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Generative Models

P(x)

x

Some generative models learn to produce a probability density function or 
sample from one such density that represents an estimation of the original 
density where the data was drawn from

x
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Generative Models

xx

9
But sometimes we are more interested in the data produced by 
such densities and not on the densities themselves 



Generative 
ModelsMaximum Likelihood Estimation

One way a generative model can work is by using the principle of maximum 
likelihood (ML)


The likelihood is the joint probability of all samples from the training data 
“happening” on the estimated distribution


ℒ(x, θ) =
m

∏
i= 1

pmodel(xi; θ)
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Generative 
ModelsMaximum Likelihood Estimation

One way a generative model can work is by using the principle of maximum 
likelihood (ML)


The likelihood is the joint probability of all samples from the training data 
“happening” on the estimated distribution


GANs by default are not based on the ML principle but can, for the 
sake of comparison, be altered to do so (Goodfellow, 2014)  

ℒ(x, θ) =
m

∏
i= 1

pmodel(xi; θ)
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Generative 
ModelsCategorization

Explicit Density Functions Implicit Density Functions

We can categorize the methods that are based on the ML principle into two 
main buckets
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Generative 
ModelsCategorization

Explicit Density 
Functions

Implicit Density 
Functions

• Fully Visible Belief Nets 
(Frey et al, 1996, 1998  
WaveNet, 2016) 

• Boltzmann Machines 
(Fahlman, 1983) 

• Variational Autoencoders 

• Methods based on 
Markov Chains 

• Generative Adversarial 
Networks 
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Generator vs. Discriminator

DiscriminatorGenerator VS

Two models are trained simultaneously, one is a Generator model that given an 
input z produces a sample x from an implicit probability distribution; The other is 
the Discriminator, a classifier that should identify if a sample was produced by 
the original distribution or by the generator approximation.
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PoliceCounterfeiter VS

It is possible to think of the generator as a money counterfeiter, trained to fool 
the discriminator which can be thought as the police force 

Generator vs. 
DiscriminatorIntuition
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The police are then always improving its counterfeiting detection techniques at 
the same time as counterfeiters are improving their ability of producing better 
counterfeits. 


PoliceCounterfeiter real  or 
counterfeit?

punish improve

bank

Generator vs. 
DiscriminatorIntuition
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Formally, GANs are a structured probabilistic model with latent variables z and 
observed variables x. The two models are represented generally by functions 
with the only requirement being that both must be differentiable. 

Generator vs. 
DiscriminatorGANs as a probabilistic model

DiscriminatorGenerator VS
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Formally, GANs are a structured probabilistic model with latent variables z and 
observed variables x. The two models are represented generally by functions 
with the only requirement being that both must be differentiable. 

Generator vs. 
DiscriminatorGANs as a probabilistic model
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Formally, GANs are a structured probabilistic model with latent variables z and 
observed variables x. The two models are represented generally by functions 
with the only requirement being that both must be differentiable. 

Generator vs. 
DiscriminatorGANs as a probabilistic model

DiscriminatorGeneratorVS
Trained 

Generator
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Latent Variables Space Observed Variables Space
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Generator vs. 
DiscriminatorFormally

Discriminator

Generator
The Generator can be any differentiable function G that 
takes z as an input and uses predefined parameters to 
output the observed variables x

The Discriminator can be any differentiable function D 
that takes x and uses predefined parameters to output a 
single scalar: a label defining where x was sampled from
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Generator vs. 
DiscriminatorFormally

Discriminator

Generator G is trained to minimize correct assignments of D

The function D is optimized to assign the correct labels 
to both training data and data produced by G 
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Generator vs. 
DiscriminatorDiagram of training procedure
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Generator vs. 
DiscriminatorTraining procedure
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At each minibatch, values are sampled from both the training set and the set of 
random latent variables z and after one step through the networks, one 
gradient-based optimization method of choice is applied to update G and D’s 
parameters based on loss functions designed to optimize each agent for the 
task
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Cost Function



Generator vs. 
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Cost Function

Designed to represent a zero-sum game. This way 
both players G and D, if implemented as compact 
convex functions, are guaranteed by the minimax 
theorem to achieve an equilibrium point.



