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Abstract. Simulations of viscoplastic materials are traditionally governed by continuum mechanics. The viscous
behavior is typically modeled as an internal force, defined by diverse quantities. This work introduces a fluid
model to simulate the viscoplastic effect of solid materials, such as plastic, wax, clay and polymer. Our method
consists in modeling a solid object through a non-Newtonian fluid with high viscosity. This fluid simulation uses
the Smoothed Particle Hydrodynamics method and the viscosity is formulated by using the General Newtonian
Fluid model. This model concentrates the viscoplasticity in a single parameter. Our results show clear effects of
creep, melting, hardening and flowing.
Keywords: Viscoplastic fluid. Solid deformation. Smoothed Particle Hydrodynamics. Non–Newtonian Fluid.
Heat Equation. Physically Based Animation. Computational Fluid Dynamics.

Figure 1: Flow behavior of viscoplastic material.

1 Introduction
Physical simulations entered the Computer Graphics

community to produce visually realistic animations. In par-
ticular, fluid objects are frequently used for sensational ef-
fects, such as water, fire or gas evolutions, large continu-
ous deformations, suspenseful object ruptures among many
others. However, the delicate point for animation purposes
remains formulating the underlying physics simple enough
to produce a sequence efficiently, and rich enough for the
simulation to remain realistic. Moreover, an animation artist
should be able to control material behavior through a reduced
set of intuitive parameters.

This involves finding an adequate formulation for the
physical laws, which are usually formulated through dif-
ferential equations, and a stable numerical approximation
scheme for their discretization. Furthermore, the main para-
meters can be freely set while always generating a visually
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realistic simulation. This paper proposes a simplified formu-
lation for viscoplastic objects simulation (see the example of
Figure 1) by keeping the physical intuition behind a single
parameter and avoiding the artist to cope with technical parts.

Viscoplastic materials. The viscoplastic objects are non-
Newtonian fluids, i.e. their flow behavior is viscous when
weak forces are applied. However,when under significant
forces, the material starts to flow like a liquid (toothpaste
effect): it changes phase from non-Newtonian viscous but al-
most solid behavior to Newtonian liquid. Unlike viscoelastic
objects, viscoplastic materials have no memory: a rupture
does not induce a “spring effect” of any part. This work is
based on the recent advances of Mendes et al. [17] in formu-
lating a viscosity function for viscoplastic objects that en-
compasses both viscous and liquid phases. The conciseness
and generality of this formulation provides an efficient con-
trol of the viscosity, since it mainly depends on one physical
parameter, named the jump number, which replaces multiple
parameters, such as stiffness, compressibility, plasticity, vis-
cosity, cohesion. . . This rheological model suits better for
plastic deformation and it has been recently introduced in
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melting simulation [27].
Previous techniques for animating viscoplastic objects

rely on continuous mechanics formulation, although those
materials are essentially fluids. The approach of this work
follows directly their physical models, which allows a real-
istic behavior for almost any material parameter. The jump
number can be set to an arbitrary value, generating creep and
work hardening effects. It can also be linked to other variable
parameters such as temperature. This allows straightforward
simulations of freezing and melting behaviors, when parts
of the objects alternate continuously between solid and li-
quid phases, or lava flow simulations. This occurs discon-
tinuously, depending on the terrain’s topography.

Computational approximation. Simulating the fluid be-
havior of a viscoplastic object in its liquid phase requires
a computational fluid dynamics (CFD) framework. In the
Computer Graphics literature, the most common CFD model
relies on Eulerian formulation where physical quantities are
sampled on a regular grid. This suits well for classical New-
tonian fluids like water for instance. However, in order to
control grid-based methods, the fluid free surface must be
tracked, which remains a laborious task in free flow simula-
tions.

In this work, we use a Lagrangian formulation on a
particle-based representation, called Smoothed Particle Hy-
drodynamics (SPH). The SPH method was introduced in
1977 by Gingold and Monaghan [18] and Lucy [15] simu-
late compressible fluids in astrophysics. Each particle rep-
resents a small volume of fluid subjected to natural forces
such as gravity, pressure and viscosity. SPH fluid frame-
works are simple to implement, easy to capture the fluid
free surface and its accuracy compares nicely to grid-based
methods in several instances. Recently SPH simulation be-
came very popular in the special effects industry where it
was used for the water simulations in Poseidon and 300
(http://www.nextlimit.com).

