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ABSTRACT
In Information Visualization, adding and removing data el-
ements can strongly impact the underlying visual space. We
introduce a chess board analogy for displaying (projecting)
objects from a dynamic set on a 2D space, considering their
similarity in a higher dimensional space. Our solution is in-
herently incremental and maintains a coherent disposition of
elements, even for completely renewed sets. The algorithm
considers relative positions, rather than raw dissimilarity.
It has low computational cost, and its complexity depends
only on the size of the currently viewed subset, V . Thus,
a set of size N can be sequentially displayed in O(N) time,
reaching at most O(N2) only if viewing the whole set at
once. Consistent results were obtained as compared to (non-
incremental) multidimensional scaling solutions. Moreover,
the corresponding visualization is not susceptible to occlu-
sion. The technique was tested in different domains, being
particularly adequate to display dynamic corpora.

Categories and Subject Descriptors
H.5.m [Information Interfaces and Presentation]: Misc.

General Terms
Algorithms

Keywords
High-dimensional data visualization, Multidimensional scal-
ing, Projection

1. INTRODUCTION
One option to visualize high-dimensional data sets is to

layout their elements on a 2D space according to the simi-
larity among items. This solution has been adopted to ex-
plore document collections [11, 27, 31], to display thumbnail
collections of images [6, 28, 29] and to visualize general mul-
tidimensional data stored in databases [4].
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However, if one wishes to visualize a dynamic set where
objects are constantly being added and removed, she/he can
either (i) rely on a layout fixed a priori, which would not
capture major changes in data, or (ii) redo the whole map
at critical steps, which might be disturbing to users as new
map layouts may bear little or no resemblance to the original
layout. We propose here a third strategy that incrementally
positions and re-positions data items on a chess board-like
space as elements are added and removed while preserving
the overall layout configuration.

If we were to add chess pieces to a fixed position on a chess
board, the arrival of a new piece would cause one or more
pieces to be displaced to accommodate the new one. Having
a goal of placing similar pieces together, we could steer the
way we displace pieces in order to achieve that goal. The
problem could also be seen as one of sorting elements by
similarity, but having two dimensions to work with, resem-
bling somehow a 2D expanded insertion sort. When a new
item arrives in an insertion sort, it may displace neighboring
items, whilst the size of the allocated space increases.

A potential application of such a technique is to track
changes in scientific literature. It would enable users to add
new articles to maps that they are familiar with, maps that
could also have been fine tuned by removing undesired pa-
pers. When new articles arrive, their location and impact on
the map could provide these experienced users direct clues
about their content and trends in research. This would not
be possible if the choice is to redo the map or follow earlier
layouts. In any of those scenarios, the arrival of new ele-
ments can have an impact on the underlying visual space.
For instance, as a new research topic becomes popular, it
could fill the map, squeezing together some loosely related
articles, thus the meaning of neither absolute positions nor
distances is consistent across different time moments, a fact
that can be very misleading to a human analyst. On follow-
ing these examples and analogies, we can not rely on fixed
visual axes, nor in absolute distances among elements. The
important factor should rather be where elements are placed
in relation to one another.

Based on the above rationale, we consider relative simi-
larity of elements in the original high-dimensional space to
place (project) them on a 2D space that follows a chess
board analogy. Our incremental strategy allows the effec-
tive display of dynamic data sets. The resulting visual space
maintains a coherent disposition of elements from constantly
updated sets, even though it does not rely on fixed, well de-
fined or explicit visual axes or dimensions (as illustrated in
Section 5). Moreover, even if no item from the final set has



co-existed with those from the initial set, their placement
still follows the same global relative disposition of classes or
categories as in the initial set of a given collection. A specific
visualization based on the board analogy was developed as
a proof-of-concept and is introduced in this paper.

We compared our approach with other multidimensional
scaling strategies and obtained very competitive results even
when working with static data sets (see Section 5). We have
tailored our approach to provide a specific visualization that
handles ever changing corpora, one from which documents
may be added, removed or replaced, which is not supported
by current placement techniques. We have also provided a
image thumbnail collection visualization example that ben-
efits from the fact that occlusion never occurs on our board-
like space, where only one element can occupy each cell.

