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ABSTRACT
Can we use information from social media and crowdsourced
images to detect smoke and assist rescue forces? While there
are computer vision methods for detecting smoke, they re-
quire movement information extracted from video data. In
this paper we propose SmokeBlock: a method that is able to
segment and detect smoke in still images. SmokeBlock uses
superpixel segmentation and extracts local color and tex-
ture features from images to spot smoke. We used real data
from Flickr and compared SmokeBlock against state-of-the-
art methods for feature extraction. Our method achieved
performance superior than the competitors, for the task of
smoke detection. Our findings shall support further investi-
gations in the field of image analysis, in particular, concern-
ing images captured with mobile devices.

Categories and Subject Descriptors
I.5 [Pattern Recognition]: Miscellaneous; H.2.8
[Database Applications]: Image databases

Keywords
Smoke Detection, Segmentation, Social Media, Feature Ex-
traction

1. INTRODUCTION
Public authorities are expected to provide fast and ac-

curate responses to emergency situations; a challenging
decision-making duty that must deal with intense flows of
information in little time. Computer systems have great po-
tential to support this decision making process by providing
timely information and data analysis [12]. The goal is the
early detection of fire, smoke, and explosions to assist the
rescue forces in preventing further risks to human life and
financial losses. The current technology of fire and smoke de-
tection systems is based on hardwired solutions that employ
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infrared or ultraviolet local sensors to determine the chem-
ical presence of fire and/or of smoke particles. However,
such solutions can be unsuitable to crowded urban areas,
or large open spaces, due to the high cost of installation,
communication, and maintenance of local sensors [8].

On the other hand, cameras embedded in mobile devices
can provide visual digital information that can be an alter-
native to local fire/smoke sensors [9]. This approach is in the
core of the RESCUER Project, which aims at developing a
system that uses crowdsourcing1 images and videos sent by
mobile devices to support decision making during emergency
situations. The fundamental functionality of the project’s
data analysis module is to identify the pieces of information
that present useful data about fire, smoke, and/or explosion.
Accordingly, this work introduces a new technique, named
SmokeBlock, to detect smoke in still images.
Challenges and approach
One of the challenges to perform smoke detection in still im-
ages is the absence of movement. In fact, most of the tech-
niques in the literature depend on a set of sequential images
(video) to identify fire and/or smoke [8]. Unlike fire detec-
tion that can be solved by global analysis using rule-based
color models [6], the smoke identification problem does not
present well-defined color patterns. For instance, the color of
the smoke may change as its temperature increases. Besides,
the smoke color is heavily dependent on weather conditions
and on the burned material [8]. Although the video-based
strategies present good results for fire detection, the results
of smoke identification in images are rather modest [8]. To
overcome the challenges of smoke detection on still images,
we employ superpixel segmentation [2]. A superpixel cor-
responds to a sub region of an image in which the pixels
are coherent according to some visual feature. In this work
we use color and texture. Superpixels capture redundancy
and greatly reduce the complexity of subsequent image pro-
cessing, having proved useful for depth estimation, image
segmentation, skeletonization, body model estimation, and
object localization [1].
Overview of the contribution
SmokeBlock is a method that detects smoke on still images
without any information about time. To avoid the aforemen-
tioned limitations of rule-based color approaches – which are
adequate for video analysis, SmokeBlock employs superpixel
local segmentation along with multiple features (color, tex-
ture and shape) simultaneously. Our approach contrasts

1We assume that the crowdsourced data is available in a dedi-
cated repository or in social media. For the sake of experimenta-
tion, we use data gathered from popular social media websites.



with previous works based on global segmentation and on
one single feature. Given an image, SmokeBlock segments it
into superpixels which are labeled either as smoke or non-
smoke. Then, based on the labels of every superpixel, we
classify the entire image using supervised machine learning.
The result is an automatic image classification technique
that identifies visual segments characterized by smoke. In
summary, the main contributions of this paper are:
• SmokeBlock: an accurate method to find smoke regions

in still images using superpixels with precision rates
higher than existing competitors;
• Evaluation: in order to define the optimal setting

for SmokeBlock, we compared the performance of sev-
eral feature extractors and machine learning classifiers.
Our comparison charts and conclusions serve as basis
for other researchers on the field;
• Flickr-Smoke dataset: we curated a human-

annotated dataset of real images from Flickr to work
as ground-truth.

