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1 Introduction

The goal in the study of discrete dynamical systems is to understand the long-
term behavior of the iterates of a map f :Rn → Rn. We are interested in what
happens to the orbit O(p) of a point p ∈ Rn:

O(p) = {p, f(p), f(f(p)), f(f(f(p))), . . .}.

Typically, such orbits either diverge to infinity or converge to a manifold in Rn.
(A manifold is a well-behaved set, such as a point, a set of isolated points, a
curve, a surface, etc.) This limit set is called the attractor of the dynamical
system. Not all attractors are well behaved and in many cases the orbits
accumulate on sets that have complicated geometry and topology. Such limit
sets are known as strange attractors and can exist even for the simplest non-
linear maps f . A prime example of this phenomenon is given the famous Hénon
map [1], which acts on the plane R2 as follows:

f(x, y) = (1 + y − ax2, bx),

where a and b are parameters. The Hénon strange attractor is obtained by
setting a = 1.4 and b = 0.3; it is shown in Figure 1. (Strictly speaking, it
has not been mathematically proved that the Hénon attractor is actually a
strange attractor in the technical sense. The mathematics of the Hénon map
is very complicated and its dynamics is not yet fully understood [2].)

[Fig. 1 about here.]

Mathematicians usually start their study of a dynamical system by drawing a
picture of its orbits. The simplest method for producing such a picture is the
point-sampling method discussed in Section 2. However, as also discussed in
Section 2, this method is not robust: it depends on trial and error, is subject
to rounding errors, and may produce pictures that are not reliable. Other
methods for approximating attractors reliably have been proposed, such as the
cell-mapping method, which we discuss in Section 3. Although it can be based
on point sampling, the cell-mapping method is made robust by using interval
arithmetic [3], as described by Michelucci [4]. We propose here the use of affine
arithmetic [5] instead of interval arithmetic in cell mapping. In Section 4 we
show some examples of the performance of the cell-mapping method based on
affine arithmetic for creating robust pictures of strange attractors.
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2 Point sampling

The simplest way to “see” the dynamics of a discrete system is to draw a
picture of its orbits using the following sampling method:

(1) Guess or somehow find a box Ω containing the attractor.
(2) Select a set of random starting points in Ω.
(3) For each starting point p ∈ Ω, compute but do not plot the first n0 points

in the orbit O(p).
(4) Compute and plot the next n1 points in O(p).

If the attractor is a manifold, then picture will show a fairly dense approximate
sampling of the manifold. If the orbits diverge to infinity, the picture will
show nothing (if we do not plot outside Ω). For strange attractors, the picture
will show a cloud of dots that clearly has some structure, but this structure
is elusive to describe. For instance, detailed pictures of the Hénon attractor
suggest that it has Cantor-set cross-sections [1] and thus has a fractal nature.

The point-sampling method is very simple to understand and implement. It
generates nice pictures. The main difficulty we face when using this method
is how to choose n0 and n1. Choosing n0 too small will include transient parts
of the orbits, that is, points that are not yet near the attractor. Choosing n1

too small will risk not covering the attractor sufficiently well. On the other
hand, choosing n0 or n1 too large may be wasteful and inefficient. In practice,
we just choose n0 and n1 by trial and error. However, there is no way to be
sure that we have selected good values for n0 or n1.

Another difficulty with the point-sampling method is that it is implemented
using floating-point arithmetic, which is subject to rounding errors [6]. For
chaotic dynamical systems —the ones that have strange attractors — rounding
errors are potentially serious, because orbits starting at nearby points can
diverge from each other exponentially. Sometimes, this strong sensitivity to
initial conditions does not affect the overall picture, because numerically com-
puted orbits are “shadowed” by exact orbits that capture the typical behavior
of the system. However, the truth is that rounding errors affect numerical
simulations of dynamical systems in very complex ways [7]. Well-conditioned
dynamical systems may display chaotic numerical behavior [8, 9]. Conversely,
numerical methods can suppress chaos in some chaotic dynamical systems [9].

As a consequence of both difficulties, the pictures generated with the point-
sampling method will probably not display the attractor reliably. This is spe-
cially serious when we have just started investigating a dynamical system and
its attractor is not yet known.
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3 Cell mapping

An alternative to point sampling is cell mapping [10, 11]. The main idea in
this method is to decompose Ω into cells (typically using a uniform rectangular
grid) and study the dynamics induced by f on this set of cells. Instead of asking
where each point goes under f , we ask where each cell goes. More precisely,
we consider the directed graph having the cells as vertices and having an edge
from cell A to cell B if f(A) intersects B. This means that A goes (partially)
to B. This graph is called the cell graph. The key observation in the cell-
mapping method is that the strongly connected components of the cell graph
must cover the attractor of f . Cells having no edge into them cannot contain
any part of the attractor because f never takes points into those cells. Cells in
the same strongly connected component are (partially) mapped into each other
by iterates of f . Thus, strongly connected components capture the transitivity
of the attractor. Figure 2 shows a cell graph for the Hénon map.