The following section briefly describes related techniques
and potential applications. Section 3 (i) details the board
analogy space, (ii) presents how distances may be calculated
over it, (iii) describes how elements are added, removed and
replaced from the board, and (iv) discusses algorithm com-
plexity. The Incremental Board visualization is presented in
Section 4. Section 5 brings case studies used to compare the
proposed approach using quantitative measures and used to
explore possible applications of the technique. Finally, con-
clusions and further work are discussed in Section 6.

2. RELATED WORK
Visualizing document collections is a typical application

of high-dimensional data visualization. Document collection
visualizations are implemented in systems such as CiteSpace
II [11] and the Projection Explorer – PEx [27]. On those
systems and on other related knowledge domain visualiza-
tions [8, 10], typically there is no conceptual and/or explicit
meaning assigned to each visual dimension. The same can
be said about the FastMapDB tool [4], which uses 2D and
3D layouts to display collections of structured data from
databases. Notable exceptions are the explicit mapping of
height in 2.5D representations (e.g. [21]), scatterplot-based
views, and, on some systems, the mapping of time to one
of the visual axes. In these latter examples, only a few
of the original data dimensions are explicitly mapped to
a visual dimension, not contemplating a true solution for
n-dimensional data. Some systems, such as PNNL’s IN-
SPIRE [31], apply techniques that rely on extraction of fac-
tors, such as Principal Component Analysis (PCA) and La-
tent Semantic Analysis (LSA) to layout documents. They
might be able to represent more than two or three of the
original dimensions on a two-dimensional space, but they
map only the first few significant or “latent” dimensions.
Hence they are still inadequate for handling high dimen-
sional data [26].

Nonetheless, in any of those solutions, visualizing changes
in data requires building new layouts, or, in some cases, the
use of visual dimensions established a priori from an initial
set, which may be inadequate to layout latter versions of the
data set.

One solution to this problem, as employed by Chen in his
Citespace II visualization [11], is to build the map before-
hand using the whole data set and then manipulate some
visual attribute (for example, transparency) to add or re-
move elements from the representation. Although this so-
lution gradually presents the evolution of a data set while
maintaining a consistent layout of elements, it cannot be

considered as truly dynamic, since the complete collection
must be fully available before the visual representation can
be constructed. The map is not incrementally built as new
documents are added to the corpus, removed from it, or yet
when existing documents are replaced with new ones.

Our grid-based space immediately reminds the use of self
organizing maps (SOMs) for visualizing document collec-
tions [14]. However, those results bear major distinctions to
ours: (i) grid dimensions are fixed beforehand, (ii) a single
cell is allowed to hold multiple documents or elements, and
(iii) once elements share a cell, similarity relations can only
be inferred for the cell, relations among individual elements
are not represented. Similarly to our approach, SOM’s algo-
rithm complexity is a function of the number V of map units
(grid cells), not of the size N of the data set [13]. Neverthe-
less, to display a large data set using a small grid size V , a
SOM would fit all elements into the available cells, whereas
our approach displays them sequentially, having V elements
on display at any given time, which is more suitable for dy-
namic and time stamped data sets.

Dynamic extensions to SOM have been proposed, such as
Incremental Grid Growing(IGG) [7], and the growing self-
organizing map (GSOM) and subsequent developments [1,
2]. They overcome the requirement for pre-defining grid
dimensions, nonetheless many data items may still cluster
together in a single cell (neuron), while other cells remain
empty. This feature is useful to provide high level visualiza-
tions or to build hierarchical solutions, but at the expense
of not presenting individual elements. An undesired fea-
ture of IGG and GSOM, also pointed out elsewhere [24], is
that they grow only from the border, leaving high density
areas (many elements in each cell) at the center. Results
from IGG seem to degrade when growing branches or arms
merge. Latter versions of GSOM try to tackle this problem,
but require smoothing phases that increase the complexity
of the solution. Description of a removal process for neither
GSOM or IGG has been found hitherto.

