
Content-Based Retrieval of Musical Scores in an
Object-oriented Database System

 Marisa Beck Figueiredo Caetano Traina Júnior Agma J. Machado Traina
marisa@icmsc.sc.usp.br caetano@icmsc.sc.usp.br agma@icmsc.sc.usp.br

University of Sao Paulo at Sao Carlos- Brazil
Computer Science Department

Po. Box 668 CEP 13560-000 Sao Carlos - SP
Phone: +55-16-274-9128 fax: +55-16-274-9150

Abstract: The aim of this work is to present the Musical Score as a new attribute
characteristic in an object-oriented database. It defines a new data type for
attributes that can be associated to objects using the MIDI Standard, the Standard
MIDI File format, and the General MIDI standards. To offer complete database
support to musical scores as a data type, it is necessary to provide storage,
manipulation, search and retrieval methods. This work uses the inner structure of
Musical Scores, following the MIDI standard, to enable the creation of index
mechanisms in the database, allowing for the retrieval of musical scores based on
their contents.

Keywords: Musical Scores, Object-Oriented Databases, Standard MIDI Files, Complex
Objects Data Retrieval, Content-Based Musical Scores Retrieval.

1. Introduction

Database Management Systems (DBMS) are commonly used when a great amount of
data needs to be stored. The DBMS are responsible for the organization, storage and retrieval of
data from the database. The data stored in a database must be organized following a set of rules
that conceptually structure these data. This set of rules is called a “Data Model”, and when
someone uses this data model to describe a given situation, the result is called a “Data
Modelling”. In recent years, a new approach has been increasingly used: the development of
Object-Oriented Data Models (OODM), to support the construction of Object-Oriented DataBase
Management Systems (OODBMS). In such models, the basic idea is to represent the concepts and
things of the real world as “objects”, describing for each one its structure (attributes, properties,
and so on) and its behaviour (procedures and operations that the object executes as a result of
external stimuli received) [Elmasri-94].

The object-oriented data models [Bancilhon-92] [Bertino-93] [Zand-95] have more
capacity for data representation than the traditional models, mainly because: OO data models can
represent the behaviour of real world entities - this is not the case of the traditional ones; and the
OO data models usually have a richer set of modelling elements, too. An element that contributes
to increase the modelling power of an OODM is its ability to define new “Data Types”.
Traditional data types, “natives” in most of the DBMS (either OO or not), are integers, real
numbers, bytes, character strings and so on [Bancolhon-92]. Beyond these native types, the
system designers add specific data types needed to his/her application domain, defining new

TextNumber Music ScoreDate

Object Relationship

RealInteger RTFASCII MIDIdd/mm/yy ProprietaryDay count

Attribute

4QdQ Di`Uc

1dbYRedU
3XQbQSdUbYcdYSc

1cc_SYQdUT d_

. . .

. . .

Content-Based Retrieval of Musical Scores in an Object-oriented Database System - 2

Figure 1- Where attributes are associated to their characteristics and data type.

“object types”. These application-dependant object types establish the structure and behaviour of
the objects for this newly defined type.

The behaviour of an object is defined by a set of methods, which define how the object
operates in response to each external demand. Among these demands are the requests for inter-
operations with objects either of the same type or of other types. For example, native objects of
type integer can be added, multiplied, etc. one with each other. Objects of a specific domain of
type cost can be added with a float number. An object structure is defined by its set of properties,
the attributes, associated with the object. Each object attribute can receive one or more values
chosen from a set of values permissible for the data type of this attribute.

The work presented in this paper was developed in a specific OODM called SIRIUS
[Biajiz-96]. It holds all the object-oriented concepts described, and extends the concepts of data
type of an attribute, through the concept of “Attribute characteristic” (or characteristic for short).
An attribute characteristic is the set of generic operations that can be automatically applied over
attributes of this characteristic by the OODBMS.

For example, the data types integer, float, double, etc. can execute the four arithmetic
operations, they can be compared (by order or equality), etc. Thus, all of these data types are of
the number characteristic. The data types character string, ASCII text, RTF text (Rich Text
Format), etc. can be concatenated, and some of their parts can be changed, compared with sub-
strings and so on, but they cannot be multiplied. These data types constitute another attribute
characteristic, the text one. Figure 1 shows an organization of these data types. In SIRIUS,
methods associated to an object are also considered to be an attribute, in this case of the
characteristic Rule.

The operations supported by an attribute characteristic can be performed involving
attributes of different data types of this characteristic. For example, numbers of type integer can
be multiplied by numbers of real type, while texts of data type RTF can be searched by sub-strings
of data type ASCII, etc. However, it is not always possible to inter-operate attributes of two
different characteristics with operations of any of the characteristic. For example, it is impossible
to divide a number by a string. To define a new attribute characteristic, it is necessary to first
define the set of generic operations attached to this characteristic, and at least one data type.