Related works

This work uses a variation of the SPH framework to
simulate viscoplastic objects as a non-Newtonian fluid. We
will quickly summarize the most relevant works on these
three topics.

Smoothed Particle Hydrodynamics. The SPH method
was introduced in the Computer Graphics community by
Desbrun and Cani in [8], where they used a simplified ver-
sion of SPH to simulate deformable bodies. Stora et al. [28]
proposed a simplified model for lava flow, using only artifi-
cial viscosity instead of a physical model for viscous effects
and the terrain is defined by a digital elevation model and
the collision between particles and terrain reduces only the
computation of the terrain’s altitude at the particle’s projec-
tion onto the horizontal plane. Müller et al. [24] proposed a
SPH approach for simulating fluids with surface tension us-
ing a spike kernel exclusively to compute the pressure force
and avoiding particle inter-penetration problem, which may

result in stable clusters of particles. Furthermore, they intro-
duced point-splatting to capture the fluid free surface. In sev-
eral applications using SPH, the wall boundary of the scene
model (e.g. terrains or walls) are modeled by using virtual
boundary particles [20], which impose repulsive forces on
the fluid particles. Although it is elegant, this method in-
creases the particle resolution, computationally intensive and
it requires high memory storage. Müller et al. in [23] created
a method which SPH fluid particles interact with deform-
able object represented by a triangle mesh. The main contri-
bution of their paper is to place temporary boundary particle
onto each triangle according to Gaussian quadrature rules.
In order to avoid the use of boundary particles, Harada et
al. in [3] developed a method to simulate particle-based fluid
flows in complex mesh models by using additional repuls-
ive forces in each term of the SPH fluid equations. These
repulsive forces are computed by wall weight distance func-
tions between particles and the mesh polygons, which can
lead to small particle penetration into the mesh.

Non-Newtonian fluids. There are few works in Computer
Graphics for non-Newtonian fluids. Goktekin et al. [9] pro-
posed a grid-based method to compute the stress tensor of
these fluids. They use a linear Maxwell model with von
Misses plastic yield condition. Clavet et al. [7] used SPH
with a linear combination of elastic springs between particles
driven plastic yield condition. Another method using SPH
was introduced by Mao and Yang [16], where the stress
tensor derives from a co-rotational Maxwell model.

Plastic deformation. Plastic deformations are usually sim-
ulated by using finite elements [6, 14]. O’Brien et al. [26]
simulated several materials with a simple plasticity model.
However, the numerical calculation becomes ill-conditioned
when the material undergoes substantial elastic or plastic de-
formation, which results in unstable simulations. Bargteil et
al. [5] proposed a remeshing based Delaunay triangulation
improving the quality of the tetrahedral elements guaran-
teed a stable simulation. Terzopoulos et al. [29] proposed
a melting model based on particles. Müller et al. [25] cre-
ated a point-based framework to simulate elastoplastic ob-
jects using continuum mechanics model with von Misses
plastic yield condition. They used moving least squares
(MLS) for approximating the velocity tensor field. Keiser et
al. in [11] replaced MLS approach by SPH method. Finally,
Solenthaler et al. in [4] introduced rigid body dynamics in
the previous framework. However, their interaction model
may also allow particle penetration in solids when strong
forces are involved.

The models used in these works involve many parameters
for the plasticity, which turns the viscosity control delicate.

Contributions

This paper proposes a new meshless animation frame-
work to simulate viscoplastic materials through a simplified
physical formulation. This formulation is based on the vis-
cous model for General Newtonian Fluid model of [17], al-
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lowing a proper fluid representation of the materials as op-
posed to usual solid mechanics approximations. The main
contributions are:

– Conciseness and efficiency: our framework concen-
trates the viscoplasticity in mainly one parameter,
which represents explicitly the dependency to the
stress tension applied. This provides a very intuitive
control of the material behavior, producing a wide
variety of realistic animations that illustrate the gener-
ality of the proposed method in a simple and efficient
manner.

