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Abstract In Information Visualization, adding and removing data elements can
strongly impact the underlying visual space. We have developed an inherently
incremental technique (incBoard) that maintains a coherent disposition of elements
from a dynamic multidimensional data set on a 2D grid as the set changes. Here, we
introduce a novel layout that uses pairwise similarity from grid neighbors, as defined
in incBoard, to reposition elements on the visual space, free from constraints imposed
by the grid. The board continues to be updated and can be displayed alongside
the new space. As similar items are placed together, while dissimilar neighbors are
moved apart, it supports users in the identification of clusters and subsets of related
elements. Densely populated areas identified in the incSpace can be efficiently
explored with the corresponding incBoard visualization, which is not susceptible to
occlusion. The solution remains inherently incremental and maintains a coherent
disposition of elements, even for fully renewed sets. The algorithm considers relative
positions for the initial placement of elements, and raw dissimilarity to fine tune the
visualization. It has low computational cost, with complexity depending only on the
size of the currently viewed subset, V. Thus, a data set of size N can be sequentially
displayed in O(N) time, reaching O(N2) only if the complete set is simultaneously
displayed.
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1 Introduction

High-dimensional data sets may be displayed by laying out their elements on a 2D
space according to the similarity among items. This approach has been adopted
to explore document collections [11, 30, 37], to display thumbnail collections of
images [6, 34, 35] and to visualize general multidimensional data stored in data-
bases [4].

However, to visualize a dynamic set where objects are constantly being added and
removed, one can either (i) rely on a predefined layout, which would not capture
major changes in data, or alternatively (ii) redo the whole map at critical steps, which
might be disturbing to users as new map layouts may bear little or no resemblance
to the original layout. We introduced a third strategy that incrementally positions
and re-positions data items on a chess board-like space as elements are added and
removed while preserving the overall layout configuration [33].

If we were to add chess pieces to a fixed position on a chess board, keeping
only one piece by cell and similar pieces together, the arrival of a new piece would
cause one or more pieces to be displaced to accommodate the new one. We could
steer the way we displace pieces in order to achieve those goals. The problem could
also be seen as one of sorting elements by similarity, but handling two dimensions,
resembling somehow a 2D expanded insertion sort. When a new item arrives in an
insertion sort, it may displace neighboring items, whilst the size of the allocated space
increases.

Such a technique might be applied, e.g., to track changes in scientific literature. It
would enable users to add new articles to maps that they are familiar with, maps
that could also have been fine tuned by removing undesired papers. When new
articles arrive, their location and impact on the map could provide these experienced
users direct clues about their content and trends in research. This would not be
possible if the choice is to redo the map or stick to earlier layouts. In any of
those scenarios, the arrival of new elements can impact data organization on the
underlying visual space. For instance, as a new research topic becomes popular, it
could fill the map, squeezing together some loosely related articles. Consequently,
the meaning of neither absolute positions nor distances is consistent across different
time moments, a fact that can be very misleading to a human analyst. On following
these examples and analogies, we can not rely on fixed visual axes, nor in absolute
distances among elements. The important factor should rather be where elements
are placed in relation to one another.

Based on the above rationale, we consider relative similarity of elements in
the original high-dimensional space to place (project) them on a 2D space that
follows a chess board analogy. The incremental strategy allows the effective display
of dynamic data sets. The resulting visual space maintains a coherent disposition
of elements from constantly updated sets, even though it does not rely on fixed,
well defined or explicit visual axes or dimensions. Moreover, even if no item
from the final set has co-existed with those from the initial set, their placement
still follows the same global relative disposition of classes or categories as in the
initial set of a given collection. Additionally, adding a new element does not
demand a complete re-arrangement of elements. This is an interesting property,
as users may track layout changes as element positioning gradually progresses.
Moreover, the incBoard visualization does not suffer from element occlusion, and
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allocating a fixed screen space to each cell enables using sophisticated and highly
informative glyphs.

We compared our approach with other multidimensional scaling strategies using
objective measures and obtained very competitive results even when working with
static data sets. To develop a proof-of-concept, the approach has been tailored
to provide a specific visualization that handles ever changing corpora, one from
which documents may be added, removed or replaced, which is not supported by
current placement techniques. We provide a image thumbnail collection visualization
example that benefits from the lack of occlusion on the board-like space, where
a single element may occupy each cell. On a previous study, we have also found
some evidence that using space-filling glyphs instead of point-like representations is
beneficial to users [32].

Despite its advantages, incBoard has the shortcoming of not conveying pairwise
similarity among neighboring elements. Other visualization systems typically convey
pairwise similarity by the distance between two elements [4, 11, 37]. However, as
incBoard fits elements in a grid of fixed size cells, neighbors are always placed at
equal distances from each other, although neighboring elements are not necessarily
equally similar.

We hypothesize that a more precise representation of pairwise similarity can
better support investigation and exploration, as users might clearly identify and
“value” neighbor elements relationships, and also identify clusters of similar ele-
ments. HexBoard has been proposed as an improvement to incBoard, capable of
conveying similarity information for each neighboring pair [31]. It uses hexagon
shaped cells, thus all neighboring pairs share an edge, whose visual properties are
manipulated to reflect similarity between the neighboring elements. Nonetheless,
neighboring elements are still placed at fixed distances from one another.

In this paper we introduce an alternative strategy that employs pairwise similarity
from grid neighbors, as defined in incBoard, to freely reposition elements on the
2D space according to a layout solution provided by the incremental board, thus
building an incremental visual space (incSpace) free from constraints imposed by
the grid. Each element in the new incremental space has a corresponding position
on the board, which continues to be updated and may be displayed alongside the
new space. The new layout solution resembles the layout typically provided by other
multidimensional scaling strategies, where similar elements are clustered together,
while still being able to efficiently display dynamic data sets.

