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Autoencoders basics

General architecture of a Deep Autoencoder

input x Encoder Code Decoder output x̂
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Autoencoders basics

Autoencoders basics: encoder and decoder

Encoder
Produces Code or Latent Representation

h = s(Wx + b) = f (x)

Decoder
Produces Reconstruction of the input

x̂ = s(W′h + b′) = g(h)

Tied weights when W′ = WT
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Autoencoders basics

Autoencoders basics: loss function

Given the output x̂ = g(f (x)
We want to minimize some reconstruction loss:

L(x, g(f (x)) = x̂)

Cross entropy (bits or probability vectors)

L(x, x̂) = x log x̂ + (1− x) log(1− x̂)

Mean squared error (continuous values)

L(x, x̂) = ||x− x̂||2
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Autoencoders basics

Autoencoders basics: flavours

Undercomplete
Bottleneck layer produces code h with less dimensions then input x

Overcomplete
Code h has more dimensions then the input x
Different versions e.g. sparse, denoising, contractive.
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Undercomplete AEs
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Undercomplete AEs

Undercomplete

Learns a Lossy Compression of the input data.

has a “bottleneck” layer
can be used for Dimensionality Reduction — often compared to
Principal Component Analysis (PCA)
often code is a good representation for the training data only
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Undercomplete AEs

Undercomplete

Increasing the number of layers adds capacity to the AE.

Encoder and Decoder layers can also be convolutional layers

In principle with a sufficiently large capacity it may map every input to a
single neuron on bottleneck layer.

Moacir, Leonardo, Tiago, Tu and John Auto-Encoders 10 / 27



Overcomplete Regularized AEs
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Overcomplete Regularized AEs

Overcomplete AEs

High-dimensional intermediate layer

a naive implementation would allow a copy so that x = x̂
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Overcomplete Regularized AEs

Overcomplete regularized AEs

Regularization with sparsity constraint

L(x , g(f (x))) + Ω(f (x))

L(x , g(f (x))) + λ
∑
i

|hi |,

loss function tries to keep a low number of activation neurons per
training input
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Overcomplete Regularized AEs

Denoising AEs (DAEs)

Regularization achieved by adding noise to x
the loss is computed using the noiseless input x
AE has to reconstruct x using a noisy input x̃, so representation must
be robust to noise
this prevents the overcomplete AE to simply copy the data
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Overcomplete Regularized AEs

Denoising AEs (DAEs)

Regularization achieved by adding noise to x
DAEs aim to learn a good internal representation as a side effect of
learning to denoise the input

x x̃ x̂
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Overcomplete Regularized AEs

Denoising AEs (DAEs)

Noise processes
Additive Gaussian Noise with µ = 0, and some σ;
Set a percentage of the input data to zero with some probability p.

Interpretation
Learns to project data around some manifold to the distribution of the
original (noiseless) data
If some input is to far from the original distribution, it produces a high
reconstruction error
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Overcomplete Regularized AEs

Denoising AEs (DAEs): example

Using MNIST dataset, without noise

Vincent, Pascal, et al. "Stacked denoising autoencoders: Learning useful representations in a

deep network with a local denoising criterion." Journal of Machine Learning Research, 2010:

3371-3408.
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Overcomplete Regularized AEs

Denoising AEs (DAEs): example

Using MNIST dataset, zero input variable with 25% probability

Vincent, Pascal, et al. "Stacked denoising autoencoders: Learning useful representations in a

deep network with a local denoising criterion." Journal of Machine Learning Research, 2010:

3371-3408.
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Overcomplete Regularized AEs

Denoising AEs (DAEs): example

Using MNIST dataset, zero input variable with 50% probability

Vincent, Pascal, et al. "Stacked denoising autoencoders: Learning useful representations in a

deep network with a local denoising criterion." Journal of Machine Learning Research, 2010:

3371-3408.
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Overcomplete Regularized AEs

Contractive AEs (CAEs)

Regularization based on the gradient of code f (x) = h with respect to x
adds a term to the Loss function
it is referred to as the Frobenius norm of the Jacobian of the Encoder

`(xi , g(f (xi )))+λ||∇xi f (xi )||2F

`(xi , g(f (xi )))+λ
∑
j

∑
k

(
∂f (xi )j
∂x

(k)
i

)2

j – index for the code (intermediate layer unit)
k – index for the input vector

The Jacobian is a matrix of the derivatives of all elements of the code with
respect to all elements of the input
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Overcomplete Regularized AEs

Contractive AEs (CAEs)

Effects of terms on the encoder:
`(xi , g(f (xi ))): relies on keeping relevant information;
λ||∇xi f (xi )||2F : throws away changes in code with respect to input.

Interpretations:
rate of change of the code must follow the rate of change of the input;
if noise is added to input, the code should not be affected (compare to
Denoising AEs!);
a good balance between terms will result in keeping only the relevant
information.
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Overcomplete Regularized AEs

Contractive AEs (CAEs)

Jacobian matrix can be seen as a linear approximation of a nonlinear
encoder.

A linear operator is said to be contractive if the norm of Jx is kept less
than or equal to 1 for all unit-norm of x , i.e. if it shrinks the unit
sphere around each point;
CAE encourages each of the local linear operators to become a
contraction;
only a few directions of the manifold of the data approaches zero,
likely the directions approximating the tangent planes of the manifold.
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Overcomplete Regularized AEs

Contractive AEs (CAEs): interpretation for images

CAE learns to reconstruct data that is:
tangent to the manifold or within some sphere;
those are likely to represent real variations of the data
in images that would be related to rotation, style change, etc.
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Overcomplete Regularized AEs

Contractive AEs (CAEs): a sketch manifold illustration
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Concluding remarks

Concluding remarks

AEs can be a good choice with unsupervised data;
Deep autoencoders can be useful to many applications, via manifold
learning;
The potential for manifold learning can be used for instance on
Generative tasks (Generative and Variational Autoencoders).
Those can also be plugged in supervised architectures.
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Concluding remarks
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