– Complex solid-fluid interactions: we implement an ex-
plicit (geometric) collision handling to simulate fluid
interactions with complex scene models. Unlike the
previous works, the collision test is made directly in-
volving particles (spheres) and triangles of the scene
model, avoiding particle penetration. Moreover, this
allows to add physical properties to the scene, e.g. in-
creasing their roughness.

– Accuracy and stability: to avoid unstable particle
clusters formation in SPH frameworks, we use a
particle velocity correction called XSPH method [19].
The numerical stability of our framework is improved
by using a SPH version of artificial viscosity and an
adaptive time step based on the Courant-Friedrichs-
Lewy (CFL) condition.

The present work is an expanded version of [27], refining
on the viscosity model and introducing an efficient collision
detection and response. While [27] was limited to melting
objects, the present contribution allows more complex si-
mulations involving viscosity such as lava flow and complex
fluid/solid interactions leading to large deformations.

Paper outline

We introduce the physical model of the proposed frame-
work in the next section. Then, we give a brief overview of
the SPH method in Section 3. Section 4 presents the nu-
merical improvements of our animation framework. A wide
variety of results and the details of the implementation are
given in Section 5. Finally, we conclude the paper with a dis-
cussion of results and glimpse on future works.

2 Formulation of the physical laws
This section focuses on the three main aspects of our

physical model: the fluid equations, the viscosity model and
the phase transition. Computational fluid dynamics CFD
aims at prediction fluid behavior through Navier-Stokes
equations. These equations are commonly solved by using
conventional Eulerian formulation with grid-based methods
such as finite differences and finite elements. In this work,
we chose an alternative method driven by the Lagrangian for-
mulation. Lagrange’s approach describes physical laws from
the viewpoint of a moving particle, which suits perfectly for
meshless methods such as SPH. The reader will find further
details on CFD in Anderson’s book [1].

In this work, the viscoplastic materials are modeled us-
ing Mendes’ formulation for General Newtonian Fluid [17],
which allowed accurate and efficient viscosity computations.

In our simulations of melt and lava flow, we approximate
the variations of the rheological parameters to a linear func-
tion of the temperature, leading to a simple heat equation for
governing the phase transition.

(a) Lagrangian formulation

The governing equations of a viscoplastic fluid flow can
be formulated by the following two equations which de-
scribes the conservation of the mass (equation (1)) and of
the momentum (equation (2))

dρ

dt
= −ρ∇ · v (1)

dv
dt

= −1
ρ
∇p +

1
ρ
∇ · S + g (2)

where t denotes the time, v the velocity vector, ρ the density,
p the pressure, g the gravity acceleration vector and S the
viscoplastic stress tensor field. This last term plays a funda-
mental role in viscoplastic simulation.

(b) Generalized Newtonian fluid model

Non-Newtonian fluids are characterized by the non-linear
dependence of the stress tensor with respect to the rate-of-
deformation tensor: D = ∇v + (∇v)T . In this work, we
use the Generalized Newtonian Fluid model proposed by
Mendes et al. [17], described by:

S = η (D)D, with D =
√

1
2 · trace (D)2 and (3)

η (D) = (1− exp [− (J + 1) D])
(

Dn−1 +
1
D

)
. (4)

This formulation models the viscosity η as an exponential
and as a power-law of the intensity of the rate-of-deformation
tensor D. The exponential depends on a single, new rheolo-
gical parameter J called the jump number, which simplifies
our viscosity model. For viscoplastic fluid, Mendes et al.
concisely represent through J several previous rheological
parameters such as the yield stress, low shear rate viscosity
and the consistency index. The jump number can reproduces
dramatic drop of the viscosity in the yield stress (see Fig-
ure 2). It controls directly the fluid viscosity: increasing the
value of J intuitively increases the fluid viscosity (see Fig-
ure 3). The power-law index n is responsible for the flow be-
havior: if n < 1, it predicts the effective viscosity decreases
with increasing shear, characterizing viscoplastic behavior.
In our simulation, we fixed the power-law index n = 0.5.
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(a) 25 iterations (b) 890 iterations (c) 1225 iterations

Figure 2: Generalized Newtonian Fluid model: the color map represents the viscosity of each particle, from low (blue) to high (red) viscosity.
Note that the viscosity drop created by the force applied by the hand.