This paper applies these concepts to the representation of musical scores. In this way,
Musical Score becomes an attribute characteristic that can be represented in different ways, each

Content-Based Retrieval of Musical Scores in an Object-oriented Database System - 3

being a Musical Score Data Type. We use musical scores represented in the Standard MIDI File
(SMF) format (MIDI stands for Musical Instrument Digital Interface) [Huber-95] [Stolz-93]
[Ratton-95]. Thus, SMF is a data type of the Musical Score characteristic, although the adopted
data model could support other formats to represent musical scores as other data types, each
using the same operations.

This paper deals with the operations of Musical Scores that can be used to store,
manipulate, search and retrieve scores in an object-oriented database system. Its structure is as
follows: section 2 describes how to generate sound and how sound is represented in computer
files. Section 3 describes the musical score concept and the manner in which an SMF represents
musical scores is explained. Section 4 describes what needs to be done to store an SMF in a
database, so that it can be searched according to its contents. Section 5 describes how the SIRIUS
model can be used to build an OODBMS to enable it to support the Musical Score Characteristic.
And finally, section 6 presents the concluding remarks of this paper.

2. Audio Representation
Sound is the mechanical movement of materials. The sounds audible to the human ear are

called Audio Sounds. There are two basic ways to represent sounds: either through direct
representation in a given way, or through a set of parameters that describes sounds that can be
used to re-create sound. The first way is called Sound Recording, and the second is called Sound
Synthesis.

In Sound Recording, the sound is collected by a type of transducers, such as a
microphone, and after some processing, it is stored in such a way as to represent the original
mechanical movements. When computers are used to manipulate recorded audio sounds in some
way, it is usual that the processing of the sound converts the analog measurements to a digitalized
form of representation. This is called the Digital Audio representation.

Sound Synthesis is commonly used to generate sounds that are not previously recorded
(although some recent studies allow us to analyse a ‘real world’ sound by extracting its
parameters, so it can later be reproduced based only on those parameters). Hence, Sound
Synthesis is not commonly used to accurately represent ambient sounds or the human voice, but
rather, it is widely - and increasingly - used to represent musical sounds and instruments.

Many technologies have been developed to represent sounds in both ways. For example,
digitalized audio can be quantized by a linear, incremental or logarithmic table, can be compressed
by many algorithms, and can be sampled in different rates, interpolated or not, etc. There are also
many technologies to represent and generate sounds through synthesis. Currently, two of the
audio synthesis technologies most frequently adopted by the computer industry are Frequency
Modulation (FM) and Sampling Reproduction (Sampling).

There are many established standards to represent audio sounds in a computer. The .WAV
(WAVe riff) format is presently the most commonly employed to store Digital Audio. In this
format, the sampled values are stored in sequence, alternating the values of both channels if a
stereo sound is being represented. A header in the beginning of the file sets the sample rate, the
number of channels, and the number of bytes used to store each value. The Standard MIDI File
format is currently the most commonly employed to store musical scores [Stol93] [Hube95]
[Rattpn-95]. This format represents a piece of music through the sequences of notes, the tempo
and the duration that each note should be played.

Other file formats are used to represent instruments, so a musical score can be composed
to be played using a specific set of instruments. There are formats specific to each sound synthesis
technology, as there are file formats that incorporate both the score and the instrument definition
in a same file. Figure 2 represents some file formats in a symbolic form.

File Formats

Content-Based Retrieval of Musical Scores in an Object-oriented Database System - 4

Figure 2 - Contents of some file
formats.

For instance, the .SBI format (“Sound Blaster
Instrument”) describes how an instrument can be
synthesized from an FM-based hardware synthesizer. It
uses a set of parameters to control many aspects of sound
generation, such as the waveform, its volume and filtering
variations over time, and so on. The .SBK (“Sound
BanK”) stores up to 128 instrument definitions in one file,
each like the .SBI format. The .SNG (“SoNG”) format
mixes a score, represented in a way similar to the SMF
format, with a set of instrument definitions, each one in the
same way the .SBI format represents one instrument. All
the .SBI, . SBK and .SNG formats are specific to the use
of FM Synthesizers. The .MOD (“MODulation”) is a
format like the .SNG, but the instruments are represented
using the sampling technology. In this format, each
instrument consists of a sampling of one note of the
intended instrument. To play the music, each note played
by each instrument uses the corresponding sampling
modulated, so the reproduced frequency corresponds to
that of the intended note. The .MOD file format is a rather old one, and is restricted to permit
only four instruments to be played together. A plethora of similar formats was developed to
extend the much used .MOD format, each adding some new feature. Recently, the MIDI
Manufacturers Association (MMA) has been working on the definition of a new standard file
format, so a set of instruments can be represented in a file, using the sampler’s technology, the
.DLS (“DownLoadable Sound”) format [AMM-97].