This paper presents the incremental space and revisits the incBoard solution,
providing an additional usage scenario and also describing its first extension,
the HexBoard and its corresponding visualization. The following section briefly
describes related techniques and potential applications. Section 3 (i) details the
board analogy space, (ii) presents how distances may be computed over it, (iii)
describes how elements are added, removed and replaced from the board, and (iv)
discusses algorithm complexity. Section 4 highlights differences between incBoard
and HexBoard. Section 5 describes how the incremental board space can be turned
into an incremental space. Section 6 presents the incBoard, HexBoard and incSpace
visualizations. Section 7 brings case studies introduced both to compare the proposed
techniques with other layout solutions using quantitative measures and to explore
possible application scenarios. Finally, conclusions and further work are discussed in
Section 8.
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2 Related work

Visualizing document collections is a typical application of high-dimensional data
visualization. Document collection visualizations are implemented in systems such
as CiteSpace II [11] and the Projection Explorer—PEx [30]. On those systems and
also on other related knowledge domain visualizations [8, 10], typically no conceptual
and/or explicit meaning is assigned to each visual dimension. The same can be
said about the FastMapDB tool [4], which employs 2D and 3D layouts to display
collections of structured data from databases. Notable exceptions are the explicit
mapping of height in 2.5D representations, scatterplot-based views, and, on some
systems, the mapping of time to one of the visual axes. In these latter examples, only
a few of the original data dimensions are explicitly mapped to a visual dimension,
not contemplating a true solution for n-dimensional data. Some systems, such as
PNNL’s IN-SPIRE [37], apply techniques that rely on extraction of factors, such
as Principal Component Analysis (PCA) and Latent Semantic Analysis (LSA) to
layout documents. They might be able to represent more than two or three original
dimensions on a two-dimensional space, but mapping only the first few significant
or “latent” dimensions, respectively. Hence they are still inadequate to handle high
dimensional data [29].

Nonetheless, in any of those solutions, visualizing changes in data requires build-
ing new layouts, or, in some cases, adopting visual dimensions established a priori
from an initial set [38], which may be inadequate to layout latter versions of the
data set.

One solution to this problem, as employed by Chen in his Citespace II visualiza-
tion [11], is to build the map beforehand from the whole data set and then manipulate
some visual attribute (for example, transparency) to add or remove elements from
the representation. Although this solution gradually presents the evolution of a data
set while maintaining a consistent layout, it cannot be considered as truly dynamic,
since the complete collection must be fully available before the visual representation
can be constructed. The map is not incrementally built as new documents are added
to the corpus, removed from it, or yet when existing documents are replaced with
new ones.

The incBoard grid-based space immediately reminds of self organizing maps
(SOMs) for visualizing document collections [16]. However, those results bear
major distinctions to ours: (i) grid dimensions are fixed beforehand, (ii) a single
cell is allowed to hold multiple documents or elements, and (iii) once elements
share a cell, similarity relations can only be inferred for the cell, relations among
individual elements are not represented. Similarly to our approach, SOM’s algorithm
complexity is a function of the number V of map units (grid cells), not of the data set
size N [15]. Nevertheless, to display a large data set using a small grid size V, a SOM
would fit all elements into the available cells, whereas our approach displays them
sequentially, having V elements on display at any given time, which is more suitable
for dynamic and time stamped data.

Dynamic extensions to SOM have been proposed, such as Incremental Grid
Growing(IGG) [7], and the growing self-organizing map (GSOM) and subsequent
developments [1, 2]. They overcome the requirement for pre-defining grid di-
mensions, nonetheless many data items may still cluster together in a single cell
(neuron), while other cells remain empty. This feature is useful to provide high level



Multimed Tools Appl

visualizations or to build hierarchical solutions, at the expense of not presenting
individual elements. An undesired feature of IGG and GSOM, also pointed out
elsewhere [27], is that they grow only from the border, leaving high density areas
(many elements in each cell) at the center. Results from IGG seem to degrade
when growing branches or arms merge. Latter versions of GSOM try to tackle
this problem, but require smoothing phases that increase the complexity of the
solution. Description of a removal process for neither GSOM or IGG has been found
hitherto.

Chalmers briefly mentions that new elements might be added while his multidi-
mensional scaling (MDS) technique converges to a solution, though this possibility is
not further explored [9]. Once the projected data set becomes stable, he expects that
reaching a solution will require a few O(N) iterations of a stochastic force directed
placement procedure. Latter enhancements to the technique also require a fine-
tuning phase to reach the final solution [26]. In either case, complexity would lie
well over O(N2) in an incremental scenario.

A more robust solution is presented by Law & Jain for an incremental ISOMAP
algorithm [20]. However, coordinates for all data items must be updated and can
change dramatically after each element addition [21]. Besides requiring extra compu-
tation to update the whole set, a global rearrangement of coordinates is not desirable
for our goals. In contrast, our solution requires few changes on coordinates for each
added (or removed) element, as discussed in Section 8.

Basalaj [5] introduces an incremental multidimensional scaling procedure. How-
ever, his approach requires a previously computed minimal spanning tree for the
data set, thus undermining its application on dynamic data sets. Like ourselves, he
advocates grid-like visualizations of elements arranged by similarity, the so-called
Proximity Grids. He introduces some options on how to build a grid from a final MDS
layout. Our approach is the exact opposite: we start with a grid layout and then build
a MDS layout. Basalaj’s bump approach is somewhat similar to our element addition
procedure, although it does not consider the re-arrangement of the existing elements
to reflect the changes introduced by the arriving ones. It is thus not appropriate for
incremental building, being dependent on a previously built layout.

Related studies by Rodden et al. [34, 35] show some evidence that arranging im-
ages by similarity is useful to designers searching for photographs and also that users
desire to avoid overlap. The Photomesa application [6] applies these principles to
display clusters and hierarchically organized image collections employing treemaps
and a simpler layout for image clusters called bubblemaps. The incBoard technique
accomplishes both goals of layout by similarity and occlusion avoidance, with the
additional benefit of gradually updating the visualization. A possible application
of our solution is thus to maintain a personal image library that gradually receives
additional images and yet keeps a familiar layout to the user.

Today, tag clouds are a popular feature of web pages, news sites and blogs.
These are lists of frequent keywords selected by users to label (‘tag’) content,
usually presented in alphabetical order, or ranked by frequency. Their spatial layout
according to some similarity measure has been suggested before. Hassan-Montero
and Herrero-Solana [13], for example, cluster them and display each cluster in
separate lines. Lines are then sorted to approximate related clusters. As our grid
space could be easily rendered using common HTML and no occlusion ever occurs,
presenting tag clouds arranged by similarity is another possible application.
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3 The Incremental Board space

The Incremental Board (incBoard) space is a grid-based 2D space with cells arranged
in rows and columns. It is expected that only a single element should occupy a cell at
any given moment, except temporarily when adding items. Formally:

An element Ei placed on this board space is represented by a point pi with
coordinates (xi, yi), with xi, yi ∈ Z. In other words, pi ∈ Z

2.
The incremental board space takes two possible states: (i) a stable state, where no

two elements share the same cell coordinates and (ii) an unstable state, where two or
more elements share a single cell. The unstable state requires action in order to bring
the board back to a stable condition.

