
1 This paper was partially supported by: CNPq, FAPESP and CAPES-PICD.

Support to Content-Based Image Query in Object-Oriented Databases1

Caetano Traina Jr.§,*; Agma J. M. Traina §,*; Rildo R. dos Santos&,*; Edna Y. Senzako §;
§ Computer Science Department - Mathematics Institute at Sao Carlos of Sao Paulo University - USP - Brazil

Cx. P. 668 - Sao Carlos, SP
13560-970 - Brazil

Tel: +55 162 274 9136, FAX: +55 162 274 9150

& Computer Science Dept. - State of Sao Paulo University at S.J. Rio Preto - UNESP - Brazil
& Informatics and Physics Dept. - Physics Institute at Sao Carlos of Sao Paulo University - USP - Brazil
*Development and Research Institute on Database and Information Management - Sao Carlos
E-mail: [Caetano|Agma|Senzako]@icmsc.sc.usp.br , Rildo@dcce.ibilce.unesp.br

Keywords: Image Database, Digital Library, Medical Databases, Image Information Systems, Data Modelling, Object Oriented
Database.

Abstract
This paper presents an Object Manager that stores medical images as a data type of attributes that

can be associated to objects, and a support system developed to offer this kind of tool to medical application
developers. The purpose of this work is to support the retrieval of images through queries based on the
graphical contents of stored images. The usual approach uses icons and textual attributes stored with the
images to specify queries. This work uses a novel modeling technique to define the “image data type” , by
means of which it is possible to decide, before the query itself, the key data of each image that must be
extracted from the image when it is stored in the database, allowing faster search when queries are issued.
This approach enables building of expansible systems, where new image processing algorithms can be added
easily, using its syntactic representation stored through an Image Meta-schema into the application database
schema. This work shows how such a system has been implemented, and also a query language used to refer
and execute these algorithms from inside the database management system.

1. Introduction
Medicine is using ever more equipment that

generates large amounts of data in digital format,
much of which must be stored for long periods of
time [1]. This paper assumes that these images are
being stored into databases, although the highly
variable nature of this kind of data is usually
inadequate for traditional Database Management
Systems (DBMS) [2]. One type of equipment that
has raised a lot of interest is the Magnetic
Resonance Tomography (MRT) device [3], which
has been used to obtain images from the internal
structures of the human body. The high quality
images obtained can be cross-compared with other
images, looking for predefined biological
structures, in the search for appropriate diagnoses.

This and other modern medical equipment can
generate large amounts of data that must be stored
and indexed, to be quickly retrieved later.

A Database System, suitable to support
applications that must handle this kind of data
efficiently must be able to effectively store,
manipulate, retrieve and distribute images and non-
image data. This kind of underlying system is
known as the Picture Archiving and
Communication Systems (PACS). Applied in
medical image storage, PACS provides graphical
information of the many aspects of each patient’s
health, diseases and treatment for the physician and
technicians of a health care center [1]. Therefore,
the database must store all the images, the
parameters used to gather those images, and the
criteria and results of the diagnoses in the same
place.

Existing systems usually store descriptive
information associated to the images, such as the
comments and the diagnoses already made by a
physician, or shortened icons of each image. To
find images through textual data, a detailed
description is obtained with the help of a specialist,
but the description depends on his/her knowledge of
each specific topic, or on his/her purpose at the
time of analysis. Therefore, textual data cannot
substitute the actual information contained in an
image. An iconic image is also not appropriate for
the domain of a medical image database, because it
is difficult to select an icon that could, in a
significant way, represent the complex information
presented in this image [4] [5]. So, meta-
information cannot substitute the actual
information contained in an image.

The search for stored images based on their
full contents, although highly desirable, imposes a
processing load on the search data engine that the
current machines cannot accomplish within an
acceptable period. This work describes an
alternative way to deal with this excessive
workload by pre-processing each image as it is
stored into an Object-oriented Database Manager
(Object Manager) [6]. The images are treated as a
new data type, so index structures can be
constructed over them. The index structures are
built using a set of parameters of each image
extracted by an Image Matching System [7]. The
use of index structures can quickly reduce the set of
target images to be retrieved when queries are
issued.

