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1. INTRODUCTION

One of the most important parts of the qualitative theory in differential equations is the
stability of solutions. The problem of stabilizing the solutions by imposing proper impulse
controls is very important to many areas of the sciences and engineering. It is important, for
instance, in pharmacokinetics, biotechnology, economics, chemical technology and others.

We consider certain second order delay differential equations and prove that the solutions
can be stabilized by imposing proper impulse effects. An application of these equations
appears, for instance, in impact theory. An impact is a short-time interaction of bodies and
can be considered as an impulse action. In this direction we mention systems of billiard
type which can be modelled by second order equations with impulses acting on the first
derivative only, since positions of the colliding balls do not change at the moment of impulse
action (impact) and their velocities acquire finite increments. Equations with impulses and
delay are important, for instance, in models describing colliding viscoelastic bodies. See
[2].
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82 L. P. GIMENES AND M. FEDERSON

The results we prove here generalize recent ones by Xiang Li and Peixuan Weng (see
[4]). In [4], the authors prove that the following second order delay differential equations





x′′(t) + a(t)x(t− τ) = 0, t ≥ t0

x(t) = ϕ(t), t0 − τ ≤ t ≤ t0

x′(t0) = y0

(1.1)

and 



x′′(t) +
∫ t

t−τ

b(t− u)x(u)du = 0, t ≥ t0

x(t) = ϕ(t), t0 − τ ≤ t ≤ t0

x′(t0) = y0

(1.2)

where τ > 0, a : [t0, +∞) → R and b : [0, τ ] → R are continuous bounded functions, x :
[t0−τ, +∞) → R, can be exponentially stabilized by fixed moments of impulse effect. This
means that, under a finite number of impulsive controls, the solutions become exponentially
stable.

In the present paper, we consider the more general equations




x′′(t) +
N∑

i=1

ai(t)x(t− τi) + f(x(t), x′(t)) = 0, t ≥ t0

x(t) = ϕ(t), t0 − τN ≤ t ≤ t0

x′(t0) = y0

(1.3)

and 



x′′(t) +
N∑

i=1

∫ t

t−τi

bi(t− u)x(u)du + f(x(t), x′(t)) = 0, t ≥ t0

x(t) = ϕ(t), t0 − τN ≤ t ≤ t0

x′(t0) = y0

(1.4)

where 0 ≤ τ1 ≤ τ2 < . . . < τN , ai : [t0, +∞) → R, i = 1, . . . , N , are piecewise continuous
bounded functions, f : R2 → R is continuous and bounded, and bi : [0, τ ] → R, i =
1, . . . , N , are Lebesgue integrable with

∫ τi

0

| bi(s)| ds ≤ B, i = 1, . . . , N

and prove that they can be exponentially stabilized by adequate impulse controls.
This paper is organized as follows. In Section 2, we define impulsive stability, that is,

exponential stabilization by impulses and exponential stabilization by periodical impulses.
In Section 3, we apply Schaefer Fixed Point Theorem to prove the existence of a solution
on [t0 − τN , T ] of problems (1.3) and (1.4). In Section 4, by means of Lyapunov methods,
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SECOND ORDER RETARDED DIFFERENTIAL EQUATIONS 83

we obtain the impulsive stability proving that the solutions of problems (1.3) and (1.4) can
be exponentially stabilized by impulses.

2. PRELIMINARIES

Given a continuous function z(t) : R→ R, let z′(t) denote its left derivative and z′′(t) =
(z′(t))′. If z(t) is piecewise continuous, then z(s−) and z(s+) denote, respectively, its left
and right limits as t tends to s.

Let T, t0 ∈ R with T ≥ t0 . By C( [t0 − τN , T ],R ) we denote the Banach space of
continuous functions z : [t0 − τN , T ] → R endowed with the usual supremum norm, ‖z‖∞.

We start by considering the initial value problem




x′′(t) +
N∑

i=1

ai(t)x(t− τi) + f(x(t), x′(t)) = 0, t ≥ t0

x(t) = ϕ(t), t0 − τN ≤ t ≤ t0

x′(t0) = y0

(2.1)

where 0 ≤ τ1 ≤ τ2 < . . . < τN , N 6= 1, and {tk}∞k=0 is a monotone increasing unbounded
sequence of real numbers. We assume that

(H1) There exists a positive constant A such that for each i = 1, . . . , N ,
ai : [t0,+∞) → R is piecewise continuous and

| ai(t)| ≤ A, i = 1, . . . , N ;

(H2) ϕ(t) and ϕ′(t) are continuous on [t0 − τN , t0];
(H3) f : R× R→ R is continuous and there exists a positive constant F ≥ 1 such that

| f(u, v) | ≤ F, ∀ u, v ∈ R;

(H4) (T − t0)
2
AN 6= 1.

We also consider the impulses at time tk, k = 0, 1, 2, . . .,

x(tk) = Ik(x(tk−))
x′(tk) = Jk(x(tk−)) (2.2)

subject to the conditions

(H5) Ik, Jk : R→ R are continuous and Ik(0) = Jk(0) = 0, k ∈ N;
(H6) There exist constants ck and dk such that

|Ik(x)| ≤ ck and |Jk(x)| ≤ dk, k ∈ N,

for each x ∈ R.
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Publicado pelo ICMC-USP
Sob a supervisão CPq/ICMC



84 L. P. GIMENES AND M. FEDERSON

Now we define a solution of the impulsive problem (2.1)-(2.2).

Definition 2.1. A function x : [t0 − τN , T ) → R, T ≥ t0, is a solution of problem
(2.1)-(2.2) through (t0, ϕ, y0) if

(i) x(t) and x′(t) are continuous on [t0, T ]\{tk; k ∈ N}, admit lateral limits at tk, k ∈ N,
and are right continuous at tk, k ∈ N;

(ii) x(t) satisfies (2.1);
(iii) for each k ∈ N, x(tk) and x′(tk) fulfill (2.2).