The distance between two elements over the board is computed using the
Chebyshev distance dc(Ei, E j):

dc(Ei, E j) = max
{|xi − x j|, |yi − y j|

}
(1)

The Chebyshev or chessboard distance considers the number of steps required to
move from one cell to another, as defined in the dynamic construction procedures
detailed in Section 3.1. On the chess board analogy, it reflects the movement of
the king.

An earlier attempt employed the Manhattan distance, which, on the chess board
analogy, reflects the movement of the rook:

dm(Di, Dj) = |xi − x j| + |yi − y j| (2)

Apart from closely sticking to the chess board analogy and its distance relations,
an additional benefit of (1) is its more consistent behavior regarding the computation
of distances from a cell to its neighbors. As shown in Fig. 1b, computing the
Manhattan distance for the eight direct neighbors of a central cell produces different
results for the four neighboring cells at the corners and the other four neighbors.
Meanwhile, the Chebyshev distance is one for all eight direct neighbors (see Fig. 1a).
After some early experiments, the Chebyshev distance was adopted in all examples
presented here, as it yields a better use of the screen space. The Manhattan distance
often results in a cross-shaped distribution of documents, with more documents
placed around the axes.

The placement of elements on the 2D board may reflect their relative positioning
on the original n-dimensional space or their relative ranking derived from some

Fig. 1 Comparison of
neighbor distances using
Chebyshev (a) and Manhattan
distances (b), (1) and (2)
respectively

(a) (b)
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Table 1 Relative position ranking example

E j dc(E1, E j) Rc1(E j) δ(E1, E j) Rn1(E j)

E2 5 2 1,000 2
E3 4 1 850 1
E4 6 3 5,000 3

Rc1(E j) is the ranking on the 2D space relative to E1. Rn1(E j) is the ranking on the nD space relative
to E1

dissimilarity measure evaluated between elements. So, for each element Ei on
the board an error can be calculated to reflect the difference in the ranking of
other elements when ordering them by their distances on the 2D space dc(Ei, E j)

as compared to their ranking by dissimilarities δ(Ei, E j), defined in the original
n-dimensional or conceptual space. On the hypothetical example presented in
Table 1, the error should be zero, as the sorting of other elements relative to E1

would result in the same ordered set {E3, E2, E4}, using any of the distances and
ranks shown.

We weight the error measure both by: (i) the difference from the expected position
(Rni) to the actual position (Rci) of each of the other elements, and (ii) the expected
position (Rni), assigning more weight to errors originating on the vicinity of the
reference element Ei.

For a list L of elements, the weighted error Werr(Ei, L) relative to an element Ei

is given by:

∑

E j∈L

|Rci(E j) − Rni(E j)| × (|L| − Rni(E j)) (3)

Early experiments showed that the above error measure often yields the same
value for different placement options (see Section 3.1). If this is the case, a weighted
error count Cerr(Ei, L) is adopted as a second criterion:

∑

E j∈L

{
|L| − Rni(E j) if |Rci(E j) − Rni(E j)| �= 0

0 otherwise
(4)

Having defined these error measures, we can pursue the “goal of obtaining
a monotone relationship between the experimental dissimilarities or similarities
and the distances in the configuration[projection]”, as stated by Kruskal [19] for
nonmetric multidimensional scaling (MDS).

3.1 Dynamic construction

Except for the first element, new elements are always added, one at a time, at the cell
that currently holds its most similar element. As the chosen cell becomes unstable, a
process is started to bring the board back to a stable state. The first element is simply
positioned at an arbitrary location.

The process of finding the most similar element can be costly, so the system
operates in two possible modes: (i) full or (ii) stochastic sampling.
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In full sampling mode, the arriving element is compared to every element on the
board, whilst in the stochastic mode a fixed list of close neighbors is used instead.
The stochastic sampling mode is derived from Chalmers et al. [9]. Besides the list
of neighboring elements, a list of randomly selected elements is also kept. These two
lists are used to update the weighted error measure when elements are moved during
the addition or removal processes detailed below.

For a cell temporarily holding two elements, 16 solutions are evaluated to bring it
back to a stable state. Eight of them keep the new element at the center cell and move
the old one to one of its eight neighboring cells, and eight alternative solutions keep
the old element at the center and move the new one. The one option that introduces
the lowest added error for both elements is chosen.

Eventually, the displaced element will fall on another already occupied cell, in
which case the process is repeated with the two elements sharing this new cell.
In order to avoid cycles, a list is kept of the already visited cells, which are not
considered again as an option. The process ends when a moved element falls on an
empty cell. The standard steps for adding an element are presented in Algorithms 1
through 5.

If all neighboring cells of an unstable cell have already been visited, the disturbing
element is trapped and a special greedy procedure is applied to move it until it finds a
non-trapped cell (procedure call at line 27 of Algorithm 1). At each step, the trapped
cell’s neighboring cells are evaluated and the one associated with the minimum error
is chosen. Rows and columns left behind on the previous step are not considered
any more. For example, if the element is moved from row 5 to row 6, only rows
[6,∞[ are considered in the future. The procedure stops when a cell with non-visited
neighboring cells is found. Then, the regular process can resume. The list of visited
cells is always cleared before adding a new element.

Figure 2 shows a board before and after adding the element 40. The latest added
element is shown with a blue border, while displaced elements are shown with a
red border. On Fig. 2a, element 46 is initially added where element 22 is and then
moved to the upper left corner of the board, displacing no element. When 40 is added,
however, it causes the displacement of both 37 and 45. Element 40 is first assigned to
the cell where 22 is. The best option is evaluated and 40 is moved to where 37 was.

(a) (b)

Fig. 2 Two moments of a board, before and after adding element 40, respectively
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Between moving 37 and 40, 37 is chosen, and moved to where 45 was. This time, 45
is chosen and moved over 46. 45 is chosen once again and moved to an empty cell,
thus ending the process.

When removing elements, the board layout is adjusted pursuing two goals: (i)
better reflecting relative positions once an element has been removed, and (ii)
keeping the board as dense as possible, avoiding scattered elements. So, we try to
move elements closer to the board’s center. If the just emptied cell is above and to
right of the center, we fill it with an element taken from one of the three cells above
or to the right of it, choosing the option which yields the lowest added weighted
error. The process is repeated with the newly emptied cell until all the three options
are empty cells.

