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Abstract. The presence of noise represent a relevant issue in image
feature extraction and classification. In deep learning, representation is
learned directly from the data and, therefore, the classification model
is influenced by the quality of the input. However, the ability of deep
convolutional neural networks to deal with images that have a different
quality when compare to those used to train the network is still to be
fully understood. In this paper, we evaluate the generalization of mod-
els learned by different networks using noisy images. Our results show
that noise cause the classification problem to become harder. However,
when image quality is prone to variations after deployment, it might be
advantageous to employ models learned using noisy data.

1 Introduction

In real-world applications image quality may vary drastically depending on fac-
tors such as the capture sensor used and lighting conditions. These scenarios
need to be taken into consideration when performing image classification, since
quality shift directly influence its results.

Lately, deep convolutional neural networks have obtained outstanding results
in image classification problems. Nonetheless, little has been done to understand
the impacts of image quality on the classification results of such networks. In
most studies, networks were only tested on images whose quality is similar to
the training set (i.e. similar noise/blur levels). The lack of research in this topic
is not exclusive to deep learning applications. Most image classification systems
neglect preprocessing [12] and assume that image quality does not vary [5].

Given that in real-world applications image quality may vary, we evaluate
classification performance of classic deep convolutional neural networks when
dealing with different types and levels of noise. In addition, we investigate if
denoising methods can help mitigate this problem.

1.1 Related Work

We devote our efforts to investigate the effects of noisy images when using deep
convolutional neural networks in classification tasks. There are papers inves-
tigating the effect of label noise in the learning capability and performance of
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convolutional neural networks [2]. However, this problem is not addressed in this
paper. Thus, in our experiments, we assume that all labels are correct.

Some studies have already identified that image quality can hinder classifi-
cation performance in systems that employ neural networks [5] and in systems
that use hand-crafted features [9][4]. Recently, the development of noise-robust
neural networks has been investigated. For instance, [6] presented a network ar-
chitecture that can cope with some types of nosy images, while [13] designed a
network that is capable of dealing with noise in speech recognition.

Dodge and Karam [5] showed that state-of-the-art deep neural networks
are affected when classifying images with lower quality. In their experiments,
each network was trained on images from the original dataset (with a negligible
amount of noise due to the image formation process) and, then, used to classify
images from the same dataset on their original state, degraded by noise and
affected by blur. Their results show that classification performance is hampered
when classifying images with lower quality. However, their experiments do not
cover the presence of low-quality images in the training set and their impact in
the learned model.

Paranhos da Costa et al. [4] extended the methodology of [5] by considering
that low-quality images can also appear in the training set. In their setup, several
noisy versions of a dataset are created: each version has the same images as the
original dataset, wherein all images are affected by a type of noise at a fixed level.
They also evaluated the effects of denoising techniques by studying restoration
of noisy images. Hand-crafted features (LBP and HOG) were extracted, SVM
classifiers trained with each version of the training set and, then, used to classify
all versions of the test set. Even so, their study only considered two hand-crafted
features (LBP and HOG).

We believe that noise makes classification more difficult due due to the fact
that models trained with a particular noisy/restored training set version – and
tested on images with the same noise configuration – usually perform worse
than a model trained and tested on the original data. Our empirical evaluation
is based on [4], however there are two main differences. First, our experiments
target deep neural networks, with the ability to learn from data, even from low
quality data, while the previous study considers hand-crafted features and SVM
classifiers. Second, we investigate if training models with a specific noise or image
restoration setup can help to build models that are more resilient to changes in
image quality for future data, i.e., in the test set.

2 Experiments

2.1 Experimental setup

The first step in the experimental setup used in this study is to create noisy
and restored versions of each one of the three publicly-available datasets se-
lected for our experiments: MNIST, CIFAR-10 and SVHN (further informa-
tion on these datasets is presented in Section 2.2). To do that, five copies of
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the original dataset are degraded by a Gaussian noise with standard deviation
σ = {10, 20, 30, 40, 50}, and another five copies were hindered by a salt & pepper
noise using p = {0.1, 0.2, 0.3, 0.4, 0.5}, where p is the probability of a pixel being
affected by the noise. Next, denoising methods are applied on each of these ver-
sions, generating 10 restored versions of each dataset, one for each noisy version.