Next we define the exponential stabilization by impulses of the solutions of (2.1).

Definition 2.2. Problem (2.1) is said to be exponentially stabilized by impulses if
there exist α > 0, a sequence {tk}k∈N with

t0 < t1 < t2 < . . . < tk −→∞ as k −→∞,

and sequences of functions, {Ik} and {Jk}, satisfying (H5), (H6) such that for all ε > 0,
there is δ > 0 such that if a solution x(t; t0, ϕ, y0) of (2.1) fulfills

√
‖ϕ‖∞2 + y0

2 ≤ δ, (2.3)

then √
x2(t) + x′2(t) ≤ ε exp[−α(t− t0)], t ≥ t0. (2.4)

When periodic impulses are considered, we consider exponential stabilization by periodic
impulses.

Definition 2.3. Problem (2.1) is said to be exponentially stabilized by periodic im-
pulses if there are α > 0, a sequence {tk}k∈N with

t0 < t1 < t2 < . . . < tk −→∞ as k −→∞,

and tk − tk−1 = c > 0, and sequences of functions, {Ik} and {Jk}, satisfying (H5), (H6)
and

I1(u) = . . . = Ik(u) = . . . , k = 1, 2, . . . , ∀u ∈ R

J1(u) = . . . = Jk(u) = . . . , k = 1, 2, . . . , ∀u ∈ R
such that for all ε > 0, there is δ > 0 such that if a solution x(t; t0, ϕ, y0) of (2.1) fulfills
(2.3), then we have (2.4).
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SECOND ORDER RETARDED DIFFERENTIAL EQUATIONS 85

Now we consider the initial value problem




x′′(t) +
N∑

i=1

∫ t

t−τi

bi(t− u)x(u)du + f(x(t), x′(t)) = 0, t ≥ t0, t 6= tk

x(t) = ϕ(t), t0 − τN ≤ t ≤ t0

x′(t0) = y0

(2.5)

where 0 ≤ τ1 ≤ τ2 < . . . < τN , N 6= 1, and {tk}∞k=0 is a monotone increasing unbounded
sequence of real numbers. We assume the hypotheses (H2) and (H3) and, instead of (H1)
and (H4), we consider

(H′
1) There exists a positive constant B such that for each i = 1, . . . , N , bi : [0, τN ] → R

is Lebesgue integrable and
∫ τi

0

| bi(s)| ds ≤ B;

(H′
4) (T − t0)

2
BN 6= 1.

We also consider the impulses at time tk, k = 0, 1, 2, . . .,

x(tk) = Ik(x(tk−))
x′(tk) = Jk(x(tk−)) (2.6)

subject to the conditions (H5) and (H6).
The definition of a solution of problem (2.5)-(2.6) is analogous to Definition 2.1. In the

same manner, the notions of exponential stability by impulses and exponential stability by
periodic impulses hold for (2.5) instead of (2.1).

3. EXISTENCE THEOREMS

The existence of solutions of the problems considered in this paper follow from the general
case presented in [1]. However the proofs are more simple, since some of the assumptions
can be suppressed and replaced by (H4).

We start by presenting a result on the existence of a solution on [t0 − τN , T ] of problem
(2.1)-(2.2). The idea of the proof is to transform (2.1) into a fixed point problem in order to
apply Schaefer Fixed Point Theorem (see [3]) so that there is a solution in each subinterval
[t0 − τN , t1) and [tk, tk+1), k ∈ N. The desired solution is therefore obtained from the
solutions on the subintervals.

Theorem 3.1. Suppose the hypotheses (H1) to (H6) are fulfilled. Then problem (2.1)-
(2.2) admits a solution on [t0 − τN , T ].

Proof. Let C1( [t0 − τN , T ],R ) denote the Banach space of continuous functions
z : [t0 − τN , T ] → R of class C1 endowed with the norm

‖z‖ = sup
t0−τN≤ s≤T

( |z(s)|+ |z′(s)| ) .
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86 L. P. GIMENES AND M. FEDERSON

Consider the operator

N : C1( [t0 − τN , T ],R ) −→ C1( [t0 − τN , T ],R )

given by

N(x)(t) =





ϕ(t), t0 − τN ≤ t ≤ t0,

ϕ(t0) + y0(t− t0)−
∫ t

t0

(t− s)
N∑

i=1

ai(s)x(s− τi)ds

−
∫ t

t0

(t− s) f(x(s), x′(s)) ds, t0 ≤ t ≤ T.

We will prove that N has a fixed point. Notice that ϕ is a fixed point of the restriction of
N to [t0 − τN , t0], N |[t0−τN ,t0]. Therefore it remains to prove that N |[t0,T ] admits a fixed
point.

We prove the following assertions.
1. N is continuous.

Indeed. Let {xn} be a sequence in C1( [t0 − τN , T ],R ) with xn → x. Then xn → x and
x′n → x′ converge uniformly in C1( [t0 − τN , T ],R ) and we have

|N(xn)(t)−N(x)(t)| ≤ (T − t0)‖x− xn‖
∫ t

t0

N∑

i=1

|ai(s)| ds

+(T − t0)
∫ t

t0

| f(xn(s), x′n(s))− f(x(s), x′(s))| ds

≤ (T − t0)2AN‖x− xn‖

+(T − t0)
∫ t

t0

| f(xn(s), x′n(s))− f(x(s), x′(s))| ds

which tends to 0 as n → +∞. Hence

‖N(xn)−N(x)‖∞ −→ 0, as n →∞.

2. N takes bounded sets to bounded sets.
We will prove that given p ≥ 0, there exists l ≥ 0 such that

x ∈ Bp = {y ∈ C1( [t0 − τN , T ],R); ‖y‖ ≤ p} implies ‖N(x)‖ ≤ l.