This work is part of a joint project involving
activities in the Informatics and Physics
Department, of the Physics Institute at Sao Carlos
(IFSC), the Computer Science Department at the
Sao Carlos Institute of Mathematics (ICMSC),
both of the University of Sao Paulo (USP), and the
Santa Casa Hospital in Sao Carlos. This project
consists of the development of a complete Magnetic
Resonance (MR) Tomography System [3] [12].
This article deals with the image storage and
visualization system.

2. Language elements and Correlated
Concepts

Images are defined in the Object Manager as

part of its data meta-model, as a specialization of
the concept of Attributes associated to Objects. The
meta-model of this system assumes every attribute
has a characteristic, which defines the set of
operations where it is involved. For example, a
number is an attribute characteristic, so numbers
are attributes that can be added, multiplied, and so
on; strings are another attribute characteristic, and
strings can be searched for substring matching, can
be concatenated, and so on. It must be noted that
the set of operations allowable over an attribute
characteristic is independent of the exact data type
used to represent that attribute, so it does not
matter if a number is represented as an integer, a
real or a double precision float. Characteristics are
specializations of the concept of object attributes
that are further specialized in the Data Type
concept, so each data type can have a specific set
of properties. For example, complex numbers can
have a method to calculate their real part. Images
and procedures (methods) are two other attribute
characteristics of this system, enabling various
image representation formats (image data types)
and image processing algorithms to be associated to
objects, like any other numerical or textual
attributes.

To support the definition of images in this
meta-model, the following concepts are needed [8]:
Image Constants, Image Summarizer, and Image
Parameters. Image Constants are predefined
images, meaningful in the application domain. For
instance, a physician could have obtained a
tomography where a given organ pathology appears
in a predefined manner, that could be used as a
reference to search for or to identify other images
with similar visual information. This image is, thus,
defined as an Image Constant, so that it will be
used by the system as a comparison pattern.

An Image summarizer is a procedure that
operates over two images, extracting useful data
from the image, called Image Parameters. Image
Parameters can be numerical values, image
coordinates, sets of values, etc. Each Image
Summarizer can return one or more Image
Parameters, each of them representing some useful
information for the process of image selection and
retrieval.

Another construction was included to yield
the many variations in which a target object can

Figure 1: Meta-schema of an image-supporting
application.

appear in an image. That construction is called a
modifier, and its purpose is to allow alterations on
the default action of each image summarizer. The
acknowledged variations in the images do not affect
the basic behaviour of the summarizer, yielding
image variations like geometric transformations,
contrast, etc. The application of any of these
modifiers is directed towards two categories of
constant image information that must be retrieved:
i) Partial Constant Image, means the comparison
of one target image with the image constant can be
found in sub-images of the image, and ii) Full
Constant Image, in which each image constant
must be entirely compared with the target image.

Using these concepts, images can be stored
in association with objects in the database, and are
treated as a characteristic of object attributes of a
given data type. However, to speed up the queries
involving image content data, the operational
environment must be configured for the specific
application domain. This is achieved by defining
the set of image constants and image summarizers
that are meaningful for each application. The idea
is: when an image is to be stored in the database, it
is submitted to a predefined set of <image
summarizer, image constants> pairs, and the
resulting image parameters are used to create index
structures, representing some form of “distance” of
each stored image from this Image Constant.

When an application is built, the set of
Image Constants related to each summarizer is
defined, and the object attribute type summarizer
needs to be evaluated. Thus, when each image is
stored in the database as an attribute value, only the
pairs <summarizer, constant> related to this
particular association of the image are evaluated.
Each of the resulting parameters is used to create
the index structures, one for each image
summarizer, applied over each image constant
meaningful to this object attribute. Each index
structure is a modified R-tree [9], representing the
image in a N-ary space, where N is the number of
dimensions of the particular parameter. In the
retrieval environment, each parameter is attached to
a user-defined range, so each query retrieves the
images that each parameter has within the
corresponding range. Each image can have indexes
in many trees, one for each parameter of each
summarizer meaningful for the object attribute type

of which the image is a value.
In medical applications it is very important

to work with adjustable matching methods, because
images do not need to match an image constant
exactly to be included in the result set of a specific
query. For instance, images that match 85% or
more of the image constant can be considered a
good answer, and they must be included in the
index structure. Methods have been implemented
that permit retrieval of images that match a stored
image exactly, as well as methods where we can
discard images with less than 85% of similarity,
which are not accepted as a match. The matching
methods implemented are based on the Correlation
Coefficient, Correspondent Points Summation,
Sequential Similarity Detection Algorithm-SSDA
[10] and Moment-Preserving Pattern Matching-
MPPM [11].