3. The .SMF Format and Musical Score Make-up
A musical score is basically a two-dimensional representation of the sound sequence that

constitutes a musical piece. The two basic dimensions represented are: the musical notes that each
instrument must play and the moment when each note sounds. A full-featured score represents
other dimensions, because many other elements are put in a score, such as the intensity of each
note, its inflection, and so on. However, the two basic dimensions are essential and sufficient to
represent music, and also adequate for the sake of this paper.

MIDI was originally conceived as a standard way to interconnect some electronic musical
instruments, mainly keyboards (like the piano) and electronic synthesizers. In this way, a musician
could play on a keyboard and a set of synthesizers (sound generators) could receive the events
being generated, and produce the corresponding audio sound. This communication occurs in real
time, so each event results in a specific action immediately. Connecting pairs of instruments are
made through a serial port, so a set of 16 virtual ‘channels’ can be emulated, each dealing with
an instrument.

There are two types of events defined by the MIDI standard: standard MIDI events; and
System Exclusive events. System Exclusive events are events that do not follow any standard.
Their purpose is to maintain the particularities of each manufacturer, so the distinctive
peculiarities of their instruments can be accommodated. Standard MIDI events are involved with
a musical performance, and include the beginning and end of each note (when the musician
presses and releases each key), the binding (or changing) of an instrument to a channel, and the
definition of some musical parameters to each channel, like volume, detune, etc. Table 1 shows
the basic standard MIDI events, and the parameters associated to each one.

Content-Based Retrieval of Musical Scores in an Object-oriented Database System - 5

Standard MIDI Event Meaning Parameters

Note ON Play a note channel, note and intensity

Note OFF Finish playing a Note channel, note and release intensity

Control Change Change a parameter channel, parameter number and new
value

Program Change Change a timbre channel and the new timbre associated
to this channel

Polyphony aftertouch Change parameter of an channel, note and new parameter value
already sounding note

Aftertouch Change parameter of a channel and new parameter value
channel

Table 1 - Standard MIDI Events.

Excluding the channel number, which ranges from 0 to 15, all information in the MIDI
standard is represented by integer numbers ranging from 0 to 127. In this way, the notes and their
intensity are numbered from 0 to 127. The timbre (or instrument sound quality) assigned to a
channel must be numbered from a 0 to 127, and the parameters chosen from a set of parameters
numbered from 0 to 127. For example, number 7 means overall volume, and 11 means the stereo
panorama (positioning of the channel in the stereo field).

The MIDI standard does not represent time, since each event must be responded in real
time. The MIDI standard, therefore, represents only one of the two basic dimensions of a musical
score: the sequence of notes played by each instrument. To record a musical performance in a
computer file, each event needs to be stored with the time stamp of when it must occur in the
performance. The way that a musical performance can be stored in a computer file was
standardized through the Standard MIDI File format (SMF). This format adds the second
dimension of a musical score and is, in fact, a way to represent musical scores. The MIDI standard
and the SMF format are fully specified in the Official MIDI Specification Document [MMA-96].

Each Standard MIDI File stores only one musical score and is composed of a set of
“chunks”. There are two types of chunks: the header chunk and the track chunk. Each file always
has one header chunk, which sets parameters for the whole score, like how much time signifies
one time unit for this piece, the file type and the number of track chunks. The file type can be 0,
1 or 2. The actual musical information is stored in one or more track chunks, or tracks for short.
Files of type 0 store all musical information on only one track. Files of type 1 store the musical
information on many tracks, but all the tracks start to play simultaneously, at the beginning of the
performance. Today, this is the most commonly used MIDI file type. Files of type 2 also store the
musical information on many tracks, but each track can start to play at different times, allowing
representation of musical scores with more than one movement in the same file.

Although there is no definition of what kind of information each track stores, it is a
common practice to store the part of each instrument on an individual track, so each type 1 or
type 2 MIDI file has a separate track for each played instrument. The track structure of a MIDI
file has no relation to the virtual channel link of the MIDI standard. A track can store events of
many channels, and a channel can have events on many tracks. However, almost all sequencers
reserve a track to store the notes of each timbre played by each (electronic) instrument.

Content-Based Retrieval of Musical Scores in an Object-oriented Database System - 6

If a file has more than one track, they are stored in sequence, in no predefined order. Each
track stores a sequence of MIDI events, in the time sequence they occur. The time is represented
through the indication of a “delta time”, which indicates how much time units pass between an
event and the next on the same track. In this way, during a performance, the tracks can proceed
parallel to each other, with events occurring from any of the already started tracks.