Given t ∈ [t0, T ], we have

|N(x)(t)| ≤ ‖ϕ‖+ |y0|(T − t0) + (T − t0)
∫ t

t0

N∑

i=1

|ai(s)| |x(s− τi)| ds

+(T − t0)
∫ t

t0

|f(x(s), x′(s))|ds

≤ ‖ϕ‖+ |y0|(T − t0) + AN(T − t0)2‖x‖+ (T − t0)2F.

???
Publicado pelo ICMC-USP
Sob a supervisão da CPq/ICMC



SECOND ORDER RETARDED DIFFERENTIAL EQUATIONS 87

The assertion follows by taking l = ‖ϕ‖+ |y0|(T − t0) + AN(T − t0)2p + (T − t0)2F .
3. N takes bounded sets to equicontinuous sets contained in C1( [t0 − τN , T ],R ).

Let l1, l2 ∈ [t0, T ], with l1 < l2, and consider x ∈ Bp. Then

|N(x)(l2)−N(x)(l1)| ≤ |y0(l2 − l1)|

+

∣∣∣∣∣
∫ l2

t0

(l2 − s)
N∑

i=1

ai(s)x(s− τi) ds−
∫ l1

t0

(l1 − s)
N∑

i=1

ai(s)x(s− τi) ds

∣∣∣∣∣

+

∣∣∣∣∣
∫ l2

t0

(l2 − s)f(x(s), x′(s))ds−
∫ l1

t0

(l1 − s)f(x(s), x′(s))ds

∣∣∣∣∣ = |y0(l2 − l1)|

+

∣∣∣∣∣
∫ l1

t0

(l2 − l1)
N∑

i=1

ai(s)x(s− τi) ds +
∫ l2

l1

(l2 − s)
N∑

i=1

ai(s)x(s− τi) ds

∣∣∣∣∣

+

∣∣∣∣∣
∫ l1

t0

(l2 − l1)f(x(s), x′(s))ds +
∫ l2

l1

(l2 − s)f(x(s), x′(s))ds

∣∣∣∣∣ ≤

≤ |y0|(l2 − l1) + (l2 − l1)
∫ l2

t0

N∑

i=1

|ai(s)| |x(s− τi)| ds + (l2 − l1)
∫ l2

t0

|f(x(s), x′(s))|ds

which tends to 0 as l2 −→ l1. The equicontinuity for the cases l1 < l2 ≤ 0 and l1 ≤ 0 ≤ l2
follow analogously.

The assertions 1. to 3. above imply that N(Bp) is bounded and equicontinuous for all
p > 0. Therefore by the Ascoli-Arzelá Theorem, N(Bp) is relatively compact and hence N
is compact.
4. The following set is bounded:

Λ(N) = {x ∈ C1( [t0 − τN , T ], R) : x = λN(x) for some 0 < λ < 1}.

Indeed. Let x ∈ Λ(N). Then x = λN(x) for some 0 < λ < 1. Thus for each t ∈ [t0, T ],

x(t) = λNx(t) =

= λ

{
ϕ(t0) + y0(t− t0)−

∫ t

t0

(t− s)
N∑

i=1

ai(s)x(s− τi) ds−
∫ t

t0

(t− s)f(x(s), x′(s))ds

}
.

¿From assertion 2. and since 0 < λ < 1, we have

|x(t)| < ‖ϕ‖+ |y0|(T − t0) + AN(T − t0)2‖x‖+ (T − t0)2F.
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88 L. P. GIMENES AND M. FEDERSON

Therefore

‖x(t)‖ ≤ ‖ϕ‖+ |y0|(T − t0) + (T − t0)
2
F

1−AN(T − t0)
2

and hence Λ(N) is bounded.
¿From assertions 1. to 4. and Schaefer Fixed Point Theorem, N has a fixed point, say

x(t), which is a solution of (2.1). Let us denote such solution by x1(t). Then for t 6= tk,
x1(t) is a solution of problem (2.1)-(2.2).

Now we suppose that t = t1 and we consider the impulsive problem (2.1)-(2.2). As
before, we transform (2.1)-(2.2) into a fixed point problem. We consider the operator

N2 : C1( [t1, T ],R ) −→ C1( [t1, T ],R )

given by

N2(x)(t) = I1(x1(t1)) + J1(x1(t1))(t− t1)

−
∫ t

t1

(t− s)
N∑

i=1

ai(s)x(s− τi) ds−
∫ t

t1

(t− s)f(x(s), x′(s)) ds.

Following the steps of assertions 1. to 4., one can show that N2 admits a fixed point
which is a solution of (2.1)-(2.2) and which we denote by x2. Then for t = tk, k ∈ N, we
consider the operator

Nk+1 : C1( [tk, T ],R ) −→ C1( [tk, T ],R )

given by

Nk+1(x)(t) = Ik(xk(tk)) + Jk(xk(tk))(t− tk)

−
∫ t

tk

(t− s)
N∑

i=1

ai(s)x(s− τi) ds−
∫ t

tk

(t− s)f(x(s), x′(s)) ds.

Again, following the steps of assertions 1. to 4., it can be shown that Nk+1 admits a
fixed point which is a solution of (2.1)-(2.2). Let us denote such solution by xk+1. Then

x(t) =





ϕ(t), t ∈ [t0 − τN , t0]
x1(t), t ∈ (t0, t1)
x2(t), t ∈ [t1, t2)
· · ·
xk+1(t), t ∈ [tk, tk+1)
· · ·
xm(t), t ∈ [tm, T )

is a solution of problem (2.1)-(2.2). ¤

Next we prove a result which guarantees the existence of a solution of problem (2.5)-(2.6).
The proof follows the ideas of Theorem 3.1 also based on [1].
???
Publicado pelo ICMC-USP
Sob a supervisão da CPq/ICMC



SECOND ORDER RETARDED DIFFERENTIAL EQUATIONS 89

Theorem 3.2. Suppose the hypotheses (H ′
1), (H2), (H3), (H ′

4), (H5) and (H6) are
fulfilled. Then problem (2.5)-(2.6) admits a solution on [t0 − τN , T ].