According to our experiments, SmokeBlock has surpassed
its competitors by 12% in the task of smoke detection re-
garding F-Measure. Moreover, the SmokeBlock segmenta-
tion has reduced the false-positive rate up to 7% compared
to previous works.

2. PROBLEM AND RELATED WORK
In this paper we are interested in solving the following

problem: given a set of images obtained from social media
or crowdsourcing, find the subset of images that depict smoke
while minimizing the rate of false-positives.

We refer to the images that depict smoke as positive exam-
ples while images without visual traces of smoke are negative
examples. In this study our goal is to find positive examples
so that humans or resource intensive computer vision meth-
ods can analyze the images. Therefore, our secondary goal
is to minimize the number of false-positives: images that do
not depict smoke but are classified as smoke.

The previous approaches for smoke detection were de-
signed for video data relying on motion analysis, which is
not suitable for accurate smoke detection in still images [7,
16]. In comparison to works from the literature, SmokeBlock
improves the state-of-the-art by using texture, in addition
to color, to reduce false-positives. Our SmokeBlock relies on
a small set of parameters that do not depend on the user to
tune. To the best of our knowledge, the majority of reported
techniques for smoke detection is related to video analysis
[4, 6, 16]

In Çelik et al. [8] and Chen et al. [9] the authors propose
a rule based model to classify the pixels as smoke based on
respectively the RGB and HSI color spaces. Such models are
limited by the coarse correspondence between the rule-based
color models and the smoke characterization. Therefore, in
such approaches, Motion Analysis [17] is required to produce
acceptable results.

2.1 Background and Notation
An image I is a set of pixels, such that I = {Pi | 0 ≤

i < n}, where n is the total number of pixels of I. A pixel
Pi is a tuple Pi = (Ri, Gi, Bi), where Ri, Gi, and Bi rep-
resent the pixel intensity in the RGB color space. In turn,
a superpixel S, as explained in Section 1, corresponds to
a subset S ⊆ I defined as S = {Pj | 0 < j < m}, where
m (m ≤ n) is the number of pixels inside a superpixel. If

m = n, then S = I. For our methodology, we consider sets
of images denoted as I and sets of superpixels denoted as
S. A feature extractor method ε, or just extractor, is a
non-bijective function such that ε : S → Rd; i.e., given a su-
perpixel or an image, ε maps it to a d-dimensional feature
vector.

Also, let L be a set of labels, and T ⊂ Rd be a set of
vectors that represent a particular set of images I by using
the extractor ε – we refer to T as training set. In the
training set T , every vector ti ∈ T has a label li ∈ L assigned
by an expert. For the remaining of this work, we consider
that a supervised classifier C uses the set T to construct a
model capable of predicting the label lj ∈ L for any element
tj ∈ Rd. Therefore, given a set of images (or superpixels)
S, and its corresponding set of feature vectors T computed
with an extractor ε, a classifier is a function C : T → L.
That is, a classifier corresponds to a function C that maps
a label li ∈ L to one given image I ∈ I based on its feature
vector ti = ε(I). In this study L = {smoke, non-smoke} and
the classifiers that we employ include Naive-Bayes [13], IBL
[3], and RandomForest [5].
Superpixel segmentation
The pixels that will define a superpixel depend on given
criteria, which are provided by a superpixel generation

algorithm. A superpixel generation algorithm is described
as the process G(I,Kp) = {Sj | 0 ≤ j < Kp} that takes
an image I and generates Kp superpixels Sj , Sj ⊂ I. A
comparative survey for the state-of-the art of superpixel al-
gorithms can be found in the work of Achanta et al. [2]. The
superpixel generation algorithms are expected to provide re-
gions with good adherence to image boundaries in such way
that the superpixels can be used to support segmentation
strategies [14].