Chalmers briefly mentions that new elements might be
added while his multidimensional scaling (MDS) technique
converges to a solution, though this possibility is not further
explored [9]. Once the projected data set becomes stable,
he expects that reaching a solution will require a few O(N)
iterations of his stochastic force directed placement proce-
dure. Latter enhancements to the technique also require a
fine-tuning phase to reach the final solution [23]. In either
case, complexity would lie well over O(N2) in an incremental
scenario.

A more robust solution is presented by Law & Jain for
an incremental ISOMAP algorithm [18]. However, coordi-
nates for all data items must be updated and can change
dramatically after each element addition [19]. Besides re-
quiring extra computation to update the whole set, a global
rearrangement of coordinates, as named by Law et al., is not
desirable for our goals. In contrast, our solution requires few
changes on coordinates for each added (or removed) element
(see Section 6).

Basalaj’s Ph.D. Thesis [5] introduces an incremental mul-
tidimensional scaling procedure. However, his approach re-
quires a previously computed minimal spanning tree for the
data set, thus undermining its application on dynamic data
sets. As we do, he also advocates the use of grid-like visu-
alizations of elements arranged by similarity, the so-called
Proximity Grids. He introduces some options on how to



build a grid from a final MDS layout. His bump approach
is somewhat similar to our element addition procedure, al-
though it does not consider the re-arrangement of the exist-
ing elements to reflect the changes introduced by the arriv-
ing ones. It is thus not appropriate for incremental building,
being dependent on a previously built layout.

Related studies by Rodden et al. [28, 29] show some evi-
dence that arranging images by similarity is useful to design-
ers searching for photographs and also that avoiding overlap
is desired by users. These principles have been applied in
the Photomesa application [6] to display clusters and hier-
archically organized image collections using treemaps, and
a simpler layout for image clusters called bubblemaps. Both
goals of layout by similarity and occlusion avoidance can be
accomplished by our technique, with the additional benefit
of being able to gradually update a visualization. A possi-
ble application of our solution is thus to maintain a personal
image library that gradually receives additional images and
yet keeps a layout that the user is familiar with.

3. THE INCREMENTAL BOARD SPACE
The Incremental Board(incBoard) space is a grid-based

2D space with cells arranged in rows and columns. It is
expected that only a single element should occupy a cell at
any given moment, except when adding items. Formally:

An element Ei placed on this board space is represented
by a point pi with coordinates (xi, yi), with xi, yi ∈ Z. In
other words, pi ∈ Z

2.
The incremental board space assumes two possible states:

(i) a stable state, where no two elements share the same cell
coordinates and (ii) an unstable state, where two or more
elements share a single cell. The unstable state requires
action in order to bring the board back to a stable condition.

The distance between two elements over the board is cal-
culated using the Chebyshev distance dc(Ei, Ej):

dc(Ei, Ej) = max {|xi − xj |, |yi − yj |} (1)

The Chebyshev or chessboard distance considers the num-
ber of steps required to move from one cell to another. On
the chess board analogy, it reflects the movement of the king.

The placement of elements on the 2D board could re-
flect their relative positioning on the original n-dimensional
space or their relative ranking derived from some dissimi-
larity measure evaluated between elements. So, for each el-
ement Ei on the board an error can be calculated to reflect
the difference in the ranking of other elements when con-
sidering their distances on the 2D space dc(Ei, Ej) as com-
pared to their dissimilarity δ(Ei, Ej), defined in the original
n-dimensional or conceptual space.On the hypothetical ex-
ample presented in Table 1, the error should be zero, as the
sorting of other elements relative to E1 would result in the
same ordered set {E3, E2, E4}, using any of the distances
and ranks shown.

Table 1: Relative position ranking example. Rc1(Ej)
is the ranking on the 2D space relative to E1. Rn1(Ej)
is the ranking on the nD space relative to E1.

Ej dc(E1, Ej) Rc1(Ej) δ(E1, Ej) Rn1(Ej)
E2 5 2 1000 2
E3 4 1 850 1
E4 6 3 5000 3

We weight the error measure both by: (i) the difference
from the expected position (Rni) to the actual position (Rci)
of each of the other elements, and (ii) the expected position
(Rni), assigning more weight to errors originating on the
vicinity of the reference element Ei.