The SMF format also defines a new set of events, not directly related to the musical
information needed to represent a performance, but intended to provide information about a
score, such as the name (a text readable for humans) of the instrument intended by a track, as well
as copyright information, etc. The Meta-events are useful to document a score, or to store
information for computer software that handles this file. This kind of event is called a “meta-
event”, and although stored in a standard MIDI file, they are not sent through a physical MIDI
link, as they do not affect the real time performance. The meta-events are not needed in a MIDI
file, and only few meta-events have a standardized meaning. Table 2 in section 4 shows some
standardized meta-events.

The two standards discussed so far are not enough to guarantee that a MIDI file will
sound in a similar way in two different MIDI setups. This is due to the fact that the association
of a specific timbre to a timbre number is not defined in either standard. So a third standard was
conceived, whose purpose is to define which timbre corresponds to each timbre number (or to
each Program number, in MIDI terminology). This standard, called the “General MIDI” (GM)
standard, predefines instrument timbres to all 127 instrument numbers, like 1=Piano, 2= electric
piano, and so on. The GM standard is not much used in professional fields, because it restricts the
expressiveness of detailed, specifically constructed timbres. However, it is a good way to give an
overall version of a musical piece, and is extensively used in general multimedia-based products
and presentations.

4. Storing Scores in a Database.

This work considers that the musical scores are originally represented in MIDI files, and
that the scores are retrieved from the database as MIDI files. This is because MIDI files are the
commonest way to disseminate and to interchange musical scores using digital media, and because
this is an easy and environment-independent way to listen to the execution of any score.

There are two ways to create a database of musical scores starting from a set of MIDI
files: making each object stored in the database “point” to an external file; or storing the file
inside the database, together with the other information. The former approach is not a good
solution because the responsibility of the storage and of the places where the files are kept is
delegated to the operating system, so the DBMS cannot guarantee the consistence of the set of
pointers.

The latter approach is the more appropriate choice, and also has two other options. The
first is to store the original MIDI file as a “Binary Large OBject”, or a Blob. This option
disobliges the DBMS to recognize the internal structure of the Blob, so it is treated as an
amorphous mass of data. The second option is to analyse the original MIDI file as it is stored, so
its internal structures can be recognized by the DBMS. This option permits the DBMS to answer
queries based on the contents of the stored information, and it is the choice of this work. To reach
this goal, the concept of Attribute Characteristic is explored, defining a new one: the Musical
Score Characteristic. Figure 3 illustrates these different options to store musical scores.

Using this concept, an attribute with the musical score characteristic can be associated to
any object or relationship of a database schema. As in the case of any other attribute, each of

SMF

SMF

SMF

SMF

SMF

SMF

Database objects points to musical
scores stored outside as files.

Database objects points to musical
scores stored inside as blobs.

Database objects points to musical
scores stored inside.

44

44

&

/

&

44

44

&

/

&

44

44

&

/

&

Country
Name: Text\ASCII
Anthem: Score\MIDI
Commemorative_anthem:

LIST OF (
C_Anthem: Score\MIDI
Happening: Text\ASCII
)

Content-Based Retrieval of Musical Scores in an Object-oriented Database System - 7

Figure 3 - Ways that a Musical Store can be stored in a database.

Figure 4 - Example of musical
scores associated to objects.

these attributes must
have a name, a data
type and a set of
values. The name of
one attribute is given
by the application
designer, in the same
way as he/she gives
names to any other
attribute of the
application. For
example, if the
application needs to
have objects of type
Country, storing the
national anthem of
each instance,
Anthem could be the
name of an attribute
whose characteristic
is Musical Score.

The data type
of a Musical Score attribute is the specific format used to store the score. This work uses only the
MIDI format, so the data type is MIDI. The set of values of a
score attribute is a set of scores, each a complete one.
Continuing the previous example, it can be said that each
Country will have its Anthem stored in the MIDI format, and
that the set of values will be composed of a single value,
defining the score of the national anthem. Supposing, also, that
the application needs to store a list of commemorative anthems
of each country, each indicating the commemorative
happening and the score of the anthem itself, then a new
attribute, which will be a list of tuples, called
Commemorative_Anthem, could be associated to the Country
object type. The tuple will consist of one attribute called
C_Anthem of the score characteristic, whose data type is also
MIDI, and a text attribute called Happening. Each value of the
attribute Commemorative_Anthem will be a pair of a Score
attribute (the C_Anthem attribute) and a Text Attribute (the
Happening attribute). Figure 4 shows a draft of the schema of this example. This approach is an
improvement over the rigid definition of an object of type Music, whose instances the scores
would be associated to, because this situation is only a particular case of the proposed one.