[Fig. 2 about here.]

Given a sufficiently fine cell decomposition of Ω, we can find a good approxi-
mation of the attractor by finding the strongly connected components of the
corresponding cell graph. A more efficient approximation for the attractor can
be found by using recursive subdivision: start with a coarse cell decomposition
of Ω; find the cell graph induced by f ; find its strongly connected components;
subdivide the cells in these components into smaller cells; rebuild the cell graph
using the smaller cells; find its strongly connected components; and repeat un-
til the cells are small enough. Efficiency comes from not having to start from
a very fine cell decomposition; only the cells in the strongly connected compo-
nents are refined. Figure 3 shows the convergence of this recursive subdivision
to the Hénon attractor with classical parameters a = 1.4 and b = 0.3.

[Fig. 3 about here.]

Finding the strongly connected components of a graph can be done in time
linear in the size of the graph, using an elegant algorithm by Tarjan [12]. This
leaves as the main difficulty in the cell-mapping method how to find the edges
in the cell graph, that is, how to decide which cells f(A) intersects. We call this
the edge problem. Because f is a non-linear map, there is no simple geometric
description for f(A) on which to base an exact intersection test.

The simplest solution for the edge problem is to use point sampling: for each
cell A and for each point p in a finite set of samples chosen in A, we identify
the cell B that contains f(p) and add the edge A → B to the cell graph. For
best results, we can sample each cell A more finely on its boundary [13]. Again,
this solution is very simple to implement and gives good results. However, it
is not guaranteed to find the complete cell graph: we may have missed an
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edge A → B simply because no sample point happened to be mapped into B.

A robust solution for the edge problem is to use enclosures: instead of sam-
pling f(A) (via a sampling of A), we compute an enclosure for f(A), that is,
a set f̄(A) that contains f(A). We aim for an enclosure f̄(A) that is simple to
represent and to test for intersection with cells. Computing the cell graph us-
ing such enclosures results in a graph that is larger than the exact cell graph,
which we cannot compute in general. However, if enclosures shrink as cells
shrink, then the refinement provided by cell subdivision will make this larger
graph converge to the attractor. In other words, we get a sequence of covers
that converge to the attractor.

Interval arithmetic [3] is the natural tool for computing enclosures. It provides
box enclosures that shrink as needed. It also naturally handles rounding errors.
More precisely, given a real function of n variables g:Rn → R, interval arith-
metic provides an automatic way for computing an interval ḡ(X1, . . . , Xn) ⊆ R
that contains all the values taken by g in a box X1 × . . . × Xn ⊆ Rn. Inter-
val arithmetic works by extending all elementary operations and functions
from numbers to intervals. For a vector-valued function f :Rn → Rm, we
can combine the intervals corresponding to each coordinate of f and get a
box f̄(X1, . . . , Xn) ⊆ Rn that contains all the values taken by f in a box
X1 × . . .×Xn ⊆ Rn. In other words,

f̄(X1, . . . , Xn) ⊇ f(X1, . . . , Xn) = {f(x1, . . . , xn) : xi ∈ Xi}.

By carefully controlling rounding direction to ensure outward rounding, in-
terval arithmetic provides enclosures that are robust even in the presence of
rounding errors. Such enclosures are suitable to the cell-mapping method.
(Rounding control is mandated by the IEEE 754 standard for floating-point
arithmetic and is available in virtually all machines.)

Michelucci [4] described a cell-mapping method based on interval arithmetic
and showed that it provides pictures of strange attractors that are closer to
reality, because they can discard large transient parts that are hard to iden-
tify with point-sampling methods. Figure 4 (which also appears in [4]) shows
pictures of the Hénon attractor for a = 1.4 and b = 0.3, 0.4, and 0.5 using the
point-sampling method and the cell-mapping method based on interval arith-
metic. While for b = 0.3 there is almost no difference between the two pictures,
for b = 0.4 and b = 0.5 we see large gaps in the attractor that were not found
by the point-sampling method. Michelucci showed that the difference is even
more dramatic for larger values of b.

[Fig. 4 about here.]
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Figure 5 shows a significant difference in the results of the two methods for
the Holmes map given by

f(x, y) = (1.5x− x3 + 0.95y, x).

The point-sampling picture is shown in red and the cell-mapping picture is
shown in grey. Again, note the large gaps not found by the point-sampling
method.

[Fig. 5 about here.]

Cell-mapping methods based on interval arithmetic can also find pieces of the
attractor that are missed by point sampling. Figure 6 shows the attractor of
the logistic map given by f(x, y) = (y, ay(1 − x)) for a = 2.27. The point-
sampling method misses the fixed point at (t, t) with t = 1 − 1/a, but the
cell-mapping method finds it.