For a list L of elements, the weighted error Werr(Ei, L)
relative to an element Ei is given by:

∑

Ej∈L

|Rci(Ej) − Rni(Ej)| × (|L| − Rni(Ej)) (2)

Early experiments showed that the above error measure
often yields the same value for different placement options
(see Section 4). If this is the case, we use a weighted error
count Cerr(Ei, L) as a second criterion:

∑

Ej∈L

{

|L| − Rni(Ej) if |Rci(Ej) − Rni(Ej)| 6= 0

0 otherwise
(3)

Having defined these error measures, we can pursue the
“goal of obtaining a monotone relationship between the ex-
perimental dissimilarities or similarities and the distances in
the configuration[projection]”, as stated by Kruskal [17] for
nonmetric multidimensional scaling (MDS).

3.1 Dynamic Construction
With the exception of the first element, new elements are

always added, one at a time, at the cell that currently holds
its most similar element. Then, as the chosen cell becomes
unstable, a process is started to bring the board back to a
stable state. The first element is simply positioned at any
location.

The process of finding the most similar element can be
costly, so the system operates in two possible modes: (i) full
and (ii) stochastic sampling.

In full mode, the arriving element is compared to every
element on the board, whilst in the stochastic mode a fixed
list of close neighbors is used instead. The stochastic sam-
pling mode is derived from Chalmers et al. [9]. Besides the
list of neighboring elements, a list of randomly selected ele-
ments is also kept. These latter two lists are used to update
the weighted error measure when elements are moved during
the addition or removal processes detailed below.

For a cell temporarily holding two elements, 16 solutions
are evaluated to bring it back to a stable state. Eight of
them keep the new element at the center cell and move the
old one to one of its 8 neighboring cells, and 8 alternative
solutions keep the old element at the center and move the
new one. The one option that introduces the lowest added
error for both elements is chosen.

Eventually, the displaced element will fall on another al-
ready occupied cell, in which case the process is repeated
with the two elements sharing this new cell. In order to
avoid cycles, a list with already visited cells is kept and
these are not considered again as an option. The process
ends when a moved element falls on an empty cell.

If all neighboring cells of an unstable cell have already
been visited, the disturbing element is trapped and a spe-
cial greedy procedure is applied to move it until it finds a
non-trapped cell. At each step, the trapped cell’s neigh-
boring cells are evaluated and the one associated with the
minimum error is chosen. Rows and columns left behind on
the previous step are not considered any more. For example,



if the element is moved from row 5 to row 6, only rows [6,∞[
are considered in the future. The procedure stops when a
cell with non-visited neighboring cells is found. Then, the
regular process can resume. The list of visited cell is always
cleared before adding a new element.

When removing elements, the board layout is adjusted
pursuing two goals:(i) better reflecting relative positions once
an element has been removed, and (ii) keeping the board as
dense as possible, avoiding scattered elements. So, we try
to move elements closer to the center of the board. If the
just emptied cell is above and to right of the center, we fill
it with an element chosen from one of the 3 cells above or
to the right of it. The option which yields the lowest added
weighted error is chosen. The process is repeated with the
newly emptied cell until all the 3 options are empty cells.

The most costly operation when adding or removing ele-
ments is to update the error measures for all the positioning
alternatives considered. To handle this effectively, the pro-
cess can select between operating in the full mode or in the
stochastic sampling mode.

The full mode simply uses the currently list of elements
on the board B as the list L to compute weighted errors.
This is a suitable option on maps with a low number of
elements, or when the data set rarely changes. Using the
full mode, we were able to obtain satisfactory performance
when handling up to 400 elements simultaneously on the
board, with performance degrading rapidly after that mark
(see Section 3.2).

In the stochastic sampling mode, weighted error calcula-
tions for each element consider a close neighbors list and a
random list of elements, both having fixed size, as indicated
by Chalmers et al. [9]. Both lists start empty and are filled
with randomly selected elements, with the ones most simi-
lar to the reference element kept in its close neighbors list.
Every time an element is a candidate for movement, its lists
are updated, clearing and repopulating the random list. The
neighbors list is updated if any of the newly selected ran-
dom elements is closer to the reference element than those
previously on its neighboring list. The list of close neighbors
of a newly added element Ei, LNEi

, is also improved using
the list of close neighbors of its current closest neighbor Ej ,
LNEj

. This improvement process is repeated if a different
closest neighbor is found.