The restored versions of the datasets affected by Gaussian noise are obtained
by filtering the images with the Non-Local Means (NLM) algorithm [3]. To
perform the NLM denoising, we used a 7 × 7 patch, a 11 × 11 window and
a set the parameter h equal to the standard deviation of the Gaussian noise
used to corrupt the dataset being restored. Regarding the salt & pepper noise, all
restored versions were generated by filtering the noise images using a 3×3 median
filter. Hence, we have 21 different versions of each dataset (the original dataset,
10 noisy and 10 restored versions). Since all versions contain the same images, we
always use the same training-test split presented in the original dataset paper.

The second step is to learn a classifier for each training set version. This
means that a single network architecture was trained with each dataset version,
creating 21 different classifiers. Then, each classifier was tested on all versions
of the test set. This process is illustrated by the diagram shown in Figure 1.
For the MNIST dataset, we selected an architecture similar to the LeNet-5 [10],
while for the CIFAR-10 and the SVHN datasets, an architecture similar to the
base model C of [15] was used. These architectures were implemented using the
Keras library and our implementation was based on the code available on [1]. A
convolutional neural network architecture was selected for each dataset.

In the third part of our experimental setup, we compare the learned models.
We begin our analysis by comparing classification accuracies when both the
training and test set have the same type and level of noise. By doing so, we want
to measure how much harder classifying these datasets gets – for that network
architecture – once the noise occurs at a particular level in the entire dataset
(training and test set).

Additionally, we compare the results on the noisy versions with their restored
counterparts, which allows us to measure how much the use of denoising tech-
niques can help to improve accuracy. After, we visualize the classification results
of all trained models in all versions of the test set using heatmaps. Such visu-
alization shows how performance varies for each model. Lastly, we compute the
mean (and standard deviation) of the accuracies obtained by each classifier over
all test set versions. Using these values we can quantize the overall performance
difference among models and compare models with regards to their resilience to
different types of noisy images. This setup is illustrated by the diagram shown
in Figure 1.

2.2 Datasets

MNIST: handwritten digits [10] broadly used in deep learning experiments due
to being real-world data that requires minimal pre-processing/formatting.
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Fig. 1. Experimental setup diagram. In our experiments a different model is trained
for each noise configuration, then these models are used to classify all versions of the
test set. This figure was based on Figure 2 of [4].

CIFAR-10: consisting of 60,000 color 32 × 32 images equally split into 10
classes [8]. This dataset is subdivided into training and test sets, which in-
clude 50,000 and 10,000 images, respectively.

SVHN: house numbers from Google Street View images [11], defines a real-
world problem of recognizing digits in natural images. It is composed by
73,257 images in the training set and 26,032 images in the test set.

3 Results and Discussion

To contrast the impact of noise and denoising methods in image quality, the
average Peak Signal-to-Noise Ratio (PSNR) values for each dataset version are
shown in Table 1. By comparing the results when training and testing is per-
formed in the same dataset version it is possible to analyse how noise affects
classification, in particular if it makes the task more difficult by changing the
parameter space learned by the network. These results are shown in Table 2, in
which it is possible to notice that, in general, the presence of noise, even when re-
stored using a denoising algorithm, increases the complexity of the classification
task.

To better understand the effects of using denoising methods we plot some
of the results presented in Table 2 in Figure 3, showing the accuracies of the
models trained with images affected by different levels of Gaussian noise as well
salt & pepper noise, and their restored counterparts. Neither of these two figures
present the results for the MNIST dataset, because, as can be seen in Table 2,
the differences for this dataset were too small.