[Fig. 6 about here.]

Finally, cell-mapping methods based on interval arithmetic can also be used
to study periodic orbits [14].

The main problem with using interval arithmetic in cell mapping is that its
enclosures f̄(A) tend to be much larger than the exact result f(A). (This
called the overestimation problem.) As a consequence, many false edges are
created in the cell graph. Because interval arithmetic is limited to computing
box enclosures that are aligned with the coordinate axes, it cannot adapt them
to the shape and orientation of f(A). (This called the wrapping problem.) In
other words, even if f̄(A) was the smallest box containing f(A), it would
probably still induce many false edges in the cell graph. As a consequence,
the strongly connected components of the cell graph are larger than necessary
and the cellular approximation converges slowly to the attractor. This shows
as “fat” grey regions in Figure 5.

Affine arithmetic [5] is another tool for computing enclosures. It was explicitly
designed to reduce overestimation by taking into account first-order correla-
tions in the evaluation of expressions. (Correlations of subexpressions is the
main source of overestimation in interval arithmetic.) As a consequence, affine
arithmetic often obtains smaller enclosures than interval arithmetic. Moreover,
affine arithmetic provides zonotope enclosures that adapt themselves better to
the shape and orientation of the underlying set, thus also reducing the wrap-
ping effect. (A zonotope is a centrally symmetric convex polytope.) Figure 7
illustrates the difference between the box enclosures computed with interval
arithmetic and the zonotope enclosures computed with affine arithmetic, and
their influence on the solution of the edge problem. This example uses a quintic
map (that is, a polynomial map of degree 5).
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[Fig. 7 about here.]

4 Examples

We shall now show some examples of strange attractors in R2 and their ap-
proximation using point sampling, cell mapping with interval arithmetic, and
cell mapping with affine arithmetic. We have chosen random polynomial maps
of moderate degree to investigate how the correlations implied by long poly-
nomial expressions affect the performance of cell mapping based on interval
arithmetic.

We used a method by Sprott [15] for finding polynomial maps that have
strange attractors. The region of interest Ω was found with point sampling.
(Michelucci [4] avoided guessing Ω by using projective oriented geometry.)
Following Sprott, we shall represent polynomial maps (x′, y′) = f(x, y) with a
letter code. For instance, a quadratic map in its most general form is given by

x′ = a1 + a2x + a3x
2 + a4xy + a5y + a6y

2

y′ = a7 + a8x + a9x
2 + a10xy + a11y + a12y

2

and of course is determined by the values of its twelve coefficients a1, . . . , a12.
Sprott proposed to represent quadratic maps by a 12-letter name, coding
these coefficients using the letters A through Y , each letter representing a
number in the interval [−1.2, 1.2], with an increment of 0.1. Thus, we have
A = −1.2, B = −1.1, . . . , and Y = 1.2. This coding method can be ex-
tended to higher-degree maps: a cubic map will have a 20-letter name and a
quintic map will have a 42-letter name. Figure 7 used the quintic map named
QBKSKIXQMKEOVVMAHXLBOQQJXEYMBUMBOEFVDBAPWU.

Figure 8 shows the higher convergence of cellular approximations based on
affine arithmetic for that quintic map. Interval arithmetic enclosures shrink
linearly whereas affine arithmetic enclosures shrink quadratically [5]. Figures 9,
10, and 11 show other examples for quadratic, cubic, and quintic maps. Ta-
bles 1, 2, 3, and 4 measure this convergence by showing how the sizes of the
cell graphs vary with the size L× L of the starting grid. In these tables, V is
the number of vertices in the graph, E is the number of edges in the graph,
SCC is the number of vertices in the strongly connected components. For
the affine arithmetic variant, we also show the percentages relative to those
numbers of the interval arithmetic variant.

These results suggest that cell mapping with affine arithmetic can be a useful
tool for the robust visualization of strange attractors.
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Fig. 1. The Hénon strange attractor.
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Fig. 2. Cell graph of the Hénon map based on a 3× 3 rectangular subdivision. The
strongly connected component is shown in green.
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Fig. 3. Cellular approximation for the Hénon attractor.
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Fig. 4. Hénon strange attractor for a = 1.4 and b = 0.3 (left), 0.4 (center), and 0.5
(right). Top row: point-sampling method. Bottom row: cell-mapping method using
interval arithmetic.
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Fig. 5. Attractor of the Holmes map using sampling method (red) and cell mapping
using interval arithmetic (grey).
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(a) (b)