(c) Viscosity control and phase transition

Physical behavior become delicate to simulate when the
properties of the material change, e.g. during phase trans-
itions. In this work, we focus on viscosity transitions, which
may be induced by temperature or high forces, e.g., in large
deformations, melt and lava flow. Such transitions are hard to
control with classical models such as used in previous works
since the viscosity model involves many parameters. Using
the model of the previous section, we model these transitions
directly through the jump number.

Since no exact physical model has been stated yet for
viscosity, we propose here a simple linear control of the jump
number. For example for melting, the temperature of some
part of the object increases until it reaches the melting point,
where it becomes liquid (see Figure 4). The jump number
J must thus decrease with the temperature. We approximate
this dependency through a linear variation with respect to the
temperature:

J (T ) = (1− u(T ))Jmax − u(T )Jmin

with u(T ) = (T − Tmin)/(Tmax − Tmin). In the case of
lava flows, the same coupling is used, but the temperature
may often go above and below the melting point. In these
specific cases, the variation of the temperature T is described
by the heat equation (∂T

∂t = k∇2T ). The jump number can
also be fixed to a constant even for large deformations, which
provides a very concise and efficient interface for the user
(see Figure 3).

3 Particle-based approximation scheme
This work uses the Smoothed Particle Hydrodynamics

(SPH) framework to simulate the viscoplastic fluid behavior.
In our animation framework, we use the complete formula-
tion of SPH for weakly compressible fluid [20], extended by

XSPH technique [19]. A wide description of SPH method
can be found in Monaghan’s survey [21].

(a) SPH approximation

The main idea of SPH is to replace the fluid for a set of
particles representing elements of the fluid (see Figure 2),
which carry individual material properties. The dynamics
of a Lagrangian viscoplastic fluid is due to the governing
equations introduced in the last section. The properties in
point x are determined by discrete convolutions of a kernel
function with compact support as follows:

A(x) =
∑

j∈N(x)

A(xj)
mj

ρj
W (x− xj , h) (5)

∇A(x) =
∑

j∈N(x)

A(xj)
mj

ρj
∇W (x− xj , h)

where the set N(x) contains all the particles at distance
below h from x, j is the particle index, xj the particle
position, mj the particle mass and ρj the particle density. In
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Figure 5: Quartic smoothing kernel: the particles farther than the
smoothing length h are discarded.

this work, we choose a piecewise quartic smoothing kernel

The corresponding work was published in Computer-Aided Design, volume 41, number 4, pp. 306-314, Elsevier 2009.

http://www.elsevier.com/locate/cad
http://10.1016/j.cad.2008.10.004


5 Particle-based viscoplastic fluid/solid simulation

Figure 3: Explicit control of the viscosity using jump number J: viscoplastic sphere model with 1200 particles, from low viscosity with
J = 15 (top) to high viscosity with J = 150 (bottom).

Figure 4: Examples of viscoplastic materials: wax melting and lava flow at Rio’s Sugar Loaf.

function (see Figure 5) with a fixed smoothing length of
twice the initial particle spacing.

W (x−xj , h) = 315
208 π h3 · w

(
∥x−xj∥

h

)
with

w(q) =
{

2
3 −

9
8 q2 + 19

24 q3 − 5
32 q4 ; 0 ≤ q ≤ 2

0 ; q > 2

Due to the similarity of the SPH kernel with the radial
basis functions (RBF), the particle approximation can be
improved and the smoothing length can be dispensed by the
use of a RBF interpolant [2]. The reader can find a complete
discussion about kernel functions in [13].

(b) SPH approximation of momentum

Since SPH suits better for compressible fluid, we ap-
proximate the incompressible fluid by a weakly compress-
ible fluid through an equation of state [20] for the pressure.
However, modeling of pressure remains a delicate point for
SPH simulations of incompressible fluids, due to the lack of
explicit control of the local density. In this work, we use an
equation of state proposed by Morris et al. [22]:

pi = c2 (ρi − ρ0) (6)

where pi is the pressure at particle i, c the speed of sound,
which represents the fastest velocity of a wave propagation
in that medium, and ρ0 is a reference density. This equation
of state is very similar to the ideal gas equation of state used
by Desbrun and Cani [8]. In particular, when the constant of
the gas is equal a c2 we have the same equation.

