
Generative
Adversarial Networks

SIBGRAPI 2017 Tutorial

Everything you wanted to know about Deep Learning for Computer Vision

but were afraid to ask

Presentation content inspired by Ian Goodfellow’s tutorial “Generative Adversarial Networks” on NIPS 2016

1

Moacir A. Ponti, Leonardo S. F. Ribeiro, Tiago S. Nazare, Tu Bui, John Collomosse

Generative
Adversarial Networks

SIBGRAPI 2017 Tutorial

Everything you wanted to know about Deep Learning for Computer Vision

but were afraid to ask

Presentation content inspired by Ian Goodfellow’s tutorial “Generative Adversarial Networks” on NIPS 2016

2

Generative
Adversarial Networks

Generative
Models

Generator vs.
Discriminator Applications

Future
Research on

GANs

3

4

Generative
Adversarial Networks

Why
Generative
Models?

What are
Generative
Models?

5

Generative
Adversarial Networks

Black Box

Press to
Produce
Images

`

Samples

What are
Generative
Models?

6

Generative
Adversarial Networks

Why
Generative
Models?

Manipulate
High Dim

Probability
Distributions

Labels are hard to
come by for many

applications

Create art or
manipulate natural

images

Generative
Adversarial Networks

Generative
Models

Generator vs.
Discriminator Applications

Future
Research on

GANs

7

Generative Models

P(x)

x

Some generative models learn to produce a probability density function or
sample from one such density that represents an estimation of the original
density where the data was drawn from

x

8

Generative Models

xx

9
But sometimes we are more interested in the data produced by
such densities and not on the densities themselves

Generative
ModelsMaximum Likelihood Estimation

One way a generative model can work is by using the principle of maximum
likelihood (ML)

The likelihood is the joint probability of all samples from the training data
“happening” on the estimated distribution

ℒ(x, θ) =
m

∏
i= 1

pmodel(xi; θ)

10

Generative
ModelsMaximum Likelihood Estimation

One way a generative model can work is by using the principle of maximum
likelihood (ML)

The likelihood is the joint probability of all samples from the training data
“happening” on the estimated distribution

GANs by default are not based on the ML principle but can, for the
sake of comparison, be altered to do so (Goodfellow, 2014)

ℒ(x, θ) =
m

∏
i= 1

pmodel(xi; θ)

11

Generative
ModelsCategorization

Explicit Density Functions Implicit Density Functions

We can categorize the methods that are based on the ML principle into two
main buckets

12

Generative
ModelsCategorization

Explicit Density
Functions

Implicit Density
Functions

• Fully Visible Belief Nets
(Frey et al, 1996, 1998
WaveNet, 2016)

• Boltzmann Machines
(Fahlman, 1983)

• Variational Autoencoders

• Methods based on
Markov Chains

• Generative Adversarial
Networks

13

Generative
Adversarial Networks

Generative
Models

Generator vs.
Discriminator Applications

Future
Research on

GANs

14

Generator vs. Discriminator

DiscriminatorGenerator VS

Two models are trained simultaneously, one is a Generator model that given an
input z produces a sample x from an implicit probability distribution; The other is
the Discriminator, a classifier that should identify if a sample was produced by
the original distribution or by the generator approximation.

15

PoliceCounterfeiter VS

It is possible to think of the generator as a money counterfeiter, trained to fool
the discriminator which can be thought as the police force

Generator vs.
DiscriminatorIntuition

16

The police are then always improving its counterfeiting detection techniques at
the same time as counterfeiters are improving their ability of producing better
counterfeits.

PoliceCounterfeiter real or
counterfeit?

punish improve

bank

Generator vs.
DiscriminatorIntuition

17

Formally, GANs are a structured probabilistic model with latent variables z and
observed variables x. The two models are represented generally by functions
with the only requirement being that both must be differentiable.

Generator vs.
DiscriminatorGANs as a probabilistic model

DiscriminatorGenerator VS

18

Formally, GANs are a structured probabilistic model with latent variables z and
observed variables x. The two models are represented generally by functions
with the only requirement being that both must be differentiable.

Generator vs.
DiscriminatorGANs as a probabilistic model

DiscriminatorGeneratorVS
Trained

GeneratorZ X

19

Formally, GANs are a structured probabilistic model with latent variables z and
observed variables x. The two models are represented generally by functions
with the only requirement being that both must be differentiable.