Proof. Consider the operator

N : C1( [t0 − τN , T ],R ) −→ C1( [t0 − τN , T ],R )

given by

N(x)(t) =





ϕ(t), t0 − τN ≤ t ≤ t0,

ϕ(t0) + y0(t− t0)−
∫ t

t0

[
(t− s)

N∑

i=1

∫ s

s−τi

bi(s− u)x(u) du

]
ds

−
∫ t

t0

(t− s)f(x(s), x′(s)) ds, t0 ≤ t ≤ T.

We will prove that N has a fixed point. As in Theorem 3.1, ϕ is a fixed point of the
restriction of N to [t0 − τN , t0], N |[t0−τN ,t0]. Therefore it remains to prove that N |[t0,T ]

admits a fixed point.
We prove some assertions.

1. N is continuous.
Indeed. Let {xn} be a sequence in C1( [t0 − τN , T ],R ) with xn → x. We have

|N(xn)(t)−N(x)(t)| ≤ (T − t0)‖x− xn‖
∫ t

t0

N∑

i=1

∫ s

s−τi

|bi(s− u)| du ds

+(T − t0)
∫ t

t0

| f(xn(s), x′n(s))− f(x(s), x′(s))| ds

≤ (T − t0)2BN‖x− xn‖

+(T − t0)
∫ t

t0

| f(xn(s), x′n(s))− f(x(s), x′(s))| ds

which tends to 0 as n →∞. Hence

‖N(xn)−N(x)‖ −→ 0, as n →∞.

2. N takes bounded sets to bounded sets.
We will prove that given p ≥ 0, there exists l ≥ 0 such that

x ∈ Bp = {y ∈ C1( [t0 − τN , T ],R); ‖y‖ ≤ p} implies ‖N(x)‖ ≤ l.
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90 L. P. GIMENES AND M. FEDERSON

For t ∈ [t0, T ], we have

|N(x)(t)| ≤ ‖ϕ‖+ |y0|(T − t0) + (T − t0)
∫ t

t0

N∑

i=1

∫ s

s−τi

|bi(s− u)| |x(u)|du ds

+(T − t0)
∫ t

t0

|f(x(s), x′(s))|ds

≤ ‖ϕ‖+ |y0|(T − t0) + BN(T − t0)2‖x‖+ (T − t0)2F.

The assertion follows by taking l = ‖ϕ‖+ |y0|(T − t0) + BN(T − t0)2p + (T − t0)2F .
3. N takes bounded sets to equicontinuous sets contained in C( [t0 − τN , T ],R ).

Let l1, l2 ∈ [t0, T ], with l1 < l2, and consider x ∈ Bp. Then

|N(x)(l2)−N(x)(l1)| ≤

≤ |y0(l2 − l1)|+
∣∣∣∣∣
∫ l2

t0

[
(l2 − s)

N∑

i=1

∫ s

s−τi

bi(s− u)x(u) du

]
ds

−
∫ l1

t0

[
(l1 − s)

N∑

i=1

∫ s

s−τi

bi(s− u)x(u) du

]
ds

∣∣∣∣∣

+

∣∣∣∣∣
∫ l2

t0

(l2 − s)f(x(s), x′(s))ds−
∫ l1

t0

(l1 − s)f(x(s), x′(s))ds

∣∣∣∣∣ =

= |y0(l2 − l1)|+
∣∣∣∣∣
∫ l1

t0

[
(l2 − l1)

N∑

i=1

∫ s

s−τi

bi(s− u)x(u) du

]
ds

+
∫ l2

l1

[
(l2 − s)

N∑

i=1

∫ s

s−τi

bi(s− u)x(u) du

]
ds

∣∣∣∣∣

+

∣∣∣∣∣
∫ l1

t0

(l2 − l1)f(x(s), x′(s))ds +
∫ l2

l1

(l2 − s)f(x(s), x′(s))ds

∣∣∣∣∣ ≤

≤ |y0|(l2− l1)+ (l2− l1)
∫ l2

t0

N∑

i=1

∫ s

s−τi

|bi(s−u)||x(u)|du ds+(l2− l1)
∫ l2

t0

|f(x(s), x′(s))|ds

which tends to 0 as l2 −→ l1 . The equicontinuity for the cases l1 < l2 ≤ 0 and l1 ≤ 0 ≤ l2
follow analogously.
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SECOND ORDER RETARDED DIFFERENTIAL EQUATIONS 91

The assertions 1. to 3. above imply that N(Bp) is bounded and equicontinuous for
all p > 0. Therefore the Ascoli-Arzelá Theorem implies N(Bp) is relatively compact and
hence N is compact.
4. The following set is bounded:

Λ(N) = {x ∈ C1( [t0 − τN , T ], R) : x = λN(x) for some 0 < λ < 1}.

Indeed. Let x ∈ Λ(N). Then x = λN(x) for some 0 < λ < 1. Thus for each t ∈ [t0, T ],

x(t) = λNx(t) = λ {ϕ(t0) + y0(t− t0)

−
∫ t

t0

[
(t− s)

N∑

i=1

∫ s

s−τi

bi(s− u)x(u) du

]
ds−

∫ t

t0

(t− s)f(x(s), x′(s)) ds

}
.

¿From assertion 2. and since 0 < λ < 1, we have

|x(t)| < ‖ϕ‖+ |y0|(T − t0) + BN(T − t0)2‖x‖+ (T − t0)2F.

Therefore

‖x(t)‖ ≤ ‖ϕ‖+ |y0|(T − t0) + (T − t0)
2
F

1−BN(T − t0)
2

and hence Λ(N) is bounded.
¿From assertions 1. to 4. and Schaefer Fixed Point Theorem, N has a fixed point, say

x(t), which is a solution of (2.5). Let us denote such solution by x1. Then for t 6= tk, x1(t)
is a solution of the given problem.