To maintain the consistency of the information stored in the database, it is necessary to
prevent all the possible causes of inconsistencies. As one MIDI file has more information than just
a musical score, it is important to remove all that extra information from a MIDI file when it is
being stored in the database. So, when it is indicated as the file containing one value to be
assigned to an attribute, it must be read and analysed and only the relevant information filtered.

The data of each score is always contained in the standard MIDI events and in the Meta-

 SMF
File

Disk Memory

Header Track 1 Track 2

Track 1 data

Track 2 data

Database

Music Score Attribute

Filtered Track 1

Filtered Track 2

System exclusive
events

Attributes of the Score

Attributes of the Score

Content-Based Retrieval of Musical Scores in an Object-oriented Database System - 8

Figure 5 - Filtering the value of a musical score attribute from a
MIDI file.

events. The third set of events, the System Exclusive events, are required only to adapt the
execution of the score to the use of a particular MIDI setup, specifying the sound generation
parameters to each instrument. If another attribute characteristic - the Instrument Definition one -
were defined, then these events could be the source of data to these attributes. Since, in principle,
it is not necessary to be aware of these events, then in the filtering process all system exclusive
events are discarded.

However, meta-events provide important information about each score, although they are
not part of the score themselves. Therefore, in the filtering process they are also removed from
the MIDI file and stored as attributes of other characteristics associated to the score in the same
manner as any other attributes of the database. The specific characteristic used to store each meta-
event depends on the meaning of each particular meta-event. For example, the meta-event
Instrument is stored as an
attribute of the
characteristic text. After
the filtering of the MIDI
file, only the standard
MIDI event remains with
its corresponding timing
information. This data is
then stored as the value of
an attribute of the musical
score characteristic. Figure
5 illustrates how a standard
MIDI file is transformed
and its information stored
as a musical score attribute
value.

The reason to separate the meta-events from the score, and to store the meta-events as
values of other attributes is that the user could, inadvertently or not, store the same information
in another part of the object related to that score. As the information reported by a meta-event
is, in fact, a number, a text or a date, then it makes sense to store that information as an attribute
of a characteristic number, text or date. This prevents redundancy and provides increased
flexibility for the solution.

The musical score characteristic is a complex one, and requires that some support be
provided by a system that uses it. This includes the pre-definition of all standardized meta-events
as attributes that can be associated to the objects or relationships associated to attributes of the
musical score characteristic. One application or a database schema that includes an attribute of
the musical score characteristic is called score-enabled.

Table 2 shows the main meta-events treated, showing their numbers and meanings in the
SMF. Each meta-event is also given the name of the predefined attribute at the moment it is
stored in the database, as well as its characteristic and each object to which it is associated.

Conceptually, an attribute value in an object-oriented database is also an object. We call
this kind of object a “primary object”. A score is an attribute value, so it is an object, and it can
have other attributes associated to it. In this way, an object or relationship of a user defined type
in the database can have associated attributes of the musical score characteristic. Each value of
those attributes is an object, whose type is a predefined one, the type Score, and that can have
predefined attributes associated to it. These attributes are at least the set of tracks extracted from
the original MIDI file, each one also considered to be another primary object of the predefined

Content-Based Retrieval of Musical Scores in an Object-oriented Database System - 9

type Track. The meta-events extracted from the original MIDI files are in turn associated to the
Score and Track objects. Some events, whose position inside a track in relation to the track
timing is important, are associated to the Track or Score objects together with the timing offset.

Meta-event Meaning Attribute name Attribute Association
number Characteristic/

data type

0 Track sequential number Number/integer TrackSequence_Number

+1 Free text Text/ASCII ScoreScore_text

2 Copyright Text/ASCII ScoreCopyright

3 Track Name Text/ASCII TrackTrack_Name

4 Instrument Name Text/ASCII TrackInstrument

5 Song lyrics Text/ASCII ScoreOffsetLyrics

8 Author Name Text/ASCII ScoreAuthor

81 Relative change of song speed Number/long ScoreTempo_change

84 Timing offset (SMPTE) Number/byte[5] ScoreOffsetTiming_Offset

88 Timing Resolution (SMPTE) Number/byte[4] ScoreOffsetTiming_resolution

127 Sequencer free data Text/ASCII TrackSequencer

Table 2 - Meta-events.

By defining meta-events as a regular attribute and not as part of the internal MIDI-
formatted musical score data, the user can freely manipulate them. For example, it does not
matter if the Author of the music was obtained via one meta-event of the MIDI file or was
inserted by a user using a regular attribute - the information is always the same and unique.
Whenever a stored score needs to be extracted from the database into a new MIDI file, the user
can indicate the set of meta-events he/she wants to have included in the file. Thus, an operation
opposite to the filtering one used to store the file is executed, which generates a MIDI file
including the MIDI events that constitute the basic score, and the user-selected meta-events. It
is not important to know how the value of each included meta-event was inserted in the database.