3. The Image Content Schema
The image support system has a meta-

schema that represents the information contained in
an object attribute of the image characteristic. The
application domain is defined using objects of the

type Image Constant, each having the attributes:
name; type (partial or full Image Constant); and
others describing the image. The characteristics
that can be extracted from each stored image
through a comparison with one Image Constant are
represented as an object of the summarizer type,
whose attributes are: name; type - meaning the
image processing algorithm (histogram evaluation,
matching searches, texture identification, etc.); and
modification - an indication that the summarizer
can have another definition for its default action.

Each parameter returned by an Image Summarizer
is represented as an object of the Image Parameter
type. Its attributes are: name; type of information
returned by the Summarizer; and an
Acceptance_Limit defining the threshold from
which an image will have one entry into the index
structure. The Summarizer Modifiers are
specializations (subtypes) of Summarizers, and
thus are, in fact, alternative image processing
algorithms used in particular situations, depending
either on the query or on the object to which the
image is attributed.

Figure 1 shows an overall diagram of the
Meta-schema of this structure. The whole
information extracted from one image when it is
stored in the data base is represented by objects of
type “Comparison Group”, relating objects of the
Image Constant, Summarizer and Image Parameter
types. This object type provides a semantic
meaning for each value stored in the index
structures. The index structures are accessed from
their instances (as represented in figure 1 by the
small “tree” associated to this object type). The
image itself is represented as an Attribute of the
characteristic image, whose own set of attributes
consists of: Attribute_type_Name, the name given
to this type of attribute in the application schema;
Instance_Name, an identifier of each image
instance in the data base. Other attributes are
specific for each of their instances, such as length,
the image itself (the pixel matrix), dimX, dimY, and
its format.

When an application is developed, its schema
is added to the Meta-schema through the definition
of some attributes of the data type “image”. Each
attribute of the data type image, assignable to
object types must have at least one “image
constant”, thus creating the link between the
application schema and the meta-schema. For
example, if objects of the user-defined type Patient
have an attribute “lung tomography” defined in the
application schema, then each object of the system-
controlled type “Image Constant” whose values are
interesting images of lung tomographies will
provide the index structures to all images that are
values of the attribute “lung tomography” of all
objects of type Patient stored in the database.

4. An image definition language.
This section presents the extensions made to

an object-oriented dialect of SQL, through
commands aimed to define and retrieve images
using the concepts presented, that make up the
Image Query Language (IQL). The description uses
the language keywords in capital letters, although
the language is in fact case insensitive. These
commands are divided into the image definition and
the image manipulation commands. An image is
treated as a set of values of attributes whose
characteristic is “image”, so applications do the
real storage and manipulations of images using the
“regular” commands of the SQL language.

4.1 - Defining image constants
The first step to define image indexes is the

creation of image constants. This is done with the
following command syntax:

CREATE [SUB] IMAGECONST
<const_name> AS <locator>;

where <const_name> represents the
identification of the constant to be used in
subsequent statements. The optional clause SUB
defines a constant image that can be part of others.
The clause <locator> is a general way to indicate
where the target of the command is, in this case, the
image itself. It can point either to an external file,
or to an already stored image. In the former case
the syntax is:

<file type> <path>

where <file type> indicates a file outside the
database through one of the following keywords:
FILE to indicate a data file; TEXT for text files; or
BINARY for executable files. The following syntax
points to images already stored in the database:

<attr.charact> <obj.type> <obj.name>
<attribute> <attrib.structure>

where <attr.charact> indicates the characteristics
of the referenced attribute <attribute>, through the
keywords: NUMBER, PROCEDURE, or
IMAGE. Here the keyword IMAGE is used
because in this context <attribute> always belongs
to the image characteristic. For example, the
following commands create the Image Constant
Heart from a disk file and the Image Constant
Lung from an image already stored as the second

image of the array of RM_Thorax_Exams of a
Patient named John:

CREATE IMAGECONST Heart AS FILE
~image/heart.tiff;

CREATE IMAGECONST Lung AS IMAGE
Patient John RM_Thorax_Exams[2];

If an image of a Liver can be found as part of
another image, it is possible to indicate the image
as a sub-image constant by the command:

CREATE SUB IMAGECONST Liver as IMAGE
Patient Bob RM_Abdomen[5];