Generator vs.
DiscriminatorGANs as a probabilistic model

DiscriminatorGeneratorVS
Trained

Generator

20

Latent Variables Space Observed Variables Space

Generator vs.
DiscriminatorFormally

Discriminator

Generator

21

Generator vs.
DiscriminatorFormally

Discriminator

Generator
The Generator can be any differentiable function G that
takes z as an input and uses predefined parameters to
output the observed variables x

The Discriminator can be any differentiable function D
that takes x and uses predefined parameters to output a
single scalar: a label defining where x was sampled from

22

Generator vs.
DiscriminatorFormally

Discriminator

Generator G is trained to minimize correct assignments of D

The function D is optimized to assign the correct labels
to both training data and data produced by G

23

Generator vs.
DiscriminatorDiagram of training procedure

24

SampleSampleSample

Discriminator

Generator

Training
Data

X

X

is real or
generated?

Cost Function

back propagation

Z SampleSampleSample
^

Generator vs.
DiscriminatorTraining procedure

25

SampleSampleSample

Discriminator

Generator

Training
Data

X

X

is real or
generated?

Cost Function

back propagation

Z SampleSampleSample
^

At each minibatch, values are sampled from both the training set and the set of
random latent variables z and after one step through the networks, one
gradient-based optimization method of choice is applied to update G and D’s
parameters based on loss functions designed to optimize each agent for the
task

Generator vs.
DiscriminatorTraining Procedure

26

Cost Function

Generator vs.
DiscriminatorTraining Procedure

27

Cost Function

Designed to represent a zero-sum game. This way
both players G and D, if implemented as compact
convex functions, are guaranteed by the minimax
theorem to achieve an equilibrium point.

Generator vs.
DiscriminatorTraining Procedure

28

Cost Function In the original formulation, D and G play a minimax
game with value function V(G, D)

min
G

max
D

V(G, D) = !x∼pdata(x)[log D(x)]
+ !z∼pg(z)[log(1 − D(G(z)))]

Generator vs.
DiscriminatorTraining Procedure

29

Cost Function The minimax game value function can be used to
design the cost functions for the training procedure

ℒ(D)(θ(D), θ(G)) = −1
2 #x∼pdata(x)[log D(x)]

−1
2 #z[log(1 −D(G(x)))]

ℒ(G)(θ(D), θ(G)) = −J(D)

Cost Function

Generator vs.
DiscriminatorTraining Procedure

30

If we fix the Generator, this is the optimum discriminator value because
we know functions of the kind achieve
their maximum at

D*G(x) = pdata(x)
pdata(x) + pg(x)

y → a log(y) + b log(1 −y)
a

a + b

pg = pdata → D*G(x) = 1
2

Cost Function

Generator vs.
DiscriminatorTraining Procedure

31

Fixing the discriminator at its optimum point, we can redefine the value
function

C(G) = !x∼pdata[log D*G(x)] + !x∼pg[1 − log D*G(x)]

C(G) = !x∼pdata[log pdata(x)
pdata(x) + pg(x)] + !x∼pg[1 − log pdata(x)

pdata(x) + pg(x)]

Cost Function

Generator vs.
DiscriminatorTraining Procedure

32

It is then possible to manipulate this value function and rewrite it with a
Jensen-Shannon divergence, which is always non-negative or zero,
proving that there is an equilibrium at when

C(G) = − log 4 + 2.JS D(pdata | | pg)

pg = pdataC(G) = log 4

Cost Function

Generator vs.
DiscriminatorTraining Procedure

33

Guaranteed to converge if both G and D are convex functions
updated in function space.

ℒ(D)(θ(D), θ(G)) = −1
2 #x∼pdata(x)[log D(x)]

−1
2 #z[log(1 −D(G(x)))]

ℒ(G)(θ(D), θ(G)) = −J(D)

Cost Function

Generator vs.
DiscriminatorTraining Procedure

34

There is at least one problem without these guarantees, when
discriminator achieves the point where it is performing its task
successfully, the gradient of the discriminator’s cost approaches zero.

ℒ(D)(θ(D), θ(G)) = −1
2 #x∼pdata(x)[log D(x)]

−1
2 #z[log(1 −D(G(x)))]

ℒ(G)(θ(D), θ(G)) = −J(D)

Generator vs.
DiscriminatorTraining Procedure

35

Cost Function
The heuristic non-saturating game suggested by
(Goodfellow, 2016) is a variation of the minimax
game.