Now we suppose that t = t1, that is, t is the first instant of impulse action and we consider
the impulsive problem (2.5)-(2.6). Again as in Theorem 3.1, we transform (2.5)-(2.6) into
a fixed point problem. We consider the operator

N2 : C( [t1, T ],R ) −→ C( [t1, T ],R )

given by

N2(x)(t) = I1(x1(t1)) + J1(x1(t1))(t− t1)

−
∫ t

t1

[
(t− s)

N∑

i=1

∫ s

s−τi

bi(s− u)x(u) du

]
ds−

∫ t

t1

(t− s)f(x(s), x′(s))ds.

Following the steps of assertions 1. to 4., it can be shown that N2 admits a fixed point
which is a solution of (2.5)-(2.6). We denote such solution by x2.

When t = tk, for each k ∈ N, we consider the operator

Nk+1 : C( [tk, T ],R ) −→ C( [tk, T ],R )
???
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given by

Nk+1(x)(t) = Ik(xk(tk)) + Jk(xk(tk))(t− tk)

−
∫ t

tk

[
(t− s)

N∑

i=1

∫ s

s−τi

bi(s− u)x(u) du

]
ds−

∫ t

tk

(t− s)f(x(s), x′(s))ds

and then one can show, as in assertions 1. to 4., that Nk+1 admits a fixed point which is
a solution of (2.5)-(2.6). Let us denote such solution by xk+1.

Then a solution given by

x(t) =





ϕ(t), t ∈ [t0 − τN , t0]
x1(t), t ∈ (t0, t1)
x2(t), t ∈ [t1, t2)
· · ·
xk+1(t), t ∈ [tk, tk+1)
· · ·
xm(t), t ∈ [tm, T )

satisfies problem (2.5)-(2.6). ¤

4. STABILITY THEOREMS

In this section, we prove that problems (2.1) and (2.5) can be exponentially stabilized
by impulses.

Theorem 4.1. Suppose hypotheses (H1) to (H4) are fulfilled and f(u, v)v ≥ 0, for all

u, v ∈ R. If (A + F )τ < exp {−[1 + N(A + F )]τ}, where τ =
N∑

i=1

τi, then problem (2.1)

can be exponentially stabilized by impulses.

Proof. Suppose (A + F )τ < exp {−[1 + N(A + F )]τ}, with τ =
N∑

i=1

τi. Then there

exist α > 0 and l ≥ τ such that

(A + F )τ ≤ exp [−2α(l + τ)] exp {−[1 + (A + F )N ]l}. (4.1)

Let α and l be as in (4.1). For every sequence {tk}k∈N such that t0 < t1 < . . . < tk < . . .
and lim

k→+∞
tk = +∞, with τN ≤ tk − tk−1 ≤ l, let

Ik(u) = Jk(u) = dku, k = 1, 2, . . . ,

where

dk =

√
pk − (A + F )τ

2
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and

pk = exp[−2α(tk+1 − tk + τ)] exp {−[1 + N(A + F )](tk+1 − tk)}.
Then dk is a non-negative real number, since pk ≥ (A + F )τ from (4.1).

For every ε > 0, let

δ =
ε√

1 + (A + F )τ
exp[−α(t1 − t0)] exp

[
−1

2
[1 + (A + F )N ](t1 − t0)

]
. (4.2)

We will show that, for each solution x(t; t0, ϕ, y0) of (2.1), we have

√
‖ϕ‖∞2 + y0

2 ≤ δ implies
√

x2(t) + x′2(t) ≤ ε exp[−α(t− t0)], t ≥ t0.

Let t ∈ [t0, t1) and consider the Lyapunov functional

V (t) = x2(t)+x′2(t)+
N∑

i=1

∫ t

t−τi

|ai(s+τi)|x2(s)ds+
N∑

i=1

∫ t

t−τi

|f(x(s+τi), x′(s+τi))|x2(s)ds

which satisfies

(i) V (t) ≥ x2(t) + x′2(t).

(ii) V (t) ≤ [(1 + (A + F )τ ] [ ‖xt‖2 + x′2(t)], where ‖xt‖ := sup
t−τN≤s≤t

|x(s)|,

since

V (t) ≤ x2(t) + x′2(t) + ‖xt‖2
N∑

i=1

∫ t+τi

t

|ai(s)|ds + ‖xt‖2
N∑

i=1

∫ t+τi

t

|f(x(s), x′(s))|ds ≤

≤ x2(t) + x′2(t) + ‖xt‖2Aτ + ‖xt‖2Fτ ≤ [1 + (A + F )τ ][ ‖xt‖2 + x′2(t)].

V (t) also satisfies

(iii) V ′(t) ≤ [1 + N(A + F )]V (t), for t ∈ (t0, t1),

since x(t) is a solution of (2.1) and

V ′(t) = 2x(t)x′(t) + 2x′(t)x′′(t) +
N∑

i=1

|ai(t + τi)|x2(t)−
N∑

i=1

|ai(t)|x2(t− τi)

+
N∑

i=1

|f(x(t + τi), x′(t + τi))|x2(t)−
N∑

i=1

|f(x(t), x′(t))|x2(t− τi) ≤
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= 2x(t)x′(t) + 2
N∑

i=1

|ai(t)|x(t− τi)x′(t)− 2f(x(t), x′(t))x′(t) +
N∑

i=1

|ai(t + τi)|x2(t)

−
N∑

i=1

|ai(t)|x2(t− τi) +
N∑

i=1

|f(x(t + τi), x′(t + τi))|x2(t)−
N∑

i=1

|f(x(t), x′(t))|x2(t− τi) ≤

≤ x2(t) + x′2(t) +
N∑

i=1

|ai(t)|x′2(t) +
N∑

i=1

|ai(t)|x2(t− τi)

−2f(x(t), x′(t))x′(t) +
N∑

i=1

|ai(t + τi)|x2(t)−
N∑

i=1

|ai(t)|x2(t− τi)

+
N∑

i=1

|f(x(t + τi), x′(t + τi))|x2(t)−
N∑

i=1

|f(x(t), x′(t))|x2(t− τi) ≤

≤ x2(t)+x′2(t)+
N∑

i=1

|ai(t)|x′2(t)+
N∑

i=1

|ai(t+ τi)|x2(t)+
N∑

i=1

|f(x(t+ τi), x′(t+ τi))|x2(t) ≤

≤ x2(t) + x′2(t) + ANx′2(t) + ANx2(t) + FNx2(t) ≤

≤ [1 + N(A + F )][x2(t) + x′2(t)] ≤ [1 + N(A + F )]V (t).