4.2 - Defining image parameters
The specification of an image summarizer must

represent each image parameter returned when it is
executed over an image and an image constant. The
association of each image summarizer with the
image parameter that it extracts is described later
in this paper. The definition of an image parameter
has the following syntax:

CREATE IMAGEPAR (<data_type> <var_list>
[RANGE <value> | FROM <value> TO

<value>]);

The RANGE or FROM ... TO clauses give the
tolerance threshold needed to put an entry of each
image in the access structure of that parameter of that
summarizer. For example, the following commands
define some image definition variables to be later
associated to the Match and Histo summarizers:

CREATE IMAGEPAR INT CorrelationRate
FROM 0 TO 100;

CREATE IMAGEPAR INT CoordinateX,
INT CoordinateY;

CREATE IMAGEPAR DECIMAL Scale
FROM -1 to 1;

CREATE IMAGEPAR INT MediumLowGrey
RANGE 256;

4.3 - Defining the image features to be
extracted
a) Defining image processing methods to act as
Image Summarizers.

The image summarizers must be previously
developed in a programming language as an Image
Processing Method (IPM). The syntax to assign an IPM
as a summarizer is:

CREATE SUMMARIZER <summarizer_name>
AS <locator> [<restriction>]‘;’

where, <summarizer_name> is the name to be

used as a reference in subsequent query statements and
expressions, and <locator> indicates where the IPM
is. The following predefined IPM was implemented for
use as image summarizers:

a) HISTOGRAM: maps the density distribution of
the image to a defined number of levels; and

b) MATCHING: Searches for a specific pattern into
another image.

These IPMs were stored as image-summarizer
attributes of objects of type Image_operator called
Histogram and Matching, respectively. For
example, it is possible to define the image summarizer
Match through the following command:

CREATE SUMMARIZER Match AS
PROCEDURE Image_operator Matching

Image-summarizer;

b) Defining method execution

The optional clause <restriction> permits the
user to control the execution of the IPM, assigning
the IPM to a set of parameters called Internal
Variables. Each internal variable can receive a set
of values and returns a value. If no value is
received, a single default is assumed. Internal
variables must be attached to an Image Parameter,
so the user of the IQL can control the values
returned from the internal variable. The values
passed to an IPM are defined in the <restriction>
clause, whose syntax is as follows:

(<ImagePar Name> <Internal Variable Name>
[value | RANGE <value> | FROM <value>

TO <value>]
, ...) ;

The Matching IPM was implemented with the
following Internal Variable:

INT ROTATE: allows the constant image to
which the modifier is associated to appear
rotated at some angle (in degrees) in the
compared image;

INT TRANSLATION: permits the constant
image to appear translated by a number of
pixels in the compared image;

DECIMAL SCALE: allows the constant image
to appear in the compared image in a
different scale, represented by an absolute
value;

If not specified, each of these variables assumes
the default zero.

The Matching IPM produces the following

results:
DECIMAL CORRELATION: the

correlation between the two images;
INT COORDINATEX: the x coordinate in

pixels of the best correlation obtained;
INT COORDINATEY: the y coordinate in

pixels of the best correlation obtained;
DECIMAL SCALE: the Scale between the

images if they are fully compared.

The Histogram IPM has only the Internal
Variable INT LEVEL implemented. It is used to
establish the number of levels used to calculate the
histogram - if not specified, it assumes the number
256. This IPM gives the following results:

DECIMAL MINIMUN: The minimum grey
level obtained;

DECIMAL MAXIMUN: The maximum
grey level obtained;

DECIMAL AVERAGE: The average level
obtained;

DECIMAL DEVIATION: The standard
deviation level obtained;

INT HLEVEL[]: an array of the grey levels
obtained.

The previous example does not specify
restrictions, so the Summarizer Match defined
there does not allow rotation, translation or scale:
the default for each is zero. To define the image
summarizer Histo7 which generates histograms
with seven levels, the following command can be
issued:

CREATE SUMMARIZER Histo7 AS
PROCEDURE Image_operator Histogram

Image-summarizer
 (Level_Number LEVEL 7);

4.4 - Defining image summarizer
modifiers

Summarizers can be specialized to complement the
description of the summarizer behavior, through
modifiers. A modifier is either another IPM or an
already existent one with an added set of restrictions.
The syntax to define a modifier is:

CREATE MODIFIER <modifier_name> ON
<Summarizer Name>
AS [<locator>] [<restriction>]

