βf(0), x ∈ Rm,

whenever |α|, |β| ≤ n.

Observe that the right hand side in (3.3) is nonnegative because both functions (−1)|α|D2αf and

(−1)|β|D2βf are positive definite and hence they are nonnegative at the origin. For the same reason,
Hypothesis Hra can be written as

0 ≤ (−1)lD2lejf(0) ≤ d(2l)!

R̃2l
,

for every l ≥ 0 and j = 1, . . . ,m. Finally, observe that claim (ii) in the above proposition holds true
also for n = 0, where it reduces to the known relation (2.5).

We are now in the position to give the

Proof of Theorem 2.2. Fix j ∈ {1, . . . ,m} and suppose that D2ljejf(0) = 0. We will show that
D2ejf(0) = 0.
If lj = 1, there is nothing to prove. So, we assume lj > 1 and we define the non-increasing sequence

{kjp} of even numbers by setting kj1 = 2lj and

kjp+1 =

{
kjp/2 if kjp/2 is even

kjp/2 + 1 if kjp/2 is odd
, p = 1, 2, . . . .

Observe that there exists an index p(lj) depending on lj such that kjp = 2, for any p ≥ p(lj). We now
prove, by induction on p, that

Dkjpejf(0) = 0, for all positive integers p. (3.6)

For p = 1, we have kj1ej = 2ljej and then (3.6) is true by hypothesis. Suppose now that Dkjpejf(0) = 0

for some positive integer p. Using the Proposition 3.2-(ii), with α = 0 and β = (kjp/2)ej , we obtain

|D(kjp/2)ejf(x)|2 ≤ (−1)k
j
p/2f(0)Dkjpejf(0) = 0, x ∈ Rm. (3.7)

Thus, for every x ∈ Rm, one has D(kjp/2)ejf(x) = 0, as a consequence D((kjp/2)+1)ejf(x) = 0, and then

Dkjp+1ejf(x) = 0, x ∈ Rm, (3.8)

in particular, Dkjp+1ejf(0) = 0. Therefore, Dkjpejf(0) = 0 for all p = 1, 2, . . .. When p = p(lj), we have
kp(lj)ej = 2ej .

In order to finalize the proof, we apply again Proposition 3.2-(ii), now with α = ej and β = 0:

|Dejf(x)|2 ≤ −f(0)D2ejf(0) = 0, x ∈ Rm. (3.9)

Therefore, Dejf ≡ 0, for every j = 1, 2, . . . ,m, which implies that f is constant in Rm.

Remark 3.3. No analogous to Theorem 2.2 holds for odd order derivatives, actually, the positive definite
function ([5, p. 104])

f(x) = exp(−||x||2), x ∈ Rm, (3.10)

is a simple example where D(2l+1)ejf(0) = 0, for every j = 1, 2, . . . ,m and l = 0, 1, . . ., but f is not
constant.
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4. Real-Analyticity

We recall that if f ∈ C∞(O) is a complex-valued function defined in the open set O ⊆ Rm, then f is
real-analytic if and only if, for every y ∈ O, there exist an open ball U , with y ∈ U ⊂ O, and positive
constants M and r such that

|Dαf(x)| ≤M α!

r|α|
, x ∈ U, (4.1)

for all multi-indexes α ∈ Zm+ (see for example [13, p. 34]).
In this section we prove Theorem 2.3, which asserts that, in the case of positive definite functions, real-

analyticity can be guaranteed by an estimate similar to (4.1), but involving only even order derivatives
with respect to one single variable, and only at the origin: Hypothesis Hra.

It is worth noting that, for general functions, an estimate on the derivatives in one single point is not
enough to guarantee analyticity: a classic example is given by

g(x) =

{
1− e−1/||x||2 for x 6= 0 ,

1 for x = 0 ,

which has all derivatives at the origin equal to zero, but is not analytic in any neighborhood of the
origin. As a consequence, g cannot be positive definite in Rm, despite it satisfies (2.3-2.5) and it has a
qualitative graph similar to (3.10). In fact, if g were positive definite, then Theorem 2.2 would imply
that it is constant.