Solving V ′(t) ≤ [1 + N(A + F )]V (t), we obtain

V (t) ≤ V (t0) exp {[1 + N(A + F )](t− t0)}. (4.3)

Therefore

x2(t) + x′2(t) ≤ V (t) ≤ V (t0) exp {[1 + N(A + F )](t− t0)} ≤

≤ [1 + (A + F )τ ][ ‖xt0‖2 + x′2(t0) ] exp {[1 + N(A + F )](t1 − t0)} ≤

≤ [1 + (A + F )τ ]δ2 exp {[1 + N(A + F )](t1 − t0)} =

= ε2 exp [−2α(t1 − t0)] ≤ ε2 exp [−2α(t− t0)]

and hence √
x2(t) + x′2(t) ≤ ε exp [−α(t− t0)]. (4.4)

But from the right continuity of x(t) and x′(t), (4.4) also holds on [t0, t1). Therefore
√

x2(t) + x′2(t) ≤ ε exp [−α(t− t0)], t ∈ [t0, t1).
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It follows that

sup
t1−τi≤t≤t1

[x2(t) + x′2(t)] ≤ ε2 exp [−2α(t1 − t0 − τ)]. (4.5)

Now, we repeat the procedure above for t ∈ (t1, t2). Analogous to (4.3), we obtain

V (t) ≤ V (t+1 ) exp {[1 + N(A + F )](t2 − t1)} =

=

{
x2(t+1 ) + x′2(t+1 ) +

N∑

i=1

∫ t1

t1−τi

|ai(s + τi)|x2(s)ds

+
N∑

i=1

∫ t1

t1−τi

|f(x(s + τi), x′(s + τi))|x2(s) ds

}
exp {[1 + N(A + F )](t2 − t1)} =

=

{
x2(t1) + x′2(t1) +

N∑

i=1

∫ t1

t1−τi

|ai(s + τi)|x2(s)ds

+
N∑

i=1

∫ t1

t1−τi

|f(x(s + τi), x′(s + τi))|x2(s) ds

}
exp {[1 + N(A + F )](t2 − t1)} =

=

{
I1(x2(t1−)) + J1(x′

2(t1−)) +
N∑

i=1

∫ t1

t1−τi

|ai(s + τi)|x2(s)ds

+
N∑

i=1

∫ t1

t1−τi

|f(x(s + τi), x′(s + τi))|x2(s) ds

}
exp {[1 + N(A + F )](t2 − t1)} =

=

{
d1

2[x2(t1−) + x′2(t1−)] +
N∑

i=1

∫ t1

t1−τi

|ai(s + τi)|x2(s)ds

+
N∑

i=1

∫ t1

t1−τi

|f(x(s + τi), x′(s + τi))|x2(s) ds

}
exp {[1 + N(A + F )](t2 − t1)} ≤

≤ d1
2 sup

t1−τi≤t≤t1

[x2(t) + x′2(t)] exp {[1 + N(A + F )](t2 − t1)}

+ sup
t1−τi≤t≤t1

x2(t)Aτ exp {[1 + N(A + F )](t2 − t1)}

+ sup
t1−τi≤t≤t1

x2(t)F τ exp {[1 + N(A + F )](t2 − t1)} ≤
???

Publicado pelo ICMC-USP
Sob a supervisão CPq/ICMC



96 L. P. GIMENES AND M. FEDERSON

≤ [d1
2 + (A + F )τ ] sup

t1−τi≤t≤t1

[x2(t) + x′2(t)] exp {[1 + N(A + F )](t2 − t1)} ≤

≤ [d1
2 + (A + F )τ ]ε2 exp [−2α(t1 − t0 − τ)] exp {[1 + N(A + F )](t2 − t1)}.

¿From the definitions of d1 and p1, we have

x2(t) + x′2(t) ≤ V (t) ≤

≤ ε2[d1
2 + (A + F )τ ] exp [−2α(t1 − t0 − τ)] exp {[1 + N(A + F )](t2 − t1)} =

= ε2

(
p1 + (A + F )τ

2

)
exp [−2α(t1 − t0 − τ)] exp {[1 + N(A + F )](t2 − t1)} ≤

≤ ε2p1 exp [−2α(t1 − t0 − τ)] exp {[1 + N(A + F )](t2 − t1)} =

= ε2 exp [−2α(t2 − t0)] ≤ ε2 exp [−2α(t− t0)].

Hence
√

x2(t) + x′2(t) ≤ ε exp [−α(t− t0)]. (4.6)

In fact we have from the right continuity of x(t) and x′(t) that (4.6) holds for t ∈ [t1, t2).
Thus

√
x2(t) + x′2(t) ≤ ε exp [−α(t− t0)], t ∈ [t1, t2).

It follows that

sup
t2−τi≤t≤t2

[x2(t) + x′2(t)] ≤ ε2 exp [−2α(t2 − t0 − τ)]. (4.7)

With analogous arguments, it follows that for all k ∈ N
√

x2(t) + x′2(t) ≤ ε exp [−α(t− t0)], t ∈ [tk−1, tk).