If <locator> is omitted, then the same IPM is used. The
following is an example of this syntax:

CREATE MODIFIER Partial_Match ON Match

AS (
Rotate_30 ROTATE RANGE 30,
Trans_10 TRANSLATION FROM -

10 to 10
Scale_5 SCALE RANGE 5);

4.5 - Setting the relationships
It is not necessary for each stored image to be

compared with the full set of image constants. The
definition of what pair <summarizer, image constant>
needs to be applied over each incoming image is
reached in two phases. The first corresponds to the
specification of objects of the type “Comparison
Group” shown in the meta-schema of figure 1, using
the following syntax:

SET COMPARISON <comparison_group>
CONSTIMAGE <const_name>
CHARACTERIZED BY

 <summarizer_name>
DESCRIBED BY <var_list>‘;’

This command states that an object of type
Image_constant identified by <const_name>
must be compared with each image to be stored using
t h e i m a g e s um m a r i z er i den t i f i ed by
<summarizer_name>, and these comparison
results are gathered in the parameters listed in the
< va r _ l i s t > . I t a l so g i ve s t h e n a m e
<comparison_group> to this comparison. For
example, to specify that the Image Constant Heart
needs to be processed by the Histo7 and Match
summarizers, the following commands must be issued:

SET COMPARISON Heart_Histogram
CONSTIMAGE Heart
CHARACTERIZED BY Histo7
DESCRIBED BY Average, Deviation,

Hlevel[3] MediumLowGrey;
SET COMPARISON Heart_Position

CONSTIMAGE Heart
CHARACTERIZED BY Matching
DESCRIBED BY Correlation

CorrelationRate,
CoordinateX, CoordinateY;

It is possible to define different comparison
groups for the same summarizer and obtain
different results. This provides flexibility to the
queries, in the sense that only the comparison
aspects required in a query need to be described.
However, to be useful, a meaningful project of the
intended queries as part of the database project is
needed. For example, the same summarizer Histo7
can describe another image constant using a
different characteristic set, as shown in the

following statement:
SET COMPARISON Lung_Histogram

CONSTIMAGE Lung
CHARACTERIZED BY Hsto7
DESCRIBED BY Hlevel[3]

MediumLowGrey;

This example considers that when the Histo7
image summarizer is associated with an image
constant named Lung, only the intensity of the
MediumLowGrey level (which corresponds to the
third position of the histogram array) is important
to describe the Lung_Histogram relationship.

4.6 - Linking Object Attributes with
Image Characteristics

The second phase to define what pair
<summarizer, image constant> is to be applied over
each incoming image is made when an object type
is created. To each attribute of the characteristic
image, a link is made to all the comparison groups
of interest to this attribute. These links, which
correspond to the “Relates to” attribute of the
“Image Attributes” objects in figure 1, are
established by the following clauses: in the Create
Object_type command (the Create Object_type
is the equivalent of the Create Table in standard
SQL):

<atrib.name> IMAGE <Attribute_Type>
DESCRIBED BY <Comparison_group_list>

[‘,’]

For example, if the images stored as values of
attributes ThoraxExam of objects of type Patient
are compared with the Heart_Scale,
Heart_Occurence and Lung_Histo comparison
groups, the object type patient can be created by this
command:

CREATE OBJECT_TYPE Patient AS (
Name VARCHAR(50),
ToraxExam IMAGE
DESCRIBED BY Heart_Scale,

Heart_Histo, Lung_Histo);

To change the application schema, there are also
equivalent commands to the Alter and Drop ones
from SQL. Once the image index structure of an
application is defined, the database can be initialized
and the images stored using “traditional” SQL
commands, such as the Insert, Delete and Update
commands. Whenever an image is stored as a value of
an attribute of an object of a given type, all Image
Summarizers of the comparison groups associated to

that attribute must process it.

4.7 - Image query commands
Queries are formulated through a modified

SELECT-FROM-WHERE command, and the condition
in the WHERE clause describes the images intended to
be retrieved. For example, to retrieve a set of thorax
exams of some patients where a heart appears,
accepting only those images that have a correlation rate
between 80% and 100%, can be expressed as:

SELECT Name, ThoraxExam
FROM Patient
WHERE Patient.ThoraxExam.Heart.