In this study, we used this principle to segment images
into regions with pixels that could indicate the presence of
smoke. To do so, we chose the SLIC (Simple Linear Iterative
Clustering) strategy to generate the superpixels. According
to the analysis of Achanta et al. [2], SLIC is a fast, memory
efficient algorithm that uses an improved version of k -means
for superpixel generation.
Feature extraction
The features extracted from a superpixel are numerical val-
ues that represent its visual features. Such features capture
characteristics of the entire image (global extractors) or for
image sub-regions (local extractors). Both global and local
extractors can represent low-level features based on color,
texture and shape. For instance, Color-based extractors
usually have low computational cost when compared to tex-
ture and shape extractors. On the other hand, the MPEG-7
Color Layout extractor captures spatial color distribution,
while the Scalable Color extractor represents color distri-
bution into an HSV space followed by a Haar compression.
Another MPEG-7 color-based extractor is the Color Struc-
ture, which enables the representation of both spatial and
color distributions [15].

On the other hand, texture-based extractors describe the
surface of natural elements, what is suitable for the represen-
tation of smoke. Examples of texture extractors are the Har-
alick features [10], the Local-Binary Pattern and its variant,
the Texture-Spectrum [11]. Finally, shape-based extractors
usually depend on a previous edge detection/segmentation
step. A representation of shape and moments is generated
for each object that was identified.
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Figure 1: The execution pipeline of SmokeBlock method. For a given image, it provides superpixel-based segmentation and
smoke detection. The (I) Superpixel Extraction module extracts superpixels from the input image. Each superpixel is
represented as a feature vector by the (II) Feature Extraction module. The feature vectors are then classified by the (III)

Region-Based Smoke Detection module, which generates the automatic segmented image with smoke regions. Finally, the
(IV) Global Smoke Detection module performs global smoke classification.

3. PROPOSED METHOD: SmokeBlock
In this section, we introduce our proposal for smoke de-

tection, the SmokeBlock method. The pipeline of the Smoke-
Block execution is presented in Figure 1, which is divided
into four modules: (I) Superpixel Extraction, (II) Feature
Extraction, (III) Region-Based Smoke Detection, and (IV)
Global Smoke Detection. Given an image I, SmokeBlock

starts at the Superpixel Extraction (I) module by creating
a set S of Kp superpixels Sj ∈ S that potentially contain
traces of smoke. In the Feature Extraction (II) module, we
extract a set of low-level features from each generated su-
perpixel using the Haralick and Color Layout feature extrac-
tors. The advantages of extracting features from superpixels
instead of individual pixels are the following:
• Reduction of redundancy: pixels with similar visual

properties that are spatially close are processed to-
gether (as a single super-pixel) improving performance;
• By analyzing a group of pixels we extract texture fea-

tures, which is not possible for individual pixels.
Smoke Segmentation: For the Region-Based Smoke

Detection Module (III), we constructed a training set T of
superpixels manually annotated according to the labels of
set L. That is, with or without smoke2. We use the training
set to train a binary Naive-Bayes classifier C : T → L that
decides whether a superpixel depicts smoke or not, based
on its feature vector. The output of the module III is a
segmented image as shown in Figure 1.
Smoke Detection: In the Global Smoke Detection Mod-

ule (IV), SmokeBlock can also be used to decide whether an
image presents smoke or not. This is useful, for instance,
in a scenario in which we have a large set of images from a
social media service, and we want to find suspicious images
(that are likely to contain smoke). A naive approach would
be to use the output of module III and classify an image as

2The details of this manually annotated dataset are reported in
Section 4.2.

positive (suspicious) if at least one superpixel was classified
as depicting smoke. The drawback of this approach is that
if a single superpixel is wrongly classified, the entire image
will also be wrongly classified as containing smoke.

To tackle this problem, SmokeBlock extracts a new set
of feature vectors now regarding only the regions of I that
were segmented by module III. Then, a final representation
of the segmented image is built using the Principal Com-
ponent Analysis dimensionality reduction method over the
feature vectors. Finally, our Classification Model (IV) re-
lies on a supervised classifier to label the segmented image
representation as {smoke, non-smoke}. This approach is
superior when compared to global feature extraction (see
experimental results in Section 4), because SmokeBlock only
extracts features from regions of the image that already is a
candidate of having smoke.