Despite the increase in PSNR when employing NLM for denoising, accuracy
decreased when classifying data restored by this method. This is probably due
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Table 1. Average PSNR for each noise level.

Noise
MNIST CIFAR-10 SVHN

noisy restored noisy restored noisy restored

G
a
u

ss
ia

n

σ = 10 30.93 33.18 28.25 29.88 28.15 32.65
σ = 20 24.86 27.46 22.36 25.54 22.21 28.15
σ = 30 21.35 24.35 18.99 22.81 18.81 25.21
σ = 40 18.87 21.54 16.67 20.85 16.47 23.40
σ = 50 16.96 17.84 14.95 19.49 14.74 22.26

s&
p

p = 0.1 13.44 20.78 15.23 25.89 15.52 34.30
p = 0.2 10.79 18.54 12.50 24.00 12.79 29.32
p = 0.3 9.36 16.69 10.98 21.64 11.28 24.82
p = 0.4 8.43 15.13 9.97 19.22 10.28 21.28
p = 0.5 7.78 13.84 9.23 17.04 9.55 18.53

Table 2. Accuracy of each network when training and testing was conducted using
the same dataset version.

Noise
Type

MNIST CIFAR-10 SVHN
noisy restored noisy restored noisy restored

original 0.9903 0.8192 0.9438

G
au

ss
ia

n

σ = 10 0.9916 0.9885 0.8007 0.8016 0.9415 0.9445
σ = 20 0.9875 0.9878 0.7727 0.7583 0.9284 0.9210
σ = 30 0.9898 0.9867 0.7309 0.7156 0.9015 0.8793
σ = 40 0.9890 0.9851 0.6991 0.6625 0.8849 0.8455
σ = 50 0.9860 0.9814 0.6608 0.6277 0.8542 0.7987

s&
p

p = 0.1 0.9799 0.9861 0.7227 0.7613 0.9308 0.9418
p = 0.2 0.9793 0.9802 0.6902 0.7508 0.9193 0.9425
p = 0.3 0.9753 0.9718 0.6088 0.7138 0.9095 0.9301
p = 0.4 0.9641 0.9605 0.5610 0.6921 0.9057 0.9239
p = 0.5 0.9437 0.9426 0.5398 0.6627 0.8889 0.9228

to that fact such denoising procedure generate blurry images, removing relevant
information, as can be seen in Figure 2.

Fig. 2. Examples of noisy images for each dataset. The first row show the original
images. The second row depict images with Gaussian noise (σ = 30) and their restored
versions. Finally, the third row has images affected by salt & pepper noise (p = 0.3)
and denoised by a median filter.

Next, results comparing models when classifying all dataset versions are pre-
sented using the heatmaps of Figure 4. Each row in a heatmap represent a version
of the training set, while each column displays the results for a version of the
test set. As demonstrated in [4], models tend to achieve their best accuracy
when classifying data that has the same quality as the data used to train them.
Nevertheless, depending on the training set, different generalization capability
is achieved. This is demonstrated by models whose results are similar to their
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Fig. 3. Comparison of the accuracy of each network for different noise parameters (a)
Gaussian noise standard deviation σ (b) Salt & Pepper probability p, with and without
the use of denoising algorithms (DNo) for restoration.

Fig. 4. Heatmaps representing the results obtained on MNIST (left), CIFAR-10 (cen-
ter) and SVHN (right).

Table 3. Average accuracy and standard deviation (in percentages) for each model in
all test set versions.