Fig. 6. Attractor of the logistic map computed with the sampling method (a) and
with the cell-mapping method using IA (b).
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Fig. 7. Approximating f(A) with the sampling method (blue), with cell mapping
using IA (red) and cell mapping using AA (green).
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Fig. 8. Strange attractor of the quintic map
QBKSKIXQMKEOVVMAHXLBOQQJXEYMBUMBOEFVDBAPWU in
[−0.260287, 0.952145] × [−0.994131, 0.968682]. Point-sampling method show
in red. Cell-mapping method shown in grey using IA (left) and AA (right). From
the top to bottom, pictures have resolution 642, 1282, and 2562 cells.
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(a) (b)

(c) (d)

Fig. 9. Strange attractor of the quadratic map LUFBBFISGJYS in
[0.0, 2.0] × [−1.8,−0.2]. (a) Cell mapping based on IA (blue). (b) Cell map-
ping based on AA (grey). (c) Sampling method (red). (d) All together. Cell
mapping done for a 1024× 1024 cell grid.
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(a) (b)

(c) (d)

Fig. 10. Strange attractor of the cubic map OVFKWKEIBPGNYPVKWCYU in
[−0.707942, 0.537318]× [−0.874148, 0.680792]. (a) Cell mapping based on IA (blue).
(b) Cell mapping based on AA (grey). (c) Sampling method (red). (d) All together.
Cell mapping done for a 1024× 1024 cell grid.

21



(a) (b)

(c) (d)

Fig. 11. Strange attractor of the quintic map HVOIEGIDJCSFUFJCQGRUGM-
CLHEPWKRCCYFIRQPYAPH in [−1.14556, 0.411485]× [−0.294105, 1.10915]. (a)
Cell mapping based on IA (blue). (b) Cell mapping based on AA (grey). (c) Sam-
pling method (red). (d) All together. Cell mapping done for a 512× 512 cell grid.
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Table 1
Cell graph data for the quadratic map of Figure 9.

IA AA

L V E SCC V E SCC

4 16 245 16 16 (100%) 99 (40%) 16 (100%)

8 64 1872 64 64 (100%) 383 (20%) 62 (97%)

16 256 9136 256 248 (97%) 1467 (16%) 234 (91%)

32 1024 38344 997 936 (91%) 5628 (15%) 876 (88%)

64 3988 152900 3728 3504 (88%) 21219 (14%) 3278 (88%)

128 14912 605570 13964 13112 (88%) 79355 (13%) 12508 (90%)

256 55856 2345067 52490 50032 (90%) 302750 (13%) 44363 (85%)

512 209960 8904283 200917 177452 (85%) 1043879 (12%) 160070 (80%)

1024 803668 34194297 734565 640280 (80%) 3669033 (11%) 542783 (74%)
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Table 2
Cell graph data for the cubic map of Figure 10.

IA AA

L V E SCC V E SCC

4 16 199 16 16 (100%) 123 (62%) 16 (100%)

8 64 1190 64 64 (100%) 484 (41%) 62 (97%)

16 256 5337 243 248 (97%) 1808 (34%) 221 (91%)

32 972 21429 892 884 (91%) 6132 (29%) 745 (84%)

64 3568 80832 3127 2980 (84%) 19907 (25%) 2733 (87%)

12 12508 268303 11090 10932 (87%) 72016 (27%) 10108 (91%)

25 44360 889579 40888 40432 (91%) 263257 (30%) 38215 (93%)

51 163552 3170359 154752 152860 (93%) 988495 (31%) 136247 (88%)

10 619008 11707914 568272 544988 (88%) 3518359 (30%) 442857 (78%)
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Table 3
Cell graph data for the quintic map of Figure 8.

IA AA

L V E SCC V E SCC

4 16 241 16 16 (100%) 178 (74%) 16 (100%)

8 64 2348 64 64 (100%) 763 (32%) 57 (89%)

16 256 16196 241 228 (89%) 2295 (14%) 187 (78%)

32 964 80095 853 748 (78%) 7094 (9%) 637 (75%)

64 3412 325048 3057 2548 (75%) 22426 (7%) 2162 (71%)

128 12228 1193467 10559 8648 (71%) 68490 (6%) 7161 (68%)

256 42236 3936173 35512 28644 (68%) 204113 (5%) 24170 (68%)
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Table 4
Cell graph for the quintic map of Figure 11.

IA AA

L V E SCC V E SCC

4 16 229 16 16 (100%) 187 (82%) 16 (100%)

8 64 2648 64 64 (100%) 825 (31%) 64 (100%)

16 256 22654 255 256 (100%) 2703 (12%) 217 (85%)

32 1020 144250 1004 868 (85%) 7541 (5%) 534 (53%)

64 4016 706540 3950 2136 (53%) 17788 (3%) 1337 (34%)

128 15800 3023995 12358 5348 (34%) 46066 (2%) 3722 (30%)

256 49432 10546388 31385 14888 (30%) 131297 (1%) 11267 (36%)

512 125540 32219415 82162 45068 (36%) 400870 (1%) 35838 (44%)
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