The most costly operation when adding or removing elements is to update
the error measures for all the positioning alternatives considered. To handle this
effectively, the process can select between operating in the full sampling mode or
in the stochastic sampling mode.

The full sampling mode simply uses the current list of elements on the board B
as the list L to compute weighted errors. This is a suitable option on maps with a
low number of elements, or when changes in the data set are rare. Using the full
sampling mode, we were able to obtain satisfactory performance when handling up
to 400 elements simultaneously on the board, with performance degrading rapidly
after that mark (see Section 3.2).

In the stochastic sampling mode, weighted error calculations for each element
consider a close neighbors list and a random list of elements, both having fixed
size [9]. Both lists start empty and are filled with randomly selected elements, with
the ones most similar to the reference element kept in its close neighbors list.
Whenever an element is a candidate for movement, its lists are updated, clearing
and repopulating the random list. The neighbors list is updated if any of the newly
selected random elements is closer to the reference element than those previously on
its neighboring list. The list of close neighbors of a newly added element Ei, LNEi ,
is also improved using the list of close neighbors of its current closest neighbor E j,
LNE j . This improvement process is repeated if a different closest neighbor is found.

The operating mode may be switched in real-time. For dynamic data sets, the
decision is based on the rate of new elements received, whereas for static data the
choice considers the elapsed time required to add new elements. Ideally, one should
adopt the full sampling mode to add the initial hundreds of items, and switch latter
on to the stochastic sampling mode. This mode would then work over a more stable
layout, where the random choice of a particular item does not significantly impact
the layout, while keeping the computational cost low.

3.2 Algorithm complexity

All required operations consider only those elements currently on the board. There-
fore, a whole data set with size N can be sequentially displayed with a constant
cost for adding and removing elements, as long as the viewing window (board size,
or number of occupied cells) has a fixed size V. The overall complexity would be
O(V × N) or simply O(N), as V remains constant.

A particular case, further analyzed here, occurs when the final board size V
matches the data set size N, thus producing a map of the complete data set.
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Using the stochastic sampling mode, each movement (selecting which of the two
elements in a shared cell should move and where to) requires a constant effort k,
proportional only to the size of the neighbors and random lists. For each added
element, a certain number of movements is required until a moving element reaches
an empty cell. An alternative view of the process is to imagine that an unstable cell
state is moving towards an empty space. If the board is evenly occupied (close to
the shape of a square), the maximum distance from the initial unstable cell to the
border is

√
V, meaning that the process should stop in

√
V/2 movements. Under

this behavior, the overall complexity would be O(N × √
V/2 × k) or O(N3/2), when

displaying the whole data set at once (N = V).
However, the space is not always evenly used and the movement of the virtual

unstable cell is not constrained to go towards the nearest edge, being free to wander
on the board as long as it does not move to any previously evaluated space. So
theoretically, in the worst-case scenario, all cells could be visited every time, bringing
the complexity to O(N × V × k). Thus, O(N2) is the worst possible complexity,
considering the particular case where the viewing window size equals the data
set size.
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In the best case scenario, each new element would fall in a cell which has an empty
cell as neighbor, so the addition process could stop in a single step. Thus, the lowest
possible complexity would be O(N × 1 × k) or O(N).

Therefore, algorithm complexity, when N = V, should lie between these two
limits: {O(N), O(N2)}. An empirical analysis using a corpus of 675 scientific articles
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Fig. 3 Average number of
movements required after
adding a new document vs.
number of documents on the
board (V) when projecting the
CIIS corpus

showed that the number of required movements stayed well below V for each
element addition, close to the expected complexity of O(N3/2), as shown in Fig. 3.

4 The HexBoard

The HexBoard [31] places elements on hexagon shaped cells instead of rectangular
cells. By adopting hexagons, all neighboring pairs share an edge, thus it is possible
to build a visualization that enhances incBoard in two ways: (i) it displays pairwise
similarity or any other relevant pairwise information among neighboring elements;
(ii) supports the identification of clusters and subsets of related elements by users.

The dynamic construction of the HexBoard follows the same steps as in incBoard.
The major distinction lies on distance computation. Over the HexBoard, movements
can follow three different axes, each of them perpendicular to a pair of edges. Thus,
x and y coordinates are assigned to each cell, and an extra z coordinate is derived
as y − x.

The distance can then be computed with a 3D version of the Chebyshev distance
equation (1):

dh(Ei, E j) = max
{|xi − x j|, |yi − y j|, |zi − z j|

}
(5)

Algorithms 1 and 4 must be changed accordingly, at line 11 for Algorithm 1 and
at line 2 for Algorithm 4.

Each cell has now only six neighbors: {(x − 1, y − 1, z), (x − 1, y, z + 1), (x, y −
1, z − 1), (x, y + 1, z + 1), (x + 1, y, z − 1), (x + 1, y + 1, z)}, which prompts changes
on line 11 of Algorithm 1. Now, twelve solutions are evaluated when displacing
elements, rather than sixteen, and there are only two options when removing
elements, rather than three. These changes have no impact on algorithm complexity.

5 Breaking out of the board: the incremental space

The incremental space relies on an incremental board layout to provide the relative
placement of elements. For every visualized element, two pairs of coordinates are
kept: (i) a board position, defined in Z

2, (ii) a “real” position, defined in R
2, which

we shall identify as its r-position.
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Fig. 4 Corresponding
incBoard and incSpace
visualizations

(a) (b)

When an element is added to the board and whenever its board position changes,
following the steps described in Section 3.1, its r-position is updated, consider-
ing dissimilarities to its surrounding neighbors on the board and their respective
r-positions (see calls to updateRposition in Algorithm 1).

Figure 4 shows corresponding incBoard and incSpace visualizations. Dissimilari-
ties were set as the differences between element numbers, i.e., δ(5, 14) = |5 − 14|. On
incBoard (Fig. 4a), distances between 5 and 14 and between 14 and 38 are exactly the
same, one grid cell away. On incSpace (Fig. 4b), however, 14 is placed much farther
apart from 38 than from 5. On the second image, an user without any knowledge of
the content of these elements, could easily identify two clusters, {5, 14} and {38, 47},
whereas on the first image, the user might decide, from the visual clues, that there is
a cluster with {5, 14, 38} and another one only with element 47.

The updateRposition procedure (not detailed as a separate algorithm) is described
next.