Algorithm 1 describes the procedure used by the Smoke-

Block Global Smoke Detection Module. SmokeBlock takes
as input an image I and the trained Naive-Bayes classifiers.
After finding the superpixels, SmokeBlock generates a seg-
mented image Iseg where all superpixel that were not clas-
sified as smoke candidates are not considered for extraction.
The color and texture feature vectors vcolor and vtexture are
concatenated into a single feature vector v that is classified
either as smoke or non-smoke.

Algorithm 1: SmokeBlock

Input : Unlabeled image I
Superpixel classifier CS , Image classifier CI .

Output : Image label l ∈ {smoke, not-smoke}.
Iseg ← I, S ← SLIC(I, Kp);
for Si ∈ S do

if CS(Si) 6= smoke then
Iseg [Si]← ∅;

vcolor ← εcolor(Iseg), vtexture ← εtexture(Iseg);
v ← vcolor ⊕ vtexture;
return l← CI(v);



SmokeBlock was developed in a modularized scheme that
allows the addition of new feature extractors and classifiers.
Moreover, it was designed to be integrated with existing
fire detection methods, what enables the development of a
framework for fire and smoke detection.

4. EXPERIMENTAL ANALYSIS
In this section, we describe experiments to evaluate the

performance and to define the best settings for SmokeBlock.
We evaluate the impact of color, texture, and shape extrac-
tors for smoke segmentation when compared to rule-based
color models, as employed in related works. We also evaluate
the precision and the number of false-positives generated by
SmokeBlock regarding the global smoke detection procedure.
The goals of our experiments are to determine:

1. The most suitable low-level features for SmokeBlock: in
the first experiment, we evaluate the impact of color
and texture feature extractor methods to represent the
segments that are candidates for smoke detection. The
extractors with best performance are used in the re-
maining experiments;

2. The accuracy of SmokeBlock for smoke segmentation:
in this experiment, we compare our proposal against
state-of-the-art competitors, discussing the improve-
ments and limitations of SmokeBlock for smoke seg-
mentation;

3. The SmokeBlock performance for smoke detection: in
the last experiment, we evaluate the superpixel-based
classification of SmokeBlock in comparison to global
classification using the following metrics: F-Measure,
precision and recall.

We used the same setup for all experiments: Intel Core
i7-4770(3.40GHz), 16GB RAM, Ubuntu 14.04 (64-bit) OS.
The SLIC parameter k – the number of desired superpixels
– was set to 100, according to empirical tests.

4.1 Dataset
To simulate the environment proposed by the RESCUER

project, we used the Flickr API3 to download images from
the Flickr social network under the Creative Commons li-
cense. The images where retrieved using textual queries
such as: “smoke fire”, or“smoke forest”. In order to build the
ground-truth for evaluation each image was manually anno-
tated. To perform this annotation, we asked seven subjects,
all of them aging between 20 and 30 years, familiar with the
issue, and non-color-blinded. Two subjects labeled each im-
age. For images with divergent annotations, we asked a third
subject to untie the classification. The average disagreement
was 7.2%. The dataset includes 832 images labeled as smoke
and 834 as non-smoke. We made the dataset available on-
line4 to allow the reproduction of our experiments

4.2 Visual Features for Smoke Detection
The content representation of a super pixel depends on

the employed feature extraction method. Therefore, for the
SmokeBlock method, we must take into account the question:

Q1. Which are the low-level visual features that are suit-
able to detect smoke in still images?
To provide a proper answer to this question, we ex-
periment with a representative set of ten widely em-

3The Flickr API: www.flickr.com/services/api/.
4Available at: github.com/alceufc/SmokeBlockDataset

(a) Smoke (b) Non-smoke

Figure 2: Samples of superpixels manually classified for the
purpose of training the machine learning classifiers used in
our methodology. (a) Superpixels with smoke, and (b) Su-
perpixels without smoke.

ployed feature extraction methods regarding color, tex-
ture and shape. The color set includes the following ex-
tractors Color Layout, Color Structure, Color Temper-

ature, Scalable Color, and Normalized Histogram; the
texture set includes the extractors Edge Histogram, Har-

alick, LBP, and Texture Spectrum; and the shape set in-
cludes the Zernike extractor. The details and implementa-
tion of every extractor can be obtained by using the Artemis
image processing library5.