First, we need the following Lemma, which shows that Hypothesis Hra allows to estimate every
derivative at the origin, whose multi-index has all even entries:

Lemma 4.1. Let f : Rm → C be a positive definite function. If Hypothesis Hra holds, then

|D2αf(0)| ≤ d(2α)!

R|2α|
, (4.2)

for every multi-index α ∈ Zm+ , where R = 2−tR̃ and t is a integer number such that 2t ≥ m.

Proof. We will need the estimate
(2α)! ≤ (2|α|α!)2 , (4.3)

which is a consequence of (2n)! = |(n, n)|! ≤ 22n(n, n)!, when n is a nonnegative integer.
We will prove by induction that

|D2αf(0)| ≤ d (2α)!

(R̃/2t)|2α|

for every α such that at most 2t indexes are positive. This holds true for t = 0 by Hypothesis Hra.
We suppose it holds true for some t ≥ 0 and we will prove that then it holds true also for t+ 1.

Actually, if γ has at most 2t+1 positive indexes, we write γ = α+ β in such a way that α, β both have
at most 2t positive indexes, and no index is positive in both. Then, by (3.3) and using (4.3),

|D2α+2βf(0)|2 ≤ |D4αf(0)||D4βf(0)| ≤ d2 (4α)!(4β)!

(R̃/2t)|4α+4β|
≤ d2 [2|2α+2β|(2α)!(2β)!]2

(R̃/2t)|4α+4β|
,

that is,

|D2γf(0)| = |D2α+2βf(0)| ≤ d2|2α+2β|(2α)!(2β)!

(R̃/2t)|2α+2β|
= d

(2α)!(2β)!

(R̃/2t+1)|2α+2β|)
= d

(2γ)!

(R̃/2t+1)|2γ|
.

Proof of Theorem 2.3. Since f is of class C∞ in some neighborhood of the origin, by Proposition
2.1, f ∈ C∞(Rm). We will show that there exist M, r > 0 for which (4.1) holds true for all x ∈ Rm and
all multi-indexes α.
Fix α ∈ Zm+ and consider γ and β multi-indexes such that

α = γ + β, (4.4)
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where |γ| = |β| if |α| is even and |γ| = |β|+ 1 if |α| is odd.
Using the Proposition 3.2-(ii) we obtain

|Dαf(x)|2 = |Dγ+βf(x)|2 ≤ |D2γf(0)||D2βf(0)|, x ∈ Rm. (4.5)

Then, (2.1) and (4.2) imply that

|Dαf(x)|2 ≤ d2 (2γ)!

R|2γ|
(2β)!

R|2β|
≤ d2 |2γ|!

R|2γ|
|2β|!
R|2β|

=
d2

R2|α| |2γ|!|2β|!, x ∈ Rm . (4.6)

Now we have {
|2γ| = |2β| = |α| if |α| is even,

|2γ| = |α|+ 1, |2β| = |α| − 1 if |α| is odd;

then

|2γ|!|2β|! =

{
(|α|!)2 if |α| even,

(|α|!)2 |α|+1
|α| if |α| odd,

and so |2γ|!|2β|! ≤ 2(|α|!)2. Then (4.6) becomes

|Dαf(x)|2 ≤ 2d2 (|α|!)2

R2|α| , x ∈ Rm. (4.7)

Using (2.1),

|Dαf(x)| ≤
√

2 d
|α|!
R|α|

≤
√

2 dm|α|
α!

R|α|
=
√

2 d
α!

(R/m)|α|
, x ∈ Rm. (4.8)

Writing r = R/m and M =
√

2 d, the estimative (4.1) is proved for every multi-index α, therefore f is
real-analytic in Rm.
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