First the centroid C of r-positions from the list of direct neighbors of an element
DNEi = {E j|dc(Ei, E j) = 1} is computed:

C = 1

|DNEi |
∑

E j∈DNEi

R(E j) (6)

where R(E j) is vector [x, y] of r-coordinates of element E j in R
2.

The new or moved element is positioned at the centroid and then displaced based
on the dissimilarities to its neighbors. The displacement � of element Ei is given by:

� =
∑

E j∈DNEi

⎡

⎢⎢⎢
⎣

η j × β × δ(Ei, E j) × δ(Ei, E j)∑

Ek∈DNEi

δ(Ei, Ek)

⎤

⎥⎥⎥
⎦

(7)

where: (i) η j can assume values {0, 1,−1,
√

2/2,−√
2/2} and depends on the

relative positions of E j and Ei on the board. If E j is to the left of Ei, then η j equals
[1, 0] when computing displacement for (x, y) coordinates in �, respectively, thus
displacing Ei to the right; (ii) β is a constant that controls how spread the map is. It
can be set by the user and accounts for differences in ranges for dissimilarities values;
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(iii) the fraction that is part of the formula assigns greater weight to those neighbors
that are the most dissimilar to the displaced element.

When an element Ei has only one neighbor E j, its r-position will have a distance
of β × δ(Ei, E j) to the r-position of E j. If an element is found between two elements
and is equally dissimilar to them, it will be placed in a position equally apart from
them. If these two neighbors are at opposite positions (e.g. one over and one under
Ei), their displacements will cancel out.

Building the incremental space has no impact on algorithm complexity, since
computing the r-position of an element involves only its direct neighbors. There is
no regularization or normalization steps, the only r-positions that change are those
of the moved elements.

6 Visualizations

This section describes the peculiarities of incBoard, HexBoard and incSpace visual-
izations.

6.1 The incremental board visualization

The incremental board analogy enables a visualization without occlusion and with
fixed screen space allocated to each data item, as illustrated in Section 7.2. Sophis-
ticated glyph models can be designed to represent individual elements at multiple
zoom levels. For fewer elements, the glyphs may carry the element’s name, size or
any other available information. They could, for example, display a miniature of a
document’s front page, or image thumbnails, as shown in Section 7.2. To display
more elements, smaller rectangular glyphs may be chosen. Delimiting cells with grid
lines is optional, as hiding the grid may result in a cleaner presentation and improved
visualization.

Displaying newly added elements is an important component of the visualization,
as is animation to help users tracking layout changes. Two viewing options are
available: (i) a step mode, where the process is paused after each element addition,
removal or replacement (a new element replaces an existing one), and (ii) a continu-
ous mode, with no pause between operations.

A time or item count sliding window is available for viewing time sensitive data.
So older elements are removed once their age is above a threshold or the item count
grows above the limit. Glyph transparency may reflect element age, for instance,
documents may be made to fade away prior to being actually removed from the
visualization.

6.2 HexBoard visualization

On the HexBoard visualization, as neighboring hexagons always share an edge, visual
attributes of each edge are manipulated to convey any relevant pairwise information
available, as shown on Fig. 5. In that example, edge thickness and transparency have
been adjusted to reflect neighbor similarity. Another option, not explored, but easily
implemented is to map information to edge color.
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Fig. 5 Portion of a map of 150
samples from the Iris flower
data set [3] belonging to three
species: setosa (grey),
versicolor (green) and virginica
(light yellow). Thresholds were
user selected

To adjust thickness and transparency, a γ value in the range [0, 1] is computed.
Final thickness is then γ× maximum thickness, while transparency is given by
(1 − γ )× maximum α, where α = 0 for transparent edges. To compute γ values, three
options are available: (i) γ is simply set to match the dissimilarity for two neighbors
δ(Ei, E j), (ii) a user set threshold th can be chosen, having γ = 1, if δ(Ei, E j) >

th, and having γ ≈ 0 otherwise, or (iii) the value of γ is adjusted based on the
median dissimilarity δ̃, having γ = δ(Ei, E j)/(2 × δ̃) , if γ < δ̃, or γ = δ(Ei, E j)/[(2 ×
(max(δ) − δ̃)], otherwise. For any of those options, the final result should present
thicker and darker edges if two neighbors are not similar, and lighter, thinner ones if
they are.

On the well known Iris flower data [3], containing of 150 data items belonging
to one of three flower species, thicker borders (Fig. 5) separate the setosa from the
versicolor species and partially separates the versicolor from the virginica. The map
relies on a Euclidean distance calculation to evaluate flower similarity. Separation of
species versicolor and virginica is not expected using this simple distance calculation.

6.3 Incremental space visualization

The incremental space visualization is akin to any visualization where elements are
freely placed on a plane following some criteria, as in a scatterplot. Figure 6 shows
very distinct views for the Iris flower data [3]. The figure underscores differences
for these visualizations: (i) there is a better use of screen space on Fig. 5a; (ii) The
setosa cluster is more clearly separated on Fig. 5b from the other two groups of
flowers; (iii) Also on Fig. 5b it is possible to identify a few sub-clusters of elements,
such as the cluster of five virginica flowers at the left; (iv) There is no occlusion on
Fig. 5a. Despite these differences, it is noticeable that the general layout from Fig. 5a
is preserved on Fig. 5b, where setosa flowers are found at the bottom of the map,
virginica flowers mostly to the upper left and versicolor flowers mostly to the upper
right.
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(a) Incremental Board

(b) Incremental Space

Fig. 6 Corresponding Incremental Board (a) and Space (b) visualizations of 150 samples from the
Iris flower data set [3] belonging to three species: setosa (grey), versicolor (green) and virginica (light
yellow)

This correspondence is the major particularity of the incremental space visual-
ization and derives from the connection with the underlying approach to build and
update the incremental space. To exploit this peculiarity, brushing was implemented
in the proof-of-concept application, so the selection of a region on the incremental
space visualization highlights the selected elements on the board. This feature is
particularly useful to explore regions of the map where many elements are cluttered
together. Since there is no occlusion in the incremental board, every selected element
in the incremental space will be visible on the board.