To evaluate the representativeness of each extractor, we
selected 1,202 superpixels from the Flickr-Smoke dataset,
where half of them were manually labeled as depicting smoke

and the other half as non-smoke. Figure 2a presents six ex-
amples of superpixels manually labeled as smoke, whereas
Figure 2b depicts six examples of non-smoke labeled su-
perpixels. In the evaluation of the feature extractors, we
used the Naive-Bayes classifier. With this classifier, we com-
puted the F-Measure (harmonic mean between the precision
and recall) obtained by each feature extractor using ten-fold
cross validation. Figure 3 presents the results: the vertical
axis presents the F-Measure and the horizontal axis the di-
mensionality of each extractor. The best extractors (yellow
region) are those with high performance and low dimension-
ality (high compactness). This is because SmokeBlock com-
bines texture and color features. Therefore, the low-level
features with compact representation are those suitable to
deal with the “dimensionality curse”. The results illustrated
by Figure 3 provide the answer for question Q1. Hence, based
on this plot, we selected the extractors Color Layout and
Haralick which have the lowest dimensionality and highest
F-Measure, respectively.
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Figure 3: Comparison of ten feature extractors regarding
performance – as given by the F-Measure and dimensional-
ity. The best extractors refer to those with high performance
and low dimensionality (inside green square).

4.3 Smoke Segmentation
This part of the experiments presents a qualitative answer

to the following question: Q2. Is our approach for smoke

5Artemis Library: gbdi.icmc.usp.br



segmentation more suitable than existing ones? To answer
this second question, we compare our method against the
related works of Çelik et al. [7] and Chen et al. [9].

(a) Unlabeled Image (b) SmokeBlock

(c) Celik (d) Chen

Figure 4: SmokeBlock provided the most accurate smoke
segmentation.

For a fair comparison, we tuned the methods of Celik

and Chen with the best parameters as achieved with empir-
ical tests. Regarding the Celik method, its single global
threshold parameter was set to 25. For the Chen method,
the alpha value was set to 18 and the remaining parame-
ters set to their default values. Figures 4 and 5 present the
differences between the strategies for two representative sit-
uations. Figure 4 shows an image containing regions with
smoke. SmokeBlock presented the highest accuracy for the
detection of candidate smoke regions while the competitors
(Celik and Chen) failed to identify most of the smoke pixels.
On the other hand, Figure 5 presents an image without any
traces of smoke. Even though, the Celik and Chen meth-
ods detected smoke pixels (false-positives), the SmokeBlock

strategy correctly discarded those. SmokeBlock results rein-
force our hypothesis that the combination of local color and
texture improves smoke detection.

4.4 Smoke Detection
Our last experiment provides an analysis to answer the

following question: Q3. Can SmokeBlock spot smoke on im-
ages better than global-feature extractor methods? To answer
this question we perform a ten-fold cross validation over the
Flickr-Smoke dataset comparing the results generated by
SmokeBlock features extracted from the entire image. We
refer to the competitors as Global Color Layout, Global Har-
alick, Global Texture Spectrum and Global Zernike, accord-
ing to the visual feature employed. As discussed in Section
3, SmokeBlock is different from these approaches because it
only extracts visual features from regions that have a high
probability of having smoke.

We performed the smoke detection using three differ-
ent classifiers for the SmokeBlock’s Global Smoke Detection
module (IV), namely Naive-Bayes (NB), IBL and Random
Forest (RF). Table 1 compares SmokeBlock F-Measure to its
competitors using the three classifiers. Notice that, Smoke-

(a) Unlabeled Image (b) SmokeBlock

(c) Celik (d) Chen

Figure 5: SmokeBlock correctly discarded regions without
smoke (b). Celik (c) and Chen (d) misclassified a large num-
ber of pixels.