Generator vs. 
DiscriminatorTraining Procedure
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Cost Function In the original formulation, D and G play a minimax 
game with value function V(G, D)

min
G

max
D

V(G, D) = !x∼pdata(x)[log D(x)]
+ !z∼pg(z)[log(1 − D(G(z)))]



Generator vs. 
DiscriminatorTraining Procedure
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Cost Function The minimax game value function can be used to 
design the cost functions for the training procedure

ℒ(D)(θ(D), θ(G)) = −1
2 #x∼pdata(x)[log D(x)]

−1
2 #z[log(1 −D(G(x)))]

ℒ(G)(θ(D), θ(G)) = −J(D)



Cost Function

Generator vs. 
DiscriminatorTraining Procedure
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If we fix the Generator, this is the optimum discriminator value because 
we know functions of the kind                                               achieve 
their maximum at 

D*G(x) = pdata(x)
pdata(x) + pg(x)

y → a log(y) + b log(1 −y)
a

a + b

pg = pdata → D*G(x) = 1
2



Cost Function

Generator vs. 
DiscriminatorTraining Procedure
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Fixing the discriminator at its optimum point, we can redefine the value 
function

C(G ) = !x∼pdata[log D*G(x)] + !x∼pg[1 − log D*G(x)]

C(G ) = !x∼pdata[log pdata(x)
pdata(x) + pg(x) ] + !x∼pg[1 − log pdata(x)

pdata(x) + pg(x) ]



Cost Function
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It is then possible to manipulate this value function and rewrite it with a 
Jensen-Shannon divergence, which is always non-negative or zero, 
proving that there is an equilibrium at                      when 

C(G ) = − log 4 + 2.JS D( pdata | | pg)

pg = pdataC(G ) = log 4



Cost Function

Generator vs. 
DiscriminatorTraining Procedure
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Guaranteed to converge if both G and D are convex functions 
updated in function space. 

ℒ(D)(θ(D), θ(G)) = −1
2 #x∼pdata(x)[log D(x)]

−1
2 #z[log(1 −D(G(x)))]

ℒ(G)(θ(D), θ(G)) = −J(D)



Cost Function

Generator vs. 
DiscriminatorTraining Procedure

34

There is at least one problem without these guarantees, when 
discriminator achieves the point where it is performing its task 
successfully, the gradient of the discriminator’s cost approaches zero.

ℒ(D)(θ(D), θ(G)) = −1
2 #x∼pdata(x)[log D(x)]

−1
2 #z[log(1 −D(G(x)))]

ℒ(G)(θ(D), θ(G)) = −J(D)
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Cost Function
The heuristic non-saturating game suggested by 
(Goodfellow, 2016) is a variation of the minimax 
game.

ℒ(G)(θ(D), θ(G)) = −1
2 #z log D(G(x))

ℒ(D)(θ(D), θ(G)) = −1
2 #x∼pdata(x)[log D(x)]

−1
2 #z[log(1 −D(G(x)))]



Generator vs. 
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36

Cost Function

In the heuristic non-saturating game, rather than 
minimizing log-probability of the discriminator being 
correct, the generator maximises the log-probability 
of the discriminator being mistaken 

ℒ(G)(θ(D), θ(G)) = −1
2 #z log D(G(x))

ℒ(D)(θ(D), θ(G)) = −1
2 #x∼pdata(x)[log D(x)]

−1
2 #z[log(1 −D(G(x)))]
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Cost Function Comparison of the obtained gradients for the 
generator with different cost functions
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Alec Radford, Luke Metz and Soumith Chintala, “Unsupervised Representation 
Learning with Deep Convolutional Generative Adversarial Networks”

ApplicationsDCGAN for Image Generation
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DCGAN trained for 5 epochs on LSUN Bedrooms
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ApplicationsImage to Image Translation
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ApplicationsImage to Image Translation
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ApplicationsVisual Manipulation 
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ApplicationsVisual Manipulation 
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Non-convergence Mode collapse Evaluation of GANs

Discrete Output Semi-supervised 
learningLatent code usage
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