The relation of the incremental board and the incremental space is more evident
on a map of about 400 scientific articles, shown on Fig. 7. Due to the nature of
the metric chosen (the cosine distance over a vector space model of the collection)
and of the data itself, the incremental space layout more closely follows the grid
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(a) Incremental Board

(b) Incremental Space

Fig. 7 Corresponding Incremental Board (a) and Space (b) visualizations of about 400 scientific
articles. Color denotes manual classes assigned to each article

layout provided by the incremental board, as dissimilarity measures for neighboring
elements do not vary as much as the Euclidean distance adopted with the Iris data
set. However, it still fulfills its goals of clustering together groups of similar elements,
such as the cluster of RI labeled articles (in gray) at the lower right or the somewhat
detached cluster of CBR labeled articles at the far right of Fig. 7b.
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A user may choose the incremental board as his or her main exploration window,
using the incremental space as a guide to identifying regions of highly related
elements.

7 Case studies

We initially present four case studies conducted to evaluate the incremental board
space and the corresponding visualization. The first two studies compare incBoard
with other MDS techniques using quantitative measures. The other two use the
developed proof-of-concept application to explore potential usage scenarios of our
technique: (i) displaying a collection of image thumbnails and (ii) exploring a
collection of time-stamped news articles extracted from the Reuters Corpus [22].

Finally, we draw some comments comparing visualizations produced with
incBoard and the corresponding ones built with incSpace.

7.1 Comparing incBoard with MDS techniques

We employed stress [17–19] as a quantitative measure to evaluate incBoard as a
MDS technique. In the original stress (8), d̂(Ei, E j) is a fitted distance dependent on
the dissimilarity δ(Ei, E j). A simplified version of stress has been previously applied
to evaluate projection techniques [9, 29] that assumes δ(Ei, E j) = d̂(Ei, E j). As we
favor relative positions, rather than trying to match expected distances (that is, we
are dealing with a nonmetric MDS process), such an assumption does not hold and
we must stick to the original hypothesis that d̂(Ei, E j) is an unknown monotone
distortion of δ(Ei, E j) [19]. Moreover, distances in incBoard are in the range of
[1,∞[, while dissimilarities often fall in the range of [0, 1], henceforth an exact match
between δ(Ei, E j) and dc(Ei, E j) is not expected.

stress =

√√√√√√√√

∑

i< j

(
dc(Ei, E j) − d̂(Ei, E j)

)2

∑

i< j

dc(Ei, E j)
2

(8)

Assuming δ(Ei, E j) = d̂(Ei, E j) also causes the stress measure to be sensitive to
scaling: if we take a set of points A1, simply scale their positions and call it A2, stress
will be found between the two sets. In visualization, scaling is an integral part of the
process of displaying data on a given viewport. If we were to apply a “scale to fit”
procedure, visualizing sets A1 and A2 would result in the exact same image, and yet
they might have different stress measures when compared with a reference set.

As we understand that stress might not be a suitable metric to evaluate the
placement strategy, due to reasons exposed by Paulovich et al. [29], we also evaluated
the strategy with the Nearest Neighbors Precision metric (nnp), as defined by them.
Given a labeled data set, it computes the percentage of neighbors that belong to
the same class as the reference element. It may thus be used to verify whether the
resulting incBoard layout is consistent with assigned labels or classes attributed to
data items. We considered the first eight neighbors (8 − nnp), that correspond to the
immediate cell neighbors on the board.
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(a) 178 documents (b) 294 documents

(c) 675 documents

Fig. 8 Three moments on the incremental construction of a visualization of the CIIS corpus. Color
denotes manually assigned classes

We recorded measures for complete layouts and also mean values for measures
computed as elements are gradually added in a random order. These latter measures
reflect the technique’s performance while the layout is incrementally built. Whenever
a technique is subject to variance, mean average and standard deviation (std.dev.)
measures were computed over 10 distinct runs. Projections compared with incBoard
were built using the PEx tool [30] and its default settings.

The first data set used consists of 675 scientific articles manually classified into
one of four subject areas: Case-Based Reasoning (CBR), Inductive Logic Pro-
gramming (ILP), Information Retrieval (IR) and Sonification (SON)—this same
dataset, henceforth the CIIS corpus, has been used before to compare several
multidimensional projection techniques [29]. Document content dissimilarity was
measured using the cosine distance over a vector space model of the collection.
Stop words were removed and frequency-based Luhn’s cuts applied to select relevant
terms.

Figure 8 shows intermediate and final document maps of the corpus obtained
with incBoard. Documents are colored according to their assigned classes. Notice
that the general placement of classes remains globally stable as the visualization is
constructed. Documents were added using the full sampling mode until the 300th

element, from then on the insertion process switched over to the stochastic sampling
mode. At that point, error calculations for each document used only the random
and neighboring lists of elements. The size of the random and neighboring lists was
set to 16 and 24 elements, respectively. The assigned classes played no role in the
arrangement process, serving solely to select each element’s display color.
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Table 2 Results of different projection techniques for the CIIS corpus

Technique 8 − nnp Std.dev. Stress Std. dev.
(×102) (×102) (×102) (×102)

PROJ 67.8 8.8 17.6 0.7
incBoard(final map) 67.8 4.3 18.2 0.6
PCA 85.0 – 21.6 –
LSP 70.7 5.9 22.3 2.1
Sammon’s 76.0 – 37.7 –

Best results in bold

Table 2 shows stress and nnp results for the final layout and the compared
techniques: (i) Projection by Clustering—PROJ [28], (ii) Least Square Projection—
LSP [29], (iii) Principal Component Analysis—PCA [14], and (iv) Sammon’s
Mapping [36]. Stress used d̂(Ei, E j) computed by the fitting algorithm proposed by
Kruskal [17]. Results for both measures are very encouraging.

Table 3 shows results for stress and nnp computed while adding documents until
reaching the total number of 675 documents. Their mean average is identified as
incremental. Results are consistent throughout the process, indicating that views
obtained at partial stages are also usable.

We noticed that maps with 200 elements or less consistently presented poorer
results for the 8 − nnp measure, which could be evidence of a bias of the measure
towards the size of the set (see Tables 3 and 4). For example, in a square with 16
elements belonging to two classes (8 elements on each), the lowest possible number
of elements with a neighbor of a different class is 8 (2 × √

n), while in a square
with 100 elements this number is only 20 (2 × √

n). In other words, the measure
resembles the relation between perimeter and area of a shape, which is not constant
for different areas. Based on this rationale, we should only compare nnp results on
maps with roughly the same number of elements, and may also expect slightly lower
results for the incremental averages in Tables 3 and 5.