Block beats all competitors regardless of the classifier strat-
egy.
Table 1: F-measure comparison considering classifiers and
features. We compare SmokeBlock with the global features
Color Layout (CL), Texture Spectrum (TS), Zernike (ZK)
and Haralick (HR). The highest values of each row are pre-
sented in bold.

F-Measure

Clas-
sifier

Global
CL

Global TS Global
ZK

Global
HR

Smoke-
Block

NB 0.59 0.46 0.51 0.50 0.64
IBL 0.61 0.61 0.51 0.61 0.68
RF 0.60 0.61 0.51 0.62 0.71

We also highlight that neither the color-only nor the
texture-only methods were capable of detecting smoke for
a F-Measure higher than 0.64. Figure 6 compares the pre-
cision, recall, and F-measure for the entire Flickr-Smoke

dataset using the RandomForest classifier. In absolute num-
bers, SmokeBlock achieved an improvement over the global
strategies of Color Layout by 14%, Texture-Spectrum by
12%, Zernike by 23% and Haralick by 12% with respect to
F-Measure.
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Figure 6: SmokeBlock achieved the highest precision, recall,
and F-Measure. The results were computed using the entire
Flickr-Smoke dataset.

Figure 7a presents the complete analysis for just the smoke
images of the Flickr-Smoke dataset, including precision, re-



call, and F-Measure. As it can be seen, SmokeBlock pre-
sented the best overall performance by a margin of 9%
for precision. Although Color Layout presented the second
higher value for precision, its recall was the second lowest.
Also, to illustrate the behavior of the experimented strate-
gies, we verify the number of false-positive classification for
just the portion of the Flickr-Smoke dataset that contain
images without smoke. Figure 7b presents the false-positive
rate for the subset of Flickr-Smoke that does not contain
smoke images. In this case, we verify that SmokeBlock ob-
tained the lowest value for false-positive rate, which is a
desirable result. The precision achieved by the Color Lay-
out method (as shown in Figure 6) can be justified by means
of its highest false-positive rate for non-smoke images, which
is not a desirable behavior. The same rationale can be em-
ployed to the Haralick strategy. Therefore, both strategies –
Color Layout and Haralick – are unsuitable for smoke detec-
tion in the perspective of avoiding false-positives. Moreover,
by using previous segmented regions represented by color
and texture, SmokeBlock reduced the false-positive rate for
non-smoke images up to 7% compared to Texture-Spectrum.
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Figure 7: Comparison regarding the FPR for the smoke-only
and non-smoke-only subsets of Flickr-Smoke.

5. CONCLUSIONS
In this work we dealt with the problem of smoke detec-

tion in images produced from mobile devices with the goal
of assisting rescue services during emergency situations. For
experimentation, we used social-media images. Our hypoth-
esis was that using only global or individual pixel color-
based features, as reported in former works, is not enough to
perform smoke identification with reduced number of false-
positives. Therefore, we proposed the SmokeBlock method,
which is based on superpixel (local) segmentation and em-
ploys color and texture visual features. With this approach,
we obtained two outputs: the classification of images as with
(or without) smoke, and the segmentation of images regard-
ing their regions containing smoke. The experiments vali-
dated our hypothesis leading to the conclusion: In the task of
smoke detection, image classification based on global color-
based features is outperformed by classification based on lo-
cal multiple features. Furthermore, this paper introduced
the following contributions: (i) SmokeBlock: we designed
and implemented a flexible, scalable, and accurate method
for smoke detection to be used as a model for future devel-

opments in the field, (ii) Evaluation: we extensively com-
pared SmokeBlock against state-of-the-art techniques on fea-
ture extraction and image classification, providing relevant
conclusions that may support further works on smoke de-
tection, and (iii) Flickr-Smoke dataset: we built a human-
annotated dataset of real images suitable as ground-truth
for similar problems concerning image classification.
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