Match.CorrelationRate
IN From 80 to 100;

This query establishes the acceptable values for the
parameter CorrelationRate returned when the
image Summarizer Match is used to compare the
image constant Heart with the Thorax Exams of
the objects Patient. This query results in all patient
names whose Thorax Exam images have a Heart like
the one depicted in the Heart image constant. The
processing to recognize this image constant in all
stored images of the Thorax Exams was actually done
when each image was stored. However, when the query
is issued, no further image processing was executed: a
fast search through an index structure selects the target
images.

5. Conclusion
This work describes the use of the concept of

images as a data type, Image Constants and Image
Summarizers as a way to pre-process images and speed
up the content-based retrieval of images stored in an
Image Database. The concepts presented herein can be
used in cooperation with more traditional searches
based on descriptive text strings and icons attached to
the images, although the described method can almost
always replace the others. The proposed approach
maintains the accuracy of the search by storing the
entire image. Image retrieval processing is accelerated
by distributing the workload of the image processing
methods at the storing time. In addition to taking
advantage of the time when the workload is slower, the
results of the processing are stored so each computation
is done only once.

This approach can use a set of indexes to quickly
discard a lot of images that undoubtedly are not part of
the response set of a query, enabling presentation of
only a reduced set of images to the more time-
consuming filters needed to complete the answer. A
new set of commands to enable the definition of such

structures was added to an object-oriented version of
the Structured Query Language (SQL).

The fact that modifications in an image by a given
image processing algorithm correspond to equivalent
changes in the image parameters returned by an image
summarizer, permits manipulation of the index
structures accordingly. Thus, the image modifiers
establish operations over the images homomorphic to
operations over the index structures. However, the
operations over the index structures are much less
time-consuming, so when queries require operations
over image constants to be used in the image
comparisons, those operations over images can be
mapped to operations over the index structures. This
leads to a new range of optimizations that can be
explored in the image content-based queries, to be
studied in more detail in future.

6. References
[1] G.F. Dutton, “The Current State of PACS”,

Applied Radiology, Aug. 1990, pp 15-19.

[2] S. Chang and A. Hsu, "Image Information

Systems: Where do we go from Here?", IEEE

Trans. on Knowledge and Data Engineering, Vol.

4, No. 5, Oct 1992, pp. 431-442.

[3] E.L. Vidoto, H. Panepucci, A. Tannús, M.J.

Martins, “A New Type of Head Coil for MRI in

Ultra Low Magnetic Field”, in Socity of Magnetic

Resonance, Second Meeting, June 20 - July 06,

1986.

[4] A. F. Cardenas at all, “The knowledge-based

Object Oriented PICQUERY+ Language”, IEEE

Trans. on Knowledge and Data Engineering, Vol.

5, No. 4, pp. 644-656, Aug. 1993.

[5] V.N. Gudivada, V.V. Raghavan, “Content-Based

Image Retrieval Systems”, IEEE Computer, Vol. 28

, No. 9, Sep. 1995, pp 18-22.

[6] C. Traina Jr. and J.F.W. Slaets, "The Object

Representation Model ", (in portuguese) Technical

Report of ICMSC - University of São Paulo Nº

104, Feb. 1992.

[7] E. Y. Senzako, “SisMatch - Matching for Magnetic

Resonance Imaging”, (in portuguese) MS Theses,

University of São Paulo Oct 1996.

[8] R. R. Santos, A.J.M.Traina and C. Traina Jr., “An

Image Definition and Manipulation Language for

Object Oriented Data Base” (in portuguese)

Proceedings of XI Brazilian Symposium on

Database, São Carlos - SP, Oct. 1996, pp 127-142.

[9] A. Guttman, “New Features for Relational

Database Systems to Support CAD Applications”,

PhD Theses, University of California , Berkeley,

Jun. 1984.

[10] L.G. Brown, “A Survey of Image Registration

Techniques”, ACM Computing Surveys, Vol. 24,

No. 4, pp. 325-376, Dec 1992.

[11] C.H. Chow and X.C. Chen, “Moment-Preserving

Pattern Matching”, Pattern Recognition, Vol. 23,

No. 5, Oct 1990, pp. 461474.

[12] A. Tannús, A. Torre Neto, M. J. Martins, T. J.

Bonagamba, N. Beckman, J.F.W. Slaets, H.

Panepucci, “Architecture of 2.0 Tesla NMR

Tomograph”, in 9 º International Socity of

Magnetic Resonance, Aug 6-12, 1994, S.

Francisco, USA, vol III, pp. 1101-1109.