As an example, using the schema shown in Figure 4, the following command could be
used in a score-enabled version of Object-SQL to extract the national Anthem of the country
Brazil, and to store it in a new MIDI file called Brasil.MID.

SELECT Anthem, Anthem.Author, Anthem.Tracks_are.Instrument_name
FROM Country
WHERE Country.Name = “Brazil”
INTO /path/Brazil.MID /* the syntax of this line is slightly

different! */

The resulting file Brasil.MID includes: the score of this anthem stored on the existing
tracks as standard MIDI events (Anthem); the Author of the music as a meta-event included on
the first track (Anthem.Author); and the name of each instrument played on each track included
on the corresponding tracks (Anthem.Tracks.Instrument_name), also as meta-events.

Audio
Driver

S
M
F

IHP-SQL
Editor

S
M
F

S
M
F

DB

Content-Based Retrieval of Musical Scores in an Object-oriented Database System - 10

Figure 6 - IHP-SQL general architecture.

The syntax of this command imposes some restrictions on the generic syntax of the
Select/from/where command of the SQL language. The main restriction is that, when an attribute
of the characteristic Musical Score is indicated, all other indicated attributes must be attributes
related to that score. Our implementation inserts all other information extracted by such
commands as a text of the meta-event Score_text in the first event of the first track of the
generated .MID file.

5. Architecture of the Software Implemented.

To demonstrate and validate
these concepts, a software prototype
was implemented based on an
OODBMS called SIRIUS/GO, which
supports the SIRIUS data model
[Biajiz-96], extended to embrace the
Musical Score characteristic
[Figueiredo-97]. As the extension to the
database manager supports only the
operations of storage, query and
retrieval of musical scores, it was also
necessary to construct an application
tool, intended to allow the user to
interact with the system. This tool was
developed in the Windows-95
environment, in C++ language. It is
called IHP-SQL, an acronym for
Interactive Score-enabled SQL Editor in Portuguese, and its general architecture is shown in
Figure 6.

This tool was developed to achieve two purposes: first, to enable the user to ask the
database manager to perform the operations of store, query and retrieve Musical Scores; second,
to permit the user to do some other basic operations on scores, like to play a score and to prepare
short melodic lines to be used in the query commands. In this way, the Database Management
System does not have any responsibility to interact with music player drivers: it simply
manipulates the data structures associated with the representation of musical scores.

The retrieval of scores stored in the database is done in two ways: generation of a MIDI
file or of a “response set” in memory. The generation of a MIDI file is done on a file by file basis.
The generation of a response set permits that a set of score attribute values can be generated and
submitted to the application. In both situations, the retrieval operation constructs memory-based
objects that include the data indicated by the retrieval command. It is worth mentioning that when
a score is retrieved, it includes the indicated attributes only if the attribute has a defined value.
Nonetheless, if it has a value, it is not important to know how the value was defined, that is, if it
was retrieved when the original MIDI file was read or if it was inserted manually by the user.

The IHP-SQL tool is an interpreter of an extension of the object-oriented SQL language
[Bertino-93]. There are few modifications in the language itself, because Scores are treated as a
new kind of attribute. The modifications are those that permit definition of attributes of the
Musical Score characteristic in the Define Object command, and the identification of the terms
of the three adopted standards (the MIDI standard, the Standard MIDI File format, and the

Score

1-N

Track_methods()

Instrument_list:
LIST OF text\ASCII

Channel: Number\integer
Channel_set:

SET OF Number\integer

Start: Number\long
Finish: Number\long
N#notes: Number\long
Blob: Blob\byte[]

Instrument: text\ASCIIN#tracks:
Number\integer

1-N
Attribute

Characteristic
. . .

Is a

Object
Identifyer

. . .

Tempo:
Number\long

Author:
Text\ASCII

1-N

1-1

Track

. . .

MIDI_Type:
Number\integer

. . .

Content-Based Retrieval of Musical Scores in an Object-oriented Database System - 11

Figure 7 - Extension to the Meta-schema of SIRIUS/GO to
support the Musical Score Characteristic.

General MIDI Standard) as constant values.
The SIRIUS/GO database manager is constructed using the concept of attribute

characteristics, so the extension made to support Musical Scores consisted basically of the
inclusion of the support of a new characteristic. The extension is based on the meta-system
concept, in which the data
model is represented in the
system as a meta-schema. To
support the Musical Score
characteristic, the meta-
schema was extended to
include the information
corresponding to the three
standards adopted.