The same corpus was also used in an example that resembles more closely
the visualization of a dynamic corpus. In this second scenario, documents were
incrementally added until 300 documents were placed on the board. After that,
replacement takes in, with a document being removed whenever a new document
is added, until all 675 documents in the corpus have been displayed. Figure 9 shows

Table 3 Stress & nnp measures computed while documents are gradually added to a board of 675
CIIS documents using incBoard

Documents 8 − nnp Std.dev. Stress Std.dev.
on board (×102) (×102) (×102) (×102)

100 55.6 5.3 18.8 1.5
200 64.7 5.6 18.9 1.4
300 70.7 5.5 19.1 1.2
400 67.7 5.7 18.7 0.8
500 67.7 6.0 18.5 0.6
600 67.8 5.2 18.4 0.6
675 67.8 4.3 18.2 0.5
Incremental 66 7.1 18.7 1.0
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Table 4 Stress & nnp measures computed while documents are gradually replaced from a board
with 300 CIIS documents using incBoard

Documents added/ 8 − nnp Std. dev. Stress Std. dev.
on board (×102) (×102) (×102) (×102)

100/100 56.92 4.56 18.56 1.09
200/200 65.58 3.12 19.11 1.19
300/300 69.86 2.71 19.44 1.35
500/300 64.42 4.65 18.91 0.66
675/300 68.45 4.84 18.51 0.71

Table 5 Results of different projection techniques for the Iris flower data set

Technique 8 − nnp Std. dev. Stress Std. dev.
(×102) (×102) (×102) (×102)

PCA 93.6 – 0.1 –
LSP 91.8 2.6 3.0 1.1
PROJ 83.6 6.3 10.2 1.7
incBoard(final map) 86.4 2.5 14.3 2.5
incBoard(incremental) 81.9 5.4 14.5 2.6

Best results in bold

(a) initial set (b) intermediate set

(c) final set

Fig. 9 Three moments on a visualization of the CIIS corpus where only 300 documents are kept at a
time. Color denotes manually assigned classes
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three distinct moments of the process. Indeed, inspecting the visualizations created
along the process one observes that the general disposition of classes in the board is
kept throughout.

Again, quantitative results are very consistent (see Table 4), highlighting the
suitability of incBoard to display dynamic data sets.

The second case study was conducted on the already mentioned Iris flower
data [3]. Our goal was to asses how our solution would perform when presented
with a data set that is more easily presented in two dimensions. Euclidean distance
was employed to compute similarity.

On this case study, stress results were fair (see Table 5), though not as good
as in the previous one. From these results, one could argue that there exists a
2-dimensional solution for the projection of the Iris flower data set (stress for PCA is
0.1 × 10−2). Therefore, the other techniques listed benefit from not being subject to
the same constraints as incBoard, as they are free to position each data item at their
ideal positions. Nonetheless, for more complex data sets, such ideal positions may
not exist and, then, their advantage in this respect becomes irrelevant. Still, the nnp
measure is again very close to the best results, possibly implying that even if an ideal
positioning was not attainable, overall distribution of data items is good. Moreover,
as it happened with the CIIS corpus, stress and nnp behaved consistently throughout
the process (see incremental results in Table 5).

7.2 Potential usage scenarios for the incremental space

In the next case study, we tailored the visualization to sequentially display over
800,000 news articles from the Reuters corpus on a board with 500 cells. A dedicated
thread sequentially extracts a batch of articles (a single day’s worth of news) from
the corpus and inserts them on a queue for use by the visualization system. Once
that queue is empty, the thread processes another batch to replenish it. We used
only the headline and text tags to build the vector space model. Although there are
better solutions to compute a similarity measure for a dynamic corpus, we chose to
simply take the first 50,000 documents to compute base term document frequencies.
We acknowledge that in a real world scenario these initial documents would not be
available, yet we believe that tackling this issue is beyond the scope of this paper.

A simple query tool is provided that computes the cosine distance between a
query string and documents on the board and a list of hits is shown ranked by
similarity(on the lower left panel in Fig. 10). Documents added to the board are
also compared to the active query. The incBoard system has a document lock
feature: when active, documents similar to the active query Q, δ(Di, Q) < 1, are not
removed from the board, and other documents are chosen instead for replacement
to maintain the desired number of documents on the board. We opted not to display
any classification information, to keep the focus on the chosen features.

We began adding nearly 500 documents to the board, pausing, and then per-
forming a search for ‘Brazil’, our home country. We found a few clustered articles
concerning plans for a new Chrysler plant in Brazil (see Fig. 10). We then added
‘Chrysler’ to our active query. Documents having ‘Brazil’ and/or ‘Chrysler’ are
shown with a red border. The currently selected document is shown with a yellow
background color, and its source file is shown in the left upper panel.
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Fig. 10 The incBoard proof-of-concept application on document visualization. 493 documents from
the Reuters Corpus shown

We activated the document lock feature and let new documents be added in
continuous (‘play’) mode. When the number of documents added was approaching
one thousand (and around 400 were removed to maintain the target board size), we
noticed the appearance of a few more documents relevant to our query (see Fig. 11a).
The new cluster included financial market news concerning Brazil. The ‘Chrysler’
cluster was still present, and unconnected with the financial cluster.

Latter on, after adding over 1,800 documents, documents similar to our query are
found to be clustering together as they now represent a significant portion of the
currently viewed set (see Fig. 11b). Yet, the Chrysler cluster is preserved (left of
Fig. 11b). The selected document nearby (highlighted in yellow) addresses neither
Chrysler nor Brazil, rather it relates to gas prices, thus being reasonable to find it
placed close to articles on an automaker’s investment plans. On the other hand,
query hits found farther away from the larger ‘Brazil’ cluster only briefly mention
Brazil. For instance, the news article starting with ‘Nigeria’ (upper left on Fig. 11b)
reports the closing of an air route between Nigeria and India by a Nigerian airline,
and mentions that the same happened before with a route to Brazil.

The last case study for incBoard presents one extra application of our layout
technique and visualization. It lacks formal user evaluation, that should be performed
once a more concrete task or usage scenario is defined.

It illustrates the applicability of our layout technique to display a collection of
images, benefiting from both a layout that can arrange images by their content
and that does not suffer from occlusion (see Fig. 12). It uses a collection of 1,109
manually tagged images from [23]. These tags describe objects and features found
on the images. Dissimilarity was computed employing the Jacquard coefficient to
compare these manually assigned tag sets. Some clusters of images depicting the
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(a) Nearly 1,000 documents added since the beginning of the visualization.

(b) incBoard Nearly 1,800 documents added since the beginning of the visualization.