After updating the pressure at all particles using equa-
tion (6), we can evaluate the pressure term in equation (2)
at each particle:

1
ρi
∇pi =

∑
j∈N(xi)

mj

(
pi

ρ2
i

+
pj

ρ2
j

)
∇iW (xij , h),

where xij = xi − xj .
In order to compute the stress tensor in equation (3), we

first need to compute the SPH approximation for the velocity
tensor field ∇vi at each particle:

∇vi =
∑

j∈N(xi)

mj

ρj
(vj − vi)⊗∇iW (xij , h) . (7)

After that, we compute the particle rate-of-deformation
tensor:
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Di = ∇vi + (∇vi)
T

. (8)

Finally, the stress tensor Si is updated for each particle i
according to equation (4). The stress term in equation (2) is
then approximated by:

1
ρi
∇.Si =

∑
j∈N(xi)

mj

ρiρj
(Si + Sj) · ∇iW (xij , h) .

(c) SPH approximation of density

The SPH frameworks usually approximate density using
the density summation, which follows directly from the SPH
approximation of equation (5):

ρi =
∑

j∈N(xi)

mjW (xij , h) .

Therefore, due to the particles deficiency in the fluid
free surface the approximation above leads us to spurious
results. We consequently chose another approximation for
the density by using the following SPH version of continuity
equation (1) which derives from Gauss theorem [20, 28]:

dρi

dt
= ρi

∑
j∈N(xi)

mj

ρj
(vi − vj) · ∇iW (xij , h) , (9)

where vi and vj are velocities at particles i and j respect-
ively. However, we can avoid an extra loop to compute equa-
tion (9) by using equation (8) as follows:

dρi

dt
= trace

(
1
2 ·Di

)
. (10)

(d) Particle velocity correction

In order to avoid particle inter-penetration problem
without the use of several kernel functions, we computed
a velocity correction for each particle using the XSPH
method [19]. This method consists in computing an average
velocity from the velocities of the neighboring particles. This
maintains a more ordered move of particles in a weakly com-
pressible flow (Figure 6) by only using the standard spline
kernel.

In XSPH, each particle further moves according to a
constant global parameter ε ∈ [0, 1] in the following way:

vi ← vi + ε
∑

j∈N(xi)

2mj

ρi + ρj
(vj − vi)W (xij , h) . (11)

4 Numerical improvements
We can improve the numerical stability and accuracy of

our framework by using some usual numerical techniques
such as artificial viscosity and CFL condition in the SPH
particle context.

Algorithm 1 Particle dynamics
1: repeat
2: for each particle i do
3: Update∇vi (equation 7)
4: Update Di (equation 8)
5: Update derivative density (equation 10)
6: Update pressure pi (equation 6)
7: Update viscosity ηi (equation 4)
8: end for
9: for each particle i do

10: Update acceleration (equations 2 and 12)
11: end for
12: for each particle i do
13: Update vi and ρi with Leap-Frog scheme
14: Correct vi with XSPH (equation 11)
15: Eventual collision: (xi,vi)← collision(xi + δtvi)
16: end for
17: Update δt using CFL condition (equation 13)
18: time = time + δt
19: until time < timetotal

(a) Artificial viscosity

In order to avoid numerical instabilities due to oscillations
in the velocity vector field, a common technique adds an
artificial viscous stress term in equation (2):

dvi

dt
← dvi

dt
−

∑
j∈N(xi)

mjΠij∇iW (xij , h) . (12)

The effect of artificial viscosity in SPH systems is given
by:

Πij =

{
− 2αµijc

ρi+ρj
, (vi − vj) · (xi − xj) < 0

0, (vi − vj) · (xi − xj) ≥ 0

and µij =
h (vi − vj) · (xi − xj)
|xi − xj |2 + 0.01h2

,

where α corresponds to bulk viscosity [21].