Hence
√

x2(t) + x′2(t) ≤ ε exp [−α(t− t0)], t ≥ t0,

and the proof is complete. ¤

Now we prove that problem (2.5) can be exponentially stabilized by impulses. The proof
follows the ideas of Theorem 4.1.
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Theorem 4.2. Suppose the hypotheses (H ′
1), (H2), (H3) and (H ′

4) are fulfilled and

f(u, v)v ≥ 0, for all u, v ∈ R. If (B + F )τ < exp {−[1 + N(B + F )]τ}, where τ =
N∑

i=1

τi,

then problem (2.5) can be exponentially stabilized by impulses.

Proof. If (B + F )τ < exp {−[1 + N(B + F )]τ}, with τ =
N∑

i=1

τi, then there exist

α > 0 and l ≥ τ such that

(B + F )τ ≤ exp [−2α(l + τ)] exp {−[1 + (B + F )N ]l}. (4.8)

Let α and l be as in (4.8). For every sequence {tk}k∈N such that t0 < t1 < . . . < tk < . . .
and lim

k→∞
tk = ∞, with τN ≤ tk − tk−1 ≤ l, let

Ik(u) = Jk(u) = dku, k = 1, 2, . . . ,

where

dk =

√
pk − (B + F )τ

2
and

pk = exp[−2α(tk+1 − tk + τ)] exp {−[1 + N(B + F )](tk+1 − tk)}.
Then dk is a non-negative real number, since pk ≥ (B + F )τ from (4.8).

For every ε > 0, let

δ =
ε√

1 + (B + F )τ
exp[−α(t1 − t0)] exp

[
−1

2
[1 + (B + F )N ](t1 − t0)

]
. (4.9)

We have to show that for each solution x(t; t0, ϕ, y0) of (2.5),

√
‖ϕ‖∞2 + y0

2 ≤ δ implies
√

x2(t) + x′2(t) ≤ ε exp[−α(t− t0)], t ≥ t0.

Given t ∈ [t0, t1), we define the Lyapunov functional

V (t) = x2(t) + x′2(t) +
N∑

i=1

∫ t

t−τi

[∫ t

u

|bi(u− s + τi)|x2(s)ds

]
du

+
N∑

i=1

∫ t

t−τi

|f(x(s + τi), x′(s + τi))|x2(s)ds.

which satisfies the properties:
???
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(i) V (t) ≥ x2(t) + x′2(t).

(ii) V (t) ≤ [(1 + (B + F )τ ] [ ‖xt‖2 + x′2(t)], where ‖xt‖ := sup
t−τN≤s≤t

|x(s)|.

Indeed. We have

V (t) ≤ x2(t) + x′2(t) + ‖xt‖2
N∑

i=1

∫ t

t−τi

∫ τi

0

|bi(s)|ds du

+ ‖xt‖2
N∑

i=1

∫ t+τi

t

|f(x(s), x′(s))| ds

≤ x2(t) + x′2(t) + ‖xt‖2Bτ + ‖xt‖2Fτ ≤ [1 + (B + F )τ ][ ‖xt‖2 + x′2(t)].

We also have

(iii) V ′(t) ≤ [1 + N(B + F )]V (t), for t ∈ (t0, t1),

since x(t) is a solution of (1.4) and

V ′(t) = 2x(t)x′(t) + 2x′(t)x′′(t) +
N∑

i=1

∫ t

t−τi

|bi(u− t + τi)|x2(t)du

−
N∑

i=1

∫ t

t−τi

|bi(t−s)|x2(s)ds+
N∑

i=1

|f(x(t+τi), x′(t+τi))|x2(t)−
N∑

i=1

|f(x(t), x′(t))|x2(t−τi) ≤

≤ 2x(t)x′(t) + 2
N∑

i=1

∫ t

t−τi

|bi(t− s)|x(s)x′(t)ds− 2f(x(t), x′(t))x′(t)

+
N∑

i=1

∫ t

t−τi

|bi(u− t + τi)|x2(t)du−
N∑

i=1

∫ t

t−τi

|bi(t− s)|x2(s)ds

+
N∑

i=1

|f(x(t + τi), x′(t + τi))|x2(t)−
N∑

i=1

|f(x(t), x′(t))|x2(t− τi) ≤

≤ x2(t) + x′2(t) +
N∑

i=1

∫ t

t−τi

|bi(t− s)|x2(s)ds +
N∑

i=1

∫ t

t−τi

|bi(t− s)|x′2(t)ds

−2f(x(t), x′(t))x′(t) +
N∑

i=1

∫ t

t−τi

|bi(u− t + τi)|x2(t)du−
N∑

i=1

∫ t

t−τi

|bi(t− s)|x2(s)ds
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+
N∑

i=1

|f(x(t + τi), x′(t + τi))|x2(t)−
N∑

i=1

|f(x(t), x′(t))|x2(t− τi) ≤

≤ x2(t) + x′2(t) +
N∑

i=1

∫ t

t−τi

|bi(t− s)|x′2(t)ds +
N∑

i=1

∫ t

t−τi

|bi(u− t + τi)|x2(t)du

+
N∑

i=1

|f(x(t + τi), x′(t + τi))|x2(t) ≤

≤ x2(t) + x′2(t) +
N∑

i=1

∫ τi

0

|bi(s)|x′2(t)ds +
N∑

i=1

∫ τi

0

|bi(s)|x2(t)ds + FNx2(t) =

=

[
1 +

N∑

i=1

∫ τi

0

|bi(s)|ds + NF

]
x2(t) +

[
1 +

N∑

i=1

∫ τi

0

|bi(s)|ds

]
x′2(t) ≤

≤ (1 + NB + NF )x2(t) + (1 + NB) x′2(t) ≤

≤ [1 + N(B + F )][x2(t) + x′2(t)] ≤ [1 + N(B + F )]V (t).