Figure 7 shows the
extension made in the meta-
schema. The object named
Object represents the
concept of Object, and it is
the meta-type of all types of
objects defined in the schema.
The object named Attribute
is the concept of Attribute,
and represents all Attributes
defined in the schema. The
arc labelled Associ-

ates/Associated_to is the
representation that associates
attributes to objects (Figure 7 does not show that those attributes can also be associated to
relationships). The notation represents the fact that a Score is a specialization of the
concept of attributes. Like any attribute, Scores are objects, and they can have the attributes
associated to them. They always have the attributes N#tracks, Tempo and MIDI_Type, extracted
from the MIDI file header, and the attributes Score_text, Copyright, lyrics, Author,
Timing_offset, timing_resolution and Tempo_change, possibly extracted from a meta-event.

A score object can also be associated to the relationship Tracks_are/Track_of to at
least one Track. Tracks are objects defined in the meta-schema, and can have both the attributes
shown in Figure 7 and the attributes named Track_name, Instrument and Sequencer, shown
in table 2, associated to them. In particular, the attribute Blob is where the sequence of MIDI
events that composes the track is stored. As a Track is a concept defined in the meta-schema, the
methods assigned to the Track object meta-concept deal with its contents.

The extended meta-schema provides support to store all the data contained in a MIDI file
in a database (except the system exclusive events). However, to complete the support for all three
adopted standards in a score-enabled application, the application schema must be predefined
including:

the definition of the Object Type Instrument;
the definition of 196 objects of the type Instrument, one for each of the 128

melodic instruments plus the 64 percussion set instruments of the General
MIDI standard; and

the definition of the attributes corresponding to the Control Change standard

Content-Based Retrieval of Musical Scores in an Object-oriented Database System - 12

events (12 attributes were defined in the current implementation).
When a database is created and the user must informs if it is score-enabled, upon which

all these definitions are automatically inserted in an initial application schema that the user needs
to complete his implementation dependent definitions.

To permit information queries based on the contents of the score, it is necessary to
provide ways index the information contained in the scores, so that it can be treated by the
OODBMS like any other information. This indexing of Musical Scores obtained from MIDI files
can be made on two levels. The indexing of attributes of plain characteristics, like numbers and
text, are common in any database, so the extraction of meaningful data from the MIDI file and
its storage as numbers or text enables the indexing of this information in a simple way, that is, as
any other text or number, a system designer can designate index structures for them. This
corresponds to the first level of indexing of a Musical Score in the database, and can be
accomplished by the predefined elements of the schema.

Using this level of indexing, the system can answer queries such as “What are the
Commemorative Anthems, of any Country, played with a flute ?”. This query can be expressed
as:

SELECT Name, Commemorative_Anthem.Happening
FROM Country
WHERE Commemorative_Anthem.C_Anthem.Tracks_are.Instrument_name

= “Flute”

The result of this query will be a list of the names of countries and the corresponding
happenings that have Commemorative_Anthem with at least one track that uses a flute.

The second level of indexing corresponds to the indexing of information that cannot be
represented as text or number. This occurs with the sequence of standard MIDI events stored in
the attributes Blob on the Tracks of the Musical Scores. The indexing of that kind of information
requires a definition of what needs to be searched, and what can be considered a match. This
definition depends on what is the objective of the search, and on the musical considerations of
what needs to be analysed. The search mechanism is also dependent on algorithms that can
execute the intended search of information in each bulk sequence of events.

So far, we have developed the described system in the hope of making available a system
with a basic set of tools to store and retrieve Musical Scores in a database, enabling the query of
information based on the contents of the stored scores. The search operations implemented so far
are only the basic ones, and more resources will be added to meet the needs of musicians
querying this information, mainly based on the musicians’ opinions about their intentions and
experiences with the system.

The only search mechanism implemented so far is a rather crude one that works in the
following way: When each MIDI file is read into the memory to be filtered, it is also submitted
to an algorithm that traces the main scale of the whole song. Based on the recovered note each
track is analysed to separate the musical “words”. A musical word is considered to be a sequence
of five or more notes played in a sequence that is separated by the next word or groups of less
than five notes by a period at least four times greater than the maximum period between notes
of that word. Only the notes pertaining to the identified scale are considered to be part of a word
and only the one with the highest pitch of each chord. All the identified musical words are
normalized to the C scale, after which they are indexed in a B -tree, rooted in the definition of the*

attribute from which the score is a value. In this way, each attribute of the Musical Score
characteristic defined in the schema has its proper indexing structure, regardless of the track
where each musical word is located.

