

TABELA 1 Gráfico de Quádricas

mas os traços nos planos xz e yz são as hipérboles

$$\frac{x^2}{4} - \frac{z^2}{4} = 1$$
 $y = 0$ $y^2 - \frac{z^2}{4} = 1$ $x = 0$

Essa superfície é chamada hiperbolóide de uma folha e está esboçada na Figura 9.

A idéia de usar os traços para desenhar a superfície é empregada em programas de computadores que fazem gráficos tridimensionais. Na maioria desses programas os traços nos planos verticais x=k e y=k são apresentados para valores de k igualmente espaçados, e partes do gráfico são eliminadas utilizando-se a técnica de remover linhas escondidas. A Tabela 1 mostra gráficos de computador de seis quádricas básicas na forma padrão. Todas as superfícies são simétricas em relação ao eixo z. Se uma quádrica é simétrica em relação a um eixo diferente, sua equação se modifica de modo apropriado.

Superfície	Equação	Superficie	Equação
Elipsóide	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ Todos os traços são elipses. Se $a = b = c$, o elipsóide é uma esfera.	Cone	$\frac{z^2}{c^2} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$ Traços horizontais são elipses. Traços verticais nos planos $x = k$ e $y = k$ são hipérboles se $k \neq 0$, mas são um par de retas quando $k = 0$.
Parabolóide Elíptico	$\frac{z}{c} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$ Traços horizontais são elipses. Traços verticais são parábolas. A variável elevada à primeira potência indica o eixo do parabolóide.	Hiperbolóide de Uma Folha	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$ Traços horizontais são elipses. Traços verticais são hipérboles. O eixo de simetria corresponde à variável cujo coeficiente é negativo.
Parabolóide Hiperbólico	$\frac{z}{c} = \frac{x^2}{a^2} - \frac{y^2}{b^2}$ Traços horizontais são hipérboles. Traços verticais são parábolas. O caso aqui ilustrado corresponde a $c < 0$	Hiperbolóide de Duas Folhas	$-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ Traços horizontais em $z = k$ são elipses se $k > c$ ou se $k < -c$. Traços verticais são hipérboles. Os dois sinais de menos indicam duas folhas.