The mode to adopt may be chosen in real-time. For dy-
namic data sets, the decision is based on the rate of new
elements received, whereas for static data sets the choice is
based on the elapsed time required to add new elements.
Ideally, one should use the full mode to add the initial hun-
dreds of items, and switch latter on to the stochastic mode.
This mode would then work over a more stable layout, where
the random choice of a particular item does not significantly
impact the layout, while keeping the computational cost low.

3.2 Algorithm complexity
All required operations consider only those elements cur-

rently on the board. Therefore, a whole data set with size
N can be sequentially displayed with a constant cost for
adding and removing elements, as long as the viewing win-
dow (board size, or number of occupied cells) has a fixed size
V . The overall complexity would be O(V × N) or simply
O(N), as V remains constant.

A particular case, which we further analyze here, is found
when the final board size V matches the data set size N ,

thus producing a map of the whole data set.
Using the stochastic sampling mode, each movement (se-

lecting which of the two elements in a shared cell should
move and where to) requires a constant effort k, propor-
tional only to the size of neighbors and random lists. For
each added element, a certain number of movements is re-
quired until a moving element reaches an empty cell. An
alternative view of the process is to imagine that an un-
stable cell state is moving towards an empty space. If the
board is evenly occupied (close to the shape of a square),
the maximum distance from the initial unstable cell to the
border is

√
V . It means that, the process should stop in√

V /2 movements. Under this ideal behavior, the overall

complexity would be O(N ×
√

V /2 × k) or O(N3/2), when
displaying the whole data set at once (N = V ).

However, the space is not always evenly used and the
movement of the virtual unstable cell is not constrained to
go towards the nearest edge, being free to wander on the
board as long as it does not move to any previously evalu-
ated space. So theoretically, in the worst-case scenario, all
cells could be visited every time, bringing the complexity
to O(N × V × k). Thus, O(N2) is the worst possible com-
plexity, considering the particular case where the viewing
window size equals the size of the data set.

Henceforth, the algorithm’s complexity, when N = V ,
should lie between these two limits: {O(N3/2), O(N2)}. An
empirical analysis using a corpus of 675 scientific articles
showed that the number of required movements stayed well
below V for each element addition.

4. THE INCREMENTAL BOARD VISUAL-
IZATION

The incremental board analogy enables a visualization
without occlusion and with fixed screen space allocated to
each data item. Sophisticated glyph models can be designed
to represent individual elements at multiple zoom levels. For
fewer elements, the glyphs may carry the element’s name,
size or any other available information (see Section 5.2 for
an example displaying image thumbnails). They could, for
example, display a miniature of a document’s front page.
To display more elements, smaller rectangular glyphs may
be chosen.

Delimiting cells with grid lines is optional, as hiding the
grid may result in a cleaner presentation and improved vi-
sualization.

Displaying newly added elements is an important compo-
nent of the visualization, as is animation to help users track-
ing layout changes. Two viewing options are available: (i) a
step mode, where the process is paused after each element
addition, removal or replacement (a new element replaces
an existing one), and (ii) a continuous mode, with no pause
between operations.

A time or item count sliding window is available for view-
ing time sensitive data. So older elements are removed once
their age is above a threshold or the item count grows above
the limit. Glyph transparency may reflect element age, for
instance, documents may be made to fade away prior to
being actually removed from the visualization.

5. CASE STUDIES
We present three of the case studies conducted to evaluate

the incremental board space and the corresponding visual-



ization. The first two case studies compare incBoard with
other MDS techniques using quantitative measures. The
last one uses the developed proof-of-concept application to
explore an additional potential usage scenario of our tech-
nique, displaying image thumbnails.