Content-Based Retrieval of Musical Scores in an Object-oriented Database System - 13

6. Conclusion

This work describes a technique to extend an Object Manager to support the storage of
musical scores as another characteristic of attributes that can be associated to objects, and to
enable the content-based retrieval of these scores. It is common to think of Scores as object types,
and not as attribute characteristics, as treated in this work. However, the latter approach is
broader, so the representation of scores as object types is only one of the modelling possibilities
enabled by it. Musical Scores is another attribute characteristic supported by the DBMS, like the
numbers, texts and dates, and can be associated with any other modelling element that attributes
can be associated with. The technique presented here is being developed focused on four
objectives:

to allow the exploration of musical ideas in large sets of scores, - supporting, for
example, the research of musical styles, compositional rules, etc.;

to provide a way to construct databases of music-related material, which includes musical
scores as part of the data, in a closely structured manner - supporting, for
example, the development of multimedia documents;

to provide a way to organize large numbers of musical scores, which can be retrieved in
different ways, including search using the musical contents of the score and search
using associated external attributes - supporting, for example, the search of
databases of musical pieces to construct presentation shows, radio and television
programs, etc.; and

to provide a way to automate the confrontation of two or more musical scores sets in
order to identify some kind of similarity - supporting, for instance, the
construction of systems aimed at identifying existing copyrights, plagiarisms, etc.

The techniques presented herein allow integration of support for the storage of Musical
Scores in an object-oriented database manager, maintaining a syntactic homogeneity with other
DBMS resources.

Unlike the usual approach, where the user works with one score at a time, these
techniques were developed to permit the user to work with sets of scores. The first benefit of this
approach is that the user has improved ways to organize a set of scores and retrieve them, based
on their contents. The second benefit is that it allows the development of retrieval methods
specific for an intended purpose, and the expansion of the system to fulfill new function does not
affect the applications already in use.

The adopted approach also ensures that data is maintained in a consistent way, eliminating
possible duplication of information, even when the data comes from different sources, like MIDI
files or user inserted complementary information. Two ways to search for the desired scores are
defined: based on the values of attributes associated to the scores or based on the contents of the
scores. The associated attributes can be extracted from the original MIDI files and used to feed
the database, if the files contain that information, or they can be inserted in other ways. The search
based on the musical contents of the score is based on algorithms that can be developed separately
and integrated to the DBMS as methods of the meta-schema of the OODBMS, allowing the
interaction of musicians with the system from the earliest phase of the development of the system.
In this sense, the software already developed is a good workbench to develop new algorithms to
manipulate scores. It offers an extensive set of elementary tools to aid in the development of new
algorithms to analyse, modify, compare, etc. one or more scores. It also offers elaborate tools to
manage sets of scores, providing all the basic operations of a database system to store,
manipulate, search and retrieve scores.

Content-Based Retrieval of Musical Scores in an Object-oriented Database System - 14

References

[Bancilhon-92] Bancilhon, F.- “The O Object-Oriented Database System”, Proceedings of2

the 1992 ACM Sigmod - International Conference of Management of Data, San Diego,
Califórnia, vol.2, No.1, p.7, June 2-5, 1992.

[Bertino-93] Bertino, E.; Lorenzo, M.- “Object-Oriented Database Systems”,International
Computer Science Series, Addison-Wesley, 1993.

[Biajiz-96] Biajiz, Mauro - “Modelling Data Models Using Abstraction Parametrizations” (in
portuguese), PhD Thesis presented to IFSC - University of Sao Paulo - Brazil, September
8, 1996.

[Elmasri-94] Elmasri, R.; Navathe, S.B.; “Fundamentals of Database Systems”, Addison
Wesley Publishing Company, 1994, 2nd edition.

[Figueiredo-97] Figueiredo, M. B. - “Representation of Audio Sounds in Databases” (in
portuguese), MSc. Dissertation presented to ICMSC - University of Sao Paulo - Brazil,
September 26 , 1997.th

[Huber-95] Huber, M.D.- “The MIDI Manual”, SAMS, Prentice Hall Computer Publishing,
1995.

[MMA-97] MIDI Manufacturers Association - “DLS Level 1 Overview”, in
http:/www2.midi.org/mma/dls/dlsoview.html (accessed 02/sept/97).

[MMA-96] MIDI Manufacturers Association - “The Complete MIDI 1.0 Detailed
Specification - Version 96.1" , MMA MIX Bookshelf, march 1996.

[Pentfold-90] Pentfold, R. A. - “The Practical MIDI Handbook”, PC Publishing Co., 1990.

[Stolz-93] Stolz, A.- “The Sound Blaster Book”, Abacus, 1993.

[Zand-95] Zand, M.; Collins, V.; Caviness, D.- “A Survey of Current Object-Oriented
Databases”, Database Advances, vol.26, no.34, pp.14-29, February 1995.