(b) Numerical integration

We integrate the SPH fluid equations with a Leap-Frog
scheme [12], which is, among the second order accurate
solvers, the most computationally efficient (only one eval-
uation per step) and it only requires low memory storage for
the evaluation. The numerical stability in this explicit time
integration scheme is due to the CFL condition, where ad-
aptive time step is given by

δt = 0.1 min
{

h

|vmax|+ c
,

h2

6 ηmax

}
. (13)

Note that, for simulations of materials with high viscosity
the CFL condition tells us that there is a tradeoff between
stability and the computational time.
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Figure 6: Lava flow simulation after 1409 iterations, without XSPH (left) and with the XSPH correction (right), with the same parameters:
545 particles, 9566 triangles for the scene. The simulation explodes without XSPH, due to arbitrarily small distance between particles.

5 Results and Implementation
In our implementation, there are system attributes and

particle attributes. The system attributes such as mass, speed
of sound and the smoothing length h are global and they do
not change in relation to time. The particle attributes vary ac-
cording to time, and must therefore be stored at each particle.
These attributes are density, viscosity, position, velocity and
rate-of-deformation tensor. We update the particle attributes
as follow the sequence of Algorithm 1.

(a) Neighbors’ retrieval

Unlike grid-based methods, where the positions of neigh-
boring grid-cells are well defined, the neighbors of a given
particle in the SPH method can vary with time. The ap-
proaches for finding these neighbors are traditionally: all-
pair search (O(n2)), tree search (O(n log n)). In this imple-
mentation, the SPH approximations are computed from the
neighbors at a fixed maximal distance h. Since h is fixed, the
neighbors can be retrieved using a grid of fixed resolution 2h,
where each grid cell contains the list of nodes. This structure,
sometimes referred as linked-list, has a memory consump-
tionO(n) and computational complexity ofO(1): the neigh-
bors of a particle are among the 27 cells surrounding it in the
grid, leading to reasonable computation time (see Table 1).

(b) Collision response

The collision handling between particles and scene model
is done in two steps: detecting the collision and computing
the new state of the particle. A collision response involves
computing a new particle position and modifying the nor-
mal and tangential components of its velocity (Figure 7). A
perfectly elastic collision inverts the normal component and
maintains the tangential component. For softer collisions as
the one needed for lava flow simulations, these normal and
tangential velocity components can be further be scaled by
constant factors between 0 and 1, until factor 0 for no-slip
collision (Figure 8).

Figure 7: Response to a particle/triangle collision.

(c) Collision detection

We represent the scene model explicitly through a tri-
angle mesh and computing the collision between particles
(spheres) and triangles. In order to accelerate the detection of
eventual collisions between the particles and the scene ele-
ments (triangles), we store the triangles in the same search
grid as for the neighbors’ retrieval. Although a triangle may
appear in several cells, it guarantees a constant time search
for each position. The complete collision detection is per-
formed as a Bresenham line drawing on the 3D grid, where
the line connects xi to xi+δtvi and the collision test is com-
puted for each triangle T contained in the current cell. The
intersection between particles and triangles is made through
a simplified version of the algorithm proposed by Karabassi
et al. [10]. The performance of the collision test can be im-
proved by using a back-face culling process to remove tri-
angles from the collision test. This is done by comparing the
sign of the dot product between triangle’s normal nT and vi.

(d) Rendering

The tracking of the fluid free surface is done by rendering
an isosurface from the SPH approximation of its character-
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(a) Soft collision. (b) No-slip collision.

Figure 8: Lava flow simulation after 1909 iterations with soft collision (left) and with no-slip collision (right), with the same parameters as
Figure 6. The colors map the density of particles: soft collision makes the lava slide too fast.

istic function [24]:

χ (x) =
∑

j∈N(x)

mj

ρj
W (x− xj , h)

where the isovalue is in the range [0, 1].
We use an efficient and robust implementation of the

marching cubes algorithm [30] to generate the triangle mesh
for the isosurface. In order to improve the evaluation of the
characteristic function, we use the same data structure as for
search neighboring particles.

The animations of this paper and the supplementary ma-
terials were rendered by using the open-source ray tracer
POV–Ray (http://www.povray.org).