5.1 Comparison with MDS techniques
We have used stress [15, 16, 17] as quantitative measure to

evaluate incBoard as a MDS technique. In the original stress
equation (4), d̂(Ei, Ej) is a fitted distance dependent on the
dissimilarity δ(Ei, Ej). A simplified version of stress has
been previously used to evaluate projection techniques [9,

26] that assumes δ(Ei, Ej) = d̂(Ei, Ej). As we favor relative
positions, rather than trying to match expected distances
(that is, we are dealing with a nonmetric MDS process),
such an assumption does not hold and we must stick to
the original hypothesis that d̂(Ei, Ej) is an unknown mono-
tone distortion of δ(Ei, Ej) [17]. Moreover, distances in in-
cBoard are in the range of [1,∞[, while dissimilarities often
fall in the range of [0, 1], henceforth an exact match between
δ(Ei, Ej) and dc(Ei, Ej) is not expected.

stress =

√

√

√

√

√

√

√

√

∑

i<j

(

dc(Ei, Ej) − d̂(Ei, Ej)
)

2

∑

i<j

dc(Ei, Ej)
2

(4)

Assuming δ(Ei, Ej) = d̂(Ei, Ej) also causes the stress
measure to be sensitive to scaling: if we take a set of points
A1, simply scale their positions and call it A2, stress will
be found between the two sets. In visualization, scaling is
an integral part of the process of displaying data on a given
viewport. If we were to apply a “scale to fit” procedure,
visualizing sets A1 and A2 would result in the exact same
image, and yet they might have different stress measures
when compared with a reference set.

As we understand that stress might not be a suitable
metric to evaluate the placement strategy, due to reasons
exposed by Paulovich et al. [26], we also used in our evalu-
ation the Nearest Neighbors Precision metric (nnp), as de-
fined by them. It computes the percentage of neighbors that
belong to the same class as the reference element. It could
thus be used to verify whether the resulting incBoard lay-
out is consistent with assigned labels or classes attributed to
data items. We considered the first 8 neighbors (8 − nnp),
that corresponds to the immediate neighbors of a cell on the
board.

We recorded measures for complete layouts and also mean
values for measures computed as elements are gradually
added in a random order. These latter measures reflect the
technique’s performance while the layout is incrementally
built. Whenever a technique is subject to variance, mean
average and standard deviation (std.dev.) measures were
computed over 10 distinct runs. Projections used for com-
parison with incBoard were built using the PEx Tool [27]
and its default settings.

The first data set used consists of 675 scientific articles
manually classified into one of four subject areas: Case-
Based Reasoning (CBR), Inductive Logic Programming (ILP),
Information Retrieval (IR) and Sonification (SON) – this
same dataset, henceforth the CIIS corpus, has been used
before to compare several multidimensional projection tech-

niques [26]. Document content dissimilarity was measured
using the cosine distance over a vector space model of the
collection. Stop words were removed and frequency-based
Luhn’s cuts applied to select relevant terms.

Figure 1 shows intermediate and final document maps of
the corpus obtained with the proposed approach. Docu-
ments are colored according to their assigned classes. Notice
that the general placement of classes remains globally stable
as the visualization is constructed. Documents were added
using the full mode until the 300th element, from then on the
insertion process switched over to the stochastic sampling
mode. At that point, error calculations for each document
used only the random and neighboring lists of elements. The
size of the random and neighboring lists was set to 16 and 24
elements, respectively. The assigned classes played no role
in the arrangement process, being used exclusively to select
each element’s display color.

(a) 178 documents

(b) 294 documents

(c) 675 documents

Figure 1: Three moments on the incremental con-
struction of a visualization of the CIIS corpus. Color
denotes manually assigned classes.

Table 2 shows stress and nnp results for the final layout
and the compared techniques: (i) Projection by Clustering
- ProjClus [25], (ii) Least Square Projection - LSP [26], (iii)
Principal Component Analysis - PCA [12], and (iv) Sam-



mon’s Mapping [30]. Stress used d̂(Ei, Ej) computed by the
fitting algorithm proposed by Kruskal [15]. Results for both
measures are very encouraging.

Table 2: Results of different projection techniques
for the CIIS corpus. (best results in bold).