Fig. 11 incBoard visualization of 500 documents from the Reuters Corpus, shown with ‘Brazil
Chrysler’ as active query

same object or place can be noticed in Fig. 12. No image attribute was used in the
comparison, and, yet, some areas where some colors are predominant can be found,
perhaps reflecting some relation between tags and colors.
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Fig. 12 Detail from a map of 1,109 manually tagged images. Similarity determined by tag comparison

7.3 Comparing incSpace and incBoard

Stress computed for the projection of the Iris data set was considerably lower than
stress computed for the underlying incremental board. It decreased from an average
of 12 × 10−2 (std.dev. 3 × 10−2) to 6 × 10−2 (std.dev. 4 × 10−2). The new value is still
worse than the results for PCA (0.1 × 10−2), but close to the results for LSP (3 ×
10−2) and better than PROJ (10 × 10−2). These better results confirm our suspicion
that since there exists a solution to layout this data set on the plane, the grid imposed
an undesired constraint. Once that constraint is lifted, stress results approach those
of other non-optimal techniques.

There is a slight improvement also for the 8 − nnp measure, from 88% to 90%. On
the incremental board space, even if a perfect class separation is attained, there will
be always elements which have as close neighbors elements from a different class.
On the incremental space, however, since less similar neighbors are pushed away,
it is possible that the closest eight neighbors of an element do not match exactly its
eight neighbors on the board. Thus, if classes are clustered together, it is likely that
those elements that have close neighbors of a different class on the board, may find
their close neighbors on the incremental space amongst elements of the same class,
thus improving the 8 − nnp measure.

Improvement in stress and 8 − nnp measures were much more modest for the
CIIS corpus. Stress decreased from 18.3 × 10−2 (std.dev. 1.0 × 10−2) to 18.1 × 10−2

(std.dev. 1.0 × 10−2), while the 8 − nnp measure rose from 70.6 × 10−2 (std.dev.
6.0 × 10−2) to 71.2 × 10−2 (std. dev. 5.0 × 10−2). Measures for incSpace were always
better than those for incBoard, except for one of the ten runs, for which stress was
0.23% worse. The layout provided by incSpace for this data generally follows the
layout provided by incBoard, possibly as a result of the distribution of values of the
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dissimilarity metric chosen. The Euclidean distance metric adopted for the Iris data
set has a broader range, thus yielding a map that is not as similar to the original
board. Yet, results for the CIIS corpus with incSpace where at least as good as results
for incBoard, while providing the additional benefit of clearly depicting clusters of
similar items.

8 Conclusions and further work

We discuss layouts for visualizing multidimensional data objects based on an incre-
mental projection strategy. On the core of our approaches is a placement strategy
(incBoard [33]) that relies on the relative ranking of the displayed elements to
position new elements on a partially filled board which resembles the way users might
layout constantly arriving elements on a board, based on their content similarity.
Absolute positions or distances bear little meaning on the resulting visual space,
nonetheless, its layout follows relative ranking relations as found on the original
(or conceptual) space.

The solution is particularly suitable to display dynamic data sets, as it is incre-
mentally built and provides a built in mechanism for removing elements, while
maintaining a compact layout and low computational cost. Moreover, adding a new
element does not demand a complete re-arrangement of elements. An average of
only 2.6% (std.dev. 0.1, computed over 10 runs) of existing elements were displaced
after adding a new one using the CIIS corpus. This is an interesting property, as it
allows users to track layout changes as element positioning gradually progresses.

Though the manually labeled document classes were not input into the layout
process, classes were consistently kept in the same relative positions on the screen,
during the gradual construction of the visualization of a whole corpus and also when
elements of the corpus were gradually replaced. A consistent relative arrangement of
classes was achieved even after a complete renewal of the viewed document set was
forced, by replacing viewed documents until no document from the original viewed
set remained. Although the incBoard approach assigns no explicit meaning to each
visual dimension, this feature is particularly interesting, as it helps users to maintain
a mental map of the arrangement.

The incBoard visualization does not suffer from occlusion of elements, and allo-
cating a pre-defined screen space to each cell enables using sophisticated and highly
informative glyphs. The user can also adjust, at any moment, the number of elements
to be displayed simultaneously. The approach could be easily integrated into an
operating system to provide file system navigation, while using its standard icons
and file representations. A limitation, however, is that it does not favor identifying
relative pairwise similarity of neighbors. Neighbors being always placed at the same
distance from each other, although not all neighboring elements are equally similar.

We thus expanded the solution by building an incremental space where elements
are freely placed on the plane, relying simultaneously on the incremental board
placement solution and the dissimilarity of an element to its neighboring elements.
The new approach places similar elements close together while distancing less similar
ones, resembling typical MDS solutions, while still being inherently incremental.
The corresponding visualization may be easily combined with the incremental board
visualization as every element on the incremental space has a corresponding position



Multimed Tools Appl

on the underlying incremental board. Quantitative analysis of the new space showed
that it performs at least as well as the incremental board, having performed substan-
tially better under certain circumstances.

A user evaluation of the suitability of the layout technique for specific tasks
would be desirable to compare the incremental board space solution with other
layout techniques. There is also room for improving specific steps of the process.
For instance, the choice of the closest neighbor could use a better search strategy.
Likewise, alternatives to the error measure adopted and which options to evaluate
when choosing an element to move could be subject to further investigation. Current
choices are the result of some early ad-hoc experimentation and follow the underly-
ing reasoning presented here.

The next step on system development is to enrich the map with concepts and/or
topic representations. Topics may be derived automatically from document contents
using dynamically extracted Locally Weighted Rules [24]. These topical markers,
once placed on the board, could steer the placement of arriving elements. They could
also be placed and positioned by users, who could then adjust the layout according to
their specific interests and needs. Support to such operations is possible by adapting
the incremental build operations. Another possibility is to allow direct manipulation
of items on the board. The use of visual text mining tools such as the one taylored for
the Reuters corpus case study (Section 7.2) was suggested to aid systematic reviews
of scientific literature [25]. It is often the case where one needs to update a review
or survey. In this scenario, an incremental visual text mining tool could be of great
use, since newly found articles could be easily added to existing maps of the selected
literature.

Adapting the technique to place elements of different shapes or sizes could allow
its application to other problems. For instance, one could envision an automatic page
layout algorithm that instead of placing elements according to a fixed order [12]
would render a newspaper page where similar stories would be closer together. A
whole newspaper could thus be automatically rendered, perhaps including only news
stories that suit a user’s needs, and yet looks like a manually produced one.
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