(e) Results

We experiment the framework described in this paper in
diverse contexts, looking for realistic behaviors in each of
them. The main intuition behind viscoplastic deformation
is illustrated in Figure 1, where strong forces applied upon
the material are able to deform it (“toothpaste effect”). In
particular, the yield stress increases with the jump number.

This dependency can be linked to a physical parameter,
such as temperature, generating a melting effect. For ex-
ample in Figure 4, a melting candle with 7000 particles is
simulated, initializing with a linear gradient of temperature
such that the region near the flame melts while the region
far from it remains solid. In this case, the small computation
time (see Table 1) is due to the few fluid particles interaction
in the melt process.

The use of scene collision in the SPH framework with
our viscoplastic formulation results in clear work-softening
effects, as in Figure 10 where a viscoplastic Stanford bunny
model with 5000 particles collides against a rigid David’s
face with 10000 triangles. In order to demonstrate the scalab-
ility of our framework, we test this example with different

particle resolutions and the results show a linear time com-
plexity (see Figure 9).

Our simulations have also been successful in reprodu-
cing morphology seen in real lava flows such as spreading
of lava front in the absence of solidification and develop-
ing complex, non-axi-symmetrical finger shapes called lobes
(see Figure 11). Our viscoplastic model suits well here due
to its conciseness while preserving its physical meaning.

The SPH method already offers simple handling of topo-
logical changes. For example in Figure 12, we simulate the
interaction between a complex viscoplastic object with 7000
particles and the detailed scene represented by skeleton hand
with 2351 triangles. Note that even when the material has
flown across the fingers, part of it remains glued to the skel-
eton.

The quality of the viscoplastic formulation allows dir-
ect simulation of advanced viscous effects. In the example
of Figure 13, a metallic sphere impacts a plastic wall. Ob-
serve that before the sphere drills the wall, the energy dis-
sipated by the shock induces a large deformation of the wall.

6 Conclusions and future works
This paper proposes a simplified viscosity formulation for

viscoplastic materials using a non-Newtonian fluid model
instead of the traditional continuum mechanics model. Our
setup relies on the SPH framework, improved regarding the
scene interaction and numerical stabilized by adapted dis-
cretization of the governing equations of a viscoplastic fluid
flow. The effectiveness of the method is illustrated on simple
examples, which match the physical laws, leading to an ef-
ficient scheme for both animation and physical simulation
purposes.

This work can be improved mainly in three directions. On
the physical side, we aim at simulating more non-Newtonian
fluid behaviors, such as viscoelastic materials. Concern-

The corresponding work was published in Computer-Aided Design, volume 41, number 4, pp. 306-314, Elsevier 2009.
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Figure 9: The Stanford Bunny model with 5000 particles is deforming after colliding David’s face with 10000 triangles.

Animation # particles δt–CFL(×10−4) CPU time
min max avg min max avg

Hand (Figure 1) 6000 6.06 6.70 6.45 0.53 0.59 0.55
Candle (Figure 4) 7000 6.77 7.85 7.48 0.09 0.19 0.14
Sugar Loaf (Figure 4) 10000 5.03 5.31 5.22 0.42 0.77 0.73
David (Figure 10) 5000 4.35 7.26 6.08 0.32 0.51 0.46
Lava (Figure 11) 4900 6.53 6.70 6.58 0.26 0.49 0.42
Chair (Figure 12) 7100 5.20 6.76 6.25 0.37 0.74 0.65
Wall (Figure 13) 5000 20.33 40.47 30.54 0.18 0.30 0.24

Table 1: The adaptive times in seconds by using the CFL condition and the computation time (in seconds) per iteration of the examples
running on Centrino – 1.86 GHz.

ing the efficiency of our simulations, the inner nature of
SPH systems allows a straightforward parallelization of the
algorithm, which would increase the possible number of
particles used during the simulation. Finally, the rendering
may be completed by inferring the texture of the objects from
the fluid simulation.
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Figure 11: Lava flow on a small virtual terrain of 1547 triangles, with 4900 particles.

Figure 12: The viscoplastic chair model with 7000 particles interacting with a complex solid hand skeleton with 2351 triangles.

Figure 13: Collision between a metal sphere and a plastic wall (green) made of 5000 particles. The simulation is showed in the front view
(top) and side view (bottom).
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