Technique 8 − nnp std.dev. Stress std.dev.
(×102) (×102) (×102) (×102)

PROJ 67.8 8.8 17.6 0.7
incBoard(final map) 67.8 4.3 18.2 0.6

PCA 85.0 – 21.6 –
LSP 70.7 5.9 22.3 2.1

Sammon’s 76.0 – 37.7 –

Table 3 shows results for stress and nnp computed while
adding documents until reaching the total number of 675
documents. Their mean average is identified as incremen-
tal. Results are consistent throughout the process, indicat-
ing that views obtained at partial stages are also usable.

Table 3: Stress & nnp measures computed while doc-
uments are gradually added to a board of 675 CIIS
documents using incBoard.

Documents 8 − nnp std.dev. Stress std.dev.
on board (×102) (×102) (×102) (×102)

100 55.6 5.3 18.8 1.5
200 64.7 5.6 18.9 1.4
300 70.7 5.5 19.1 1.2
400 67.7 5.7 18.7 0.8
500 67.7 6.0 18.5 0.6
600 67.8 5.2 18.4 0.6
675 67.8 4.3 18.2 0.5

incremental 66 7.1 18.7 1.0

We noticed that maps with 200 elements or less consis-
tently presented poorer results for the 8 − nnp measure,
which could be evidence of a bias of the measure towards
the size of the set (see Tables 3 and 4). For example, in
a square with 16 elements belonging to two classes (8 ele-
ments on each), the lowest possible number of elements with
a neighbor of a different class is 8 (2×√

n), while in a square
with 100 elements this number is only 20 (2×√

n). In other
words, the measure resembles the relation between perime-
ter and area of a shape, which is not constant for different
areas. Based on this rationale, we should only compare nnp
results on maps with roughly the same number of elements,
and may also expect slightly lower results for the incremen-
tal averages in Tables 3 and 5.

The same corpus was also used in an example that resem-
bles more closely the visualization of a dynamic corpus. In
this second scenario, documents were incrementally added
until 300 documents were placed on the board. After that,
replacement takes in, with a document being removed when-
ever a new document is added, until all 675 documents in the
corpus have been displayed. Figure 2 shows three distinct
moments of the process. Indeed, inspecting the visualiza-
tions created along the process one observes that the general
disposition of classes in the board is kept throughout.

Again, quantitative results are very consistent(see Table 4),
highlighting the suitability of incBoard to display dynamic
data sets.

The second case study was conducted on the well known

Table 4: Stress & nnp measures computed while doc-
uments are gradually replaced from a board with
300 CIIS documents using incBoard.

Documents added/ 8 − nnp std.dev. Stress std.dev.
on board (×102) (×102) (×102) (×102)
100/100 56.92 4.56 18.56 1.09
200/200 65.58 3.12 19.11 1.19
300/300 69.86 2.71 19.44 1.35
500/300 64.42 4.65 18.91 0.66
675/300 68.45 4.84 18.51 0.71

Iris flower data [3], which has a total of 150 data items be-
longing to one of three flower species. This second data set
was chosen to asses how our solution would perform when
presented with a data set that is more easily presented in 2
dimensions. Euclidean distance was employed to compute
similarity.

On this case study, stress results were fair (see Table 5),
though not as good as in the previous one. From these
results, one could argue that there exists a 2-dimensional
solution for the projection of the Iris flower data set (stress
for PCA is 0.1×10−2). Therefore, the other techniques listed
benefit from not being subject to the same constraints as
incBoard, as they are free to position each data item at their
ideal positions. Nonetheless, for more complex data sets,
such ideal positions may not exist and, then, their advantage
in this respect becomes irrelevant. Still, the nnp measure
is again very close to the best results, possibly implying
that even if an ideal positioning was not attainable, overall
distribution of data items is good. Moreover, as it happened
with the CIIS corpus, stress and nnp behaved consistently
throughout the process (see incremental results in Table 5).

Table 5: Results of different projection techniques
for the Iris flower data set. (best results in bold).