Noise
Type

MNIST CIFAR-10 SVHN
noisy restored noisy restored noisy restored

original 93.13± 9.68 43.50± 21.84 68.21± 24.64

G
au

ss
ia

n

σ = 10 94.59± 7.35 87.68± 18.68 45.04± 21.80 48.83± 21.12 71.87± 22.47 67.41± 25.15
σ = 20 91.00± 14.08 90.77± 14.18 49.52± 20.41 48.68± 21.06 73.72± 20.28 67.41± 25.15
σ = 30 94.26± 8.65 88.29± 18.43 50.72± 18.57 47.75± 18.48 74.36± 18.94 61.09± 28.32
σ = 40 94.49± 6.94 92.95± 9.90 51.76± 16.79 41.82± 18.07 75.62± 17.54 61.01± 28.67
σ = 50 93.58± 8.16 90.72± 12.42 51.23± 14.85 38.31± 16.04 75.18± 16.76 63.51± 27.81

s&
p

p = 0.1 95.85± 4.02 90.12± 12.55 56.78± 15.04 44.20± 22.47 82.97± 11.81 66.69± 24.95
p = 0.2 97.13± 2.12 84.71± 19.06 56.92± 12.89 51.69± 20.08 83.41± 11.47 76.33± 20.13
p = 0.3 97.27± 1.74 88.13± 15.61 49.79± 11.89 57.20± 14.97 82.26± 13.01 77.27± 19.79
p = 0.4 97.11± 1.57 83.70± 18.57 42.83± 11.85 57.83± 13.71 82.84± 13.28 80.14± 16.04
p = 0.5 96.32± 1.87 81.66± 22.40 33.21± 12.21 57.79± 11.76 80.02± 14.14 82.16± 12.89

best, even when classifying data affected by other types of noise. To compare the
noise resilience of these models, Table 3 show the mean and standard deviation
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accuracies obtained by each classifier over all test set versions (the mean and
standard deviation of each row of each heatmap).

In this comparison, the network trained with the original dataset is used
as a baseline scenario, given that this network has no previous knowledge of
any type of noise, while the others have already seen noisy images in some
level. Therefore, networks trained with noisy images have an advantage when
dealing with noise in future data even when it occurs at a different level. For
the MNIST dataset, models trained on the original data obtained an average
accuracy of 93.13% and a standard deviation of 9.68%, while the best overall
result of 97.27± 1.74% was obtained by the model trained using images affected
by salt & pepper noise (with p = 0.3). On the CIFAR-10 dataset, the best
average results (57.83± 13.71%) were obtained by the model trained with data
corrupted by salt & pepper with p = 0.4 and restored using the median filter.
The model trained using the original data obtained 43.50 ± 21.84%. Lastly, in
the SVHN dataset, the model trained on the original dataset obtained a overall
68.21± 24.64% accuracy, against 83.41± 11.47% obtained by the model trained
with images affected by salt & pepper noise (p = 0.2).

Nevertheless, it is possible to notice that some models are better at general-
ising to other types of noise. For instance, in the MNIST dataset, most models
trained with salt & pepper noise obtained were able to achieve results around
0.6 or higher, while the other model did not.

To facilitate reproducibility of our experiments, our code is publicly available
at http://github.com/tiagosn/dnnnoise2017.

4 Conclusions

We analysed the behaviour of deep convolutional neural networks when dealing
with different types of image quality. Our study covered images affected by s&p
and Gaussian noise and their restored versions. Although noise injection in the
training data is a common practice, our systematic methodology provide a better
understanding of the behaviour of the models under noise conditions. The results
indicate that training networks using data affected by some types of noise could
be beneficial for applications that need to deal with images with varying quality,
given that it seems to improve the resilience of the network to other types of
noise and noise levels.

Concerning denoising methods, images restored with the median filter, when
compared against images with s&p noise, were able to improve the accuracy in
data with the same quality. Nevertheless, models trained with s&p noise usually
obtained a better noise resilience. Restoring images with NLM resulted, for the
most part, in a decrease in performance. This was probably due to the removal
of relevant information caused by NLM smoothing. Hence, better results might
be achieved with a different parameter choice.

As future work we intend to explore deeper models such as VGG [14] and
ResNets [7]. These experiments should also include neural networks designed to

http://github.com/tiagosn/dnnnoise2017
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be robust to noise such as in [6]. Moreover, we aim at conducting experiments
in larger datasets like ImageNet.
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