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Autoencoders basics

General architecture of a Deep Autoencoder
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Autoencoders basics

General architecture of a Deep Autoencoder
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Autoencoders basics

Autoencoders basics: encoder and decoder

Encoder

Produces Code or Latent Representation

h = s(Wx+ b) = f(x)

Moacir, Leonardo, Tiago, Tu and John Auto-Encoders 5 /27



Autoencoders basics

Autoencoders basics: encoder and decoder

Encoder

Produces Code or Latent Representation

h = s(Wx+ b) = f(x)

Decoder

Produces Reconstruction of the input

& = s(Wh +b") = g(h)

Tied weights when W' = W T
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Autoencoders basics

Autoencoders basics: loss function

Given the output & = g(f(x)
We want to minimize some reconstruction loss:

L(x,g(f(x)) = &)
Cross entropy (bits or probability vectors)

L(x,8) = xlogx + (1 — x) log(1 — X)

Mean squared error (continuous values)

£(x,%) = [|x — %2
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Autoencoders basics

Autoencoders basics: flavours

Undercomplete

@ Bottleneck layer produces code h with less dimensions then input x

Overcomplete
@ Code h has more dimensions then the input x

@ Different versions e.g. sparse, denoising, contractive.
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Agenda

© Undercomplete AEs
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Undercomplete AEs

Undercomplete

Learns a Lossy Compression of the input data.

@ has a "bottleneck” layer

@ can be used for Dimensionality Reduction — often compared to
Principal Component Analysis (PCA)

@ often code is a good representation for the training data only
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Undercomplete AEs

Undercomplete

Learns a Lossy Compression of the input data.

@ has a "bottleneck” layer

@ can be used for Dimensionality Reduction — often compared to

Principal Component Analysis (PCA)

@ often code is a good representation for the training data only
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Undercomplete AEs

Undercomplete

Increasing the number of layers adds capacity to the AE.

@ Encoder and Decoder layers can also be convolutional layers

QOOOOO0O O
QQOOOO
0000
QOO0
O0000000

In principle with a sufficiently large capacity it may map every input to a
single neuron on bottleneck layer.
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Overcomplete Regularized AEs
Agenda

© Overcomplete Regularized AEs
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Overcomplete AEs

High-dimensional intermediate layer
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Overcomplete Regularized AEs

Overcomplete AEs

High-dimensional intermediate layer

@ a naive implementation would allow a copy so that x = X

Mk

Moacir, Leonardo, Tiago, Tu and John Auto-Encoders 12 / 27



Overcomplete Regularized AEs

Overcomplete AEs

High-dimensional intermediate layer
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Overcomplete Regularized AEs

Overcomplete regularized AEs

Regularization with sparsity constraint

£(x.&(F(0)) + A ()
£(x & (FG0) + A il

@ loss function tries to keep a low number of activation neurons per
training input
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Overcomplete Regularized AEs

Overcomplete regularized AEs

Regularization with sparsity constraint
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Overcomplete Regularized AEs

Overcomplete regularized AEs

Regularization with sparsity constraint
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Overcomplete Regularized AEs

Overcomplete regularized AEs

Regularization with sparsity constraint
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Denoising AEs (DAEs)

Regularization achieved by adding noise to x
@ the loss is computed using the noiseless input x

@ AE has to reconstruct x using a noisy input X, so representation must
be robust to noise

@ this prevents the overcomplete AE to simply copy the data
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____ Overcomplete Regularized AE |
Denoising AEs (DAEs)

Regularization achieved by adding noise to x

@ DAEs aim to learn a good internal representation as a side effect of
learning to denoise the input
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Denoising AEs (DAEs)

Noise processes
o Additive Gaussian Noise with u = 0, and some o;

@ Set a percentage of the input data to zero with some probability p.

Interpretation

@ Learns to project data around some manifold to the distribution of the
original (noiseless) data

@ If some input is to far from the original distribution, it produces a high
reconstruction error
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Denoising AEs (DAEs): example

Using MNIST dataset, without noise

Vincent, Pascal, et al. "Stacked denoising autoencoders: Learning useful representations in a

engising criterion." lonrnal of Machine | earnine Research. 2010: ~©
Auto-Encoders 18 / 27
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Denoising AEs (DAEs): example

Using MNIST dataset, zero input variable with 25% probability

Vincent, Pascal, et al. "Stacked denoising autoencoders: Learning useful representations in a

cngicing criterion " lonrnal of Machine | erning Research 2010- ~ ©
Auto-Encoders 19 / 27
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Denoising AEs (DAEs): example

Using MNIST dataset, zero input variable with 50% probability

Vincent, Pascal, et al. "Stacked denoising autoencoders: Learning useful representations in a

decn netwark with a local depgicing criterion ' lanrnal of Machine | a:?—nino‘ E\’Acn:.u:‘h ')n==fﬂ' oac
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Contractive AEs (CAEs)

Regularization based on the gradient of code f(x) = h with respect to x
@ adds a term to the Loss function

@ it is referred to as the Frobenius norm of the Jacobian of the Encoder

Ui, g(F(xi))+AI| Vi, f (xi)I [

2
((xi, g(F(xi)))+A Z Z <8f(x )

J — index for the code (intermediate layer unit)
— index for the input vector

The Jacobian is a matrix of the derivatives of all elements of the code with
respect to all elements of the input
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Contractive AEs (CAEs)

Effects of terms on the encoder:
@ /(x;,g(f(xi))): relies on keeping relevant information;

o \||Vxf(x;)||#: throws away changes in code with respect to input.

Interpretations:
@ rate of change of the code must follow the rate of change of the input;

e if noise is added to input, the code should not be affected (compare to
Denoising AEs!);

@ a good balance between terms will result in keeping only the relevant
information.
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Contractive AEs (CAEs)

Jacobian matrix can be seen as a linear approximation of a nonlinear
encoder.

@ A linear operator is said to be contractive if the norm of Jy is kept less
than or equal to 1 for all unit-norm of x, i.e. if it shrinks the unit
sphere around each point;

@ CAE encourages each of the local linear operators to become a
contraction;

@ only a few directions of the manifold of the data approaches zero,
likely the directions approximating the tangent planes of the manifold.
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Contractive AEs (CAEs): interpretation for images

CAE learns to reconstruct data that is:
@ tangent to the manifold or within some sphere;
@ those are likely to represent real variations of the data

@ in images that would be related to rotation, style change, etc.
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Contractive AEs (CAEs): a sketch manifold illustration
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Concluding remarks

Concluding remarks

@ AEs can be a good choice with unsupervised data;

@ Deep autoencoders can be useful to many applications, via manifold
learning;

@ The potential for manifold learning can be used for instance on
Generative tasks (Generative and Variational Autoencoders).

@ Those can also be plugged in supervised architectures.
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Concluding remarks
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