Technique 8 − nnp std.dev. Stress std.dev.
(×102) (×102) (×102) (×102)

PCA 93.6 – 0.1 –
LSP 91.8 2.6 3.0 1.1

PROJ 83.6 6.3 10.2 1.7
incBoard(final map) 86.4 2.5 14.3 2.5

incBoard(incremental) 81.9 5.4 14.5 2.6

5.2 Proof-of-concept application
The next case study presents one extra application of our

layout technique and visualization as a proof-of-concept. It
lacks formal user evaluation, that should be performed once
a more concrete task or usage scenario is defined.

It illustrates the applicability of our layout technique to
display a collection of images, benefiting from both a layout
that can arrange images by their content and that does not
suffer from occlusion(See Figure 3). It uses a collection of
1109 manually tagged images from [20]. These tags describe
objects and features found on the images. Dissimilarity was
computed using the Jacquard coefficient to compare these
manually assigned tag sets. Some clusters of images depict-
ing the same object or place can be noticed in Figure 3(b).
No image attribute was used in the comparison, and, yet,
some areas where some colors are predominant can be found,
perhaps reflecting some relation between tags and colors.



(a) initial set (b) intermediate set (c) final set

Figure 2: Three moments on a visualization of the CIIS corpus where only 300 documents are kept at a time.
Color denotes manually assigned classes.

(a) (b)

Figure 3: Visualization of 1109 manually tagged images. Similarity determined by tag comparison. Whole
map(a) and detail(b) shown.

6. CONCLUSIONS AND FURTHER WORK
We have built a visualization system that resembles the

way users might layout constantly arriving elements on a
board, based on their content similarity. On the core of our
system is a placement approach that relies on the relative
ranking of the displayed elements to position new elements
on a partially filled board. Absolute positions or distances
bear little meaning on the resulting visual space, nonethe-
less, its layout follows relative ranking relations as found on
the original (or conceptual) space.

The system is particularly suitable to display dynamic
data sets, as it is incrementally built and provides a built in
mechanism for removing elements, while maintaining a com-
pact layout and low computational cost. Moreover, adding
a new element does not demand a complete re-arrangement
of elements. An average of only 2.6%(std.dev. 0.1, com-
puted over 10 runs) of existing elements were displaced after
adding a new one using the CIIS corpus. This is an inter-
esting property, as it allows users to track layout changes as
element positioning gradually progresses.

Though the manually labeled document classes were not
input into the layout process, classes were consistently kept
in the same relative positions on the screen, during the grad-
ual construction of the visualization of a whole corpus and
also when elements of the corpus were gradually replaced.
A consistent relative arrangement of classes was achieved
even after a complete renewal of the viewed document set
was forced, by replacing viewed documents until no docu-
ment from the original viewed set remained. Although the

incBoard approach assigns no explicit meaning to each vi-
sual dimension, this feature is particularly interesting, as it
helps users to maintain a mental map of the arrangement.

The incBoard visualization does not suffer from occlu-
sion of elements, and allocating a pre-defined screen space
to each cell enables using sophisticated and highly informa-
tive glyphs. The user is also able to adjust, at any moment,
the number of elements he or she wishes to display simul-
taneously. The approach could be easily integrated into an
operating system to provide file system navigation, while
using its standard icons and file representations.

The visualization is currently being improved to show sim-
ilarity for each neighboring pair on the board. Hopefully, the
new version will enforce identification of clusters and subsets
of related elements by users.

A user evaluation of the suitability of the layout technique
for specific tasks would be desirable to compare the incre-
mental board space solution with other layout techniques.
There is also room for improvement of specific steps of the
process. For instance, the choice of the closest neighbor
could use a better search strategy. Likewise, alternatives
to the error measure adopted and which options to evalu-
ate when choosing an element to move could be subject to
further investigation. The current choices are the result of
some early ad-hoc experimentation and follow the underly-
ing reasoning presented here.

The next step on system development is to enrich the
map with concepts and/or topic representations. Topics
may be derived automatically from document contents using
dynamically extracted Locally Weighted Rules [22]. These



topical markers, once placed on the board, could steer the
placement of arriving elements. They could also be placed
and positioned by users, who could then adjust the layout
according to their specific interests and needs. Support to
such operations is possible by adapting the incremental build
operations. Another possibility is to allow direct manipula-
tion of items on the board.
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