ℒ(G)(θ(D), θ(G)) = −1
2 #z log D(G(x))

ℒ(D)(θ(D), θ(G)) = −1
2 #x∼pdata(x)[log D(x)]

−1
2 #z[log(1 −D(G(x)))]

Generator vs.
DiscriminatorTraining Procedure

36

Cost Function

In the heuristic non-saturating game, rather than
minimizing log-probability of the discriminator being
correct, the generator maximises the log-probability
of the discriminator being mistaken

ℒ(G)(θ(D), θ(G)) = −1
2 #z log D(G(x))

ℒ(D)(θ(D), θ(G)) = −1
2 #x∼pdata(x)[log D(x)]

−1
2 #z[log(1 −D(G(x)))]

Generator vs.
DiscriminatorTraining Procedure

37

Cost Function Comparison of the obtained gradients for the
generator with different cost functions

Generative
Adversarial Networks

Generative
Models

Generator vs.
Discriminator Applications

Future
Research on

GANs

38

Alec Radford, Luke Metz and Soumith Chintala, “Unsupervised Representation
Learning with Deep Convolutional Generative Adversarial Networks”

ApplicationsDCGAN for Image Generation

39

DCGAN trained for 5 epochs on LSUN Bedrooms

Alec Radford, Luke Metz and Soumith Chintala, “Unsupervised Representation
Learning with Deep Convolutional Generative Adversarial Networks”

ApplicationsVector Space Arithmetic

40

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou and Alexei A. Efros, “Image-to-Image
Translation with Conditional Adversarial Networks”

ApplicationsImage to Image Translation

41

ApplicationsImage to Image Translation

42

DiscriminatorGenerator Is the pair a real
or synthetic?

Cost Functions
back propagation

Natural
Images

Semantic
Labels

Real Pair

Synthetic
Pair

X

Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew
Cunningham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz,
Zehan Wang and Wenzhe Shi, “Photo-Realistic Single Image Super-Resolution
Using a Generative Adversarial Network”

ApplicationsSingle Image Super-Resolution

43

Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman and Alexei A. Efros,
“Generative Visual Manipulation on the Natural Image Manifold”

ApplicationsVisual Manipulation

44

ApplicationsVisual Manipulation

45

Andrew Brock, Theodore Lim, J.M. Ritchie and Nick Weston, “Neural Photo
Editing with Introspective Adversarial Networks”

Generative
Adversarial Networks

Generative
Models

Generator vs.
Discriminator Applications

Future
Research on

GANs

46

Future Research on GANs

47

Non-convergence Mode collapse Evaluation of GANs

Discrete Output Semi-supervised
learningLatent code usage

Generative
Adversarial Networks

Generative
Models

Generator vs.
Discriminator Applications

Future
Research on

GANs

48

Generative
Adversarial Networks

Generative
Models

Generator
vs.

Discriminator
Applications

Future
Research on

GANs

49

SampleSampleSample

Discriminator

Generator

Training
Data

X

X

is real or
generated?

Cost Function

back propagation

Z SampleSampleSample
^

Bibliography

50

C. Doersch, “Tutorial on variational autoencoders,” arXiv preprint arXiv:1606.05908, 2016.

G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep belief nets,” Neural
computation, vol. 18, no. 7, pp. 1527–1554, 2006.

A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior,
and K. Kavukcuoglu, “WaveNet: A Generative Model for Raw Audio,” sep 2016. [Online]. Available:
http: //arxiv.org/abs/1609.03499

I. Goodfellow, “NIPS 2016 Tutorial: Generative Adversarial Networks,” dec 2016. [Online]. Available: http://
arxiv.org/ abs/1701.00160

I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio,
“Generative adversarial nets,” in Advances in Neural Information Processing Systems 27, 2014

A. Fischer and C. Igel, “Training restricted boltzmann ma- chines: An introduction,” Pattern Recognition,
vol. 47, no. 1, pp. 25–39, 2014.

R. Salakhutdinov and G. Hinton, “Deep boltzmann ma- chines,” in Artificial Intelligence and Statistics,
2009, pp. 448–455.

Generative Models Generator vs. Discriminator Applications Future Research on GANs