Solving V ′(t) ≤ [1 + N(B + F )]V (t), we obtain

V (t) ≤ V (t0) exp {[1 + N(B + F )](t− t0)}. (4.10)

Therefore

x2(t) + x′2(t) ≤ V (t) ≤ V (t0) exp {[1 + N(B + F )](t− t0)} ≤

≤ [1 + (B + F )τ ][ ‖xt0‖2 + x′2(t0) ] exp {[1 + N(B + F )](t1 − t0)} ≤

≤ [1 + (B + F )τ ]δ2 exp {[1 + N(B + F )](t1 − t0)} =

= ε2 exp [−2α(t1 − t0)] ≤ ε2 exp [−2α(t− t0)].

Hence
√

x2(t) + x′2(t) ≤ ε exp [−α(t− t0)]. (4.11)

But from the right continuity of x(t) and x′(t) , (4.11) also holds on [t0, t1). Therefore

√
x2(t) + x′2(t) ≤ ε exp [−α(t− t0)], t ∈ [t0, t1).
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It follows that

sup
t1−τi≤t≤t1

[x2(t) + x′2(t)] ≤ ε2 exp [−2α(t1 − t0 − τ)]. (4.12)

Now, we repeat the procedure above for t ∈ (t1, t2). Analogous (4.10), we obtain

V (t) ≤ V (t+1 ) exp {[1 + N(B + F )](t2 − t1)} =

=

{
x2(t+1 ) + x′2(t+1 ) +

N∑

i=1

∫ t1

t1−τi

[∫ t1

u

|bi(u− s + τi)|x2(s)ds

]
du

+
N∑

i=1

∫ t1

t1−τi

|f(x(s + τi), x′(s + τi))|x2(s) ds

}
exp {[1 + N(B + F )](t2 − t1)} =

=

{
x2(t1) + x′2(t1) +

N∑

i=1

∫ t1

t1−τi

[∫ t1

u

|bi(u− s + τi)|x2(s)ds

]
du

+
N∑

i=1

∫ t1

t1−τi

|f(x(s + τi), x′(s + τi))|x2(s) ds

}
exp {[1 + N(B + F )](t2 − t1)} =

=

{
I1(x2(t1−)) + J1(x′

2(t1−)) +
N∑

i=1

∫ t1

t1−τi

[∫ t1

u

|bi(u− s + τi)|x2(s)ds

]
du

+
N∑

i=1

∫ t1

t1−τi

|f(x(s + τi), x′(s + τi))|x2(s) ds

}
exp {[1 + N(B + F )](t2 − t1)} =

=

{
d1

2[x2(t1−) + x′2(t1−)] +
N∑

i=1

∫ t1

t1−τi

[∫ t1

u

|bi(u− s + τi)|x2(s)ds

]
du

+
N∑

i=1

∫ t1

t1−τi

|f(x(s + τi), x′(s + τi))|x2(s) ds

}
exp {[1 + N(B + F )](t2 − t1)} ≤

≤ d1
2 sup

t1−τi≤t≤t1

[x2(t) + x′2(t)] exp {[1 + N(B + F )](t2 − t1)}

+ sup
t1−τi≤t≤t1

x2(t)Bτ exp {[1 + N(B + F )](t2 − t1)}

+ sup
t1−τi≤t≤t1

x2(t)F τ exp {[1 + N(B + F )](t2 − t1)} ≤
???
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≤ [d1
2 + (B + F )τ ] sup

t1−τi≤t≤t1

[x2(t) + x′2(t)] exp {[1 + N(B + F )](t2 − t1)} ≤

≤ [d1
2 + (B + F )τ ]ε2 exp [−2α(t1 − t0 − τ)] exp {[1 + N(B + F )](t2 − t1)}.

¿From the definitions of d1 and p1, we have

x2(t) + x′2(t) ≤ V (t) ≤

≤ ε2[d1
2 + (B + F )τ ] exp [−2α(t1 − t0 − τ)] exp {[1 + N(B + F )](t2 − t1)} =

= ε2

(
p1 + (B + F )τ

2

)
exp [−2α(t1 − t0 − τ)] exp {[1 + N(B + F )](t2 − t1)} ≤

≤ ε2p1 exp [−2α(t1 − t0 − τ)] exp {[1 + N(B + F )](t2 − t1)} =

= ε2 exp [−2α(t2 − t0)] ≤ ε2 exp [−2α(t− t0)].

Hence √
x2(t) + x′2(t) ≤ ε exp [−α(t− t0)]. (4.13)

In fact we have from the right continuity of x(t) and x′(t) that (4.13) holds for t ∈ [t1, t2).
Thus √

x2(t) + x′2(t) ≤ ε exp [−α(t− t0)], t ∈ [t1, t2).

It follows that

sup
t2−τi≤t≤t2

[x2(t) + x′2(t)] ≤ ε2 exp [−2α(t2 − t0 − τ)]. (4.14)

With analogous arguments, it follows that for all k ∈ N,

√
x2(t) + x′2(t) ≤ ε exp [−α(t− t0)], t ∈ [tk−1, tk).

Hence √
x2(t) + x′2(t) ≤ ε exp [−α(t− t0)], t ≥ t0,

and the proof is complete. ¤

Remark 4. 1. If in addition to the hypotheses of Theorem 4.1 (respectively Theorem
4.2), tk, Ik and Jk also satisfy

tk − tk−1 = l and Ik(u) = Jk(u) = du, k = 1, 2, . . . , (4.15)
???
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with

d =

√
p− (∗+ F )τ

2
and p = exp[−2α(l + τ)] exp {−[1 + N(∗+ F )]l}, (4.16)

where ∗ = A (resp. ∗ = B), then problem (2.1) (resp. problem (2.5)) can be exponentially
stabilized by periodical impulses.

Remark 4. 2. By the proofs of Theorem 4.1 and Theorem 4.2, one can see that
all solutions of problems (2.1) and (2.5) converge exponentially to zero under impulsive
controls. Thus our theorems actually prove the global stabilization for (2.1) and (2.5).
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