
SPH Fluids for Viscous Jet Buckling
Luiz Fernando de Souza Andrade ∗, Marcos Sandim ∗, Fabiano Petronetto †, Paulo Pagliosa‡ and Afonso Paiva∗

∗ICMC, USP, São Carlos
† Dept. of Mathematics, UFES, Vitória
‡FACOM, UFMS, Campo Grande

Fig. 1. The liquid rope coiling effect: our technique with SPH fluid particles (left), and the respective free surface (middle) and a real image of honey
coiling (right) extracted from Flickr repository.

Abstract—We present a novel meshfree technique for animat-
ing free surface viscous liquids with jet buckling effects, such as
coiling and folding. Our technique is based on Smoothed Particle
Hydrodynamics (SPH) fluids and allows more realistic and
complex viscous behaviors than the preceding SPH frameworks
in computer animation literature. The viscous liquid is modeled
by a non-Newtonian fluid flow and the variable viscosity under
shear stress is achieved using a viscosity model known as Cross
model. The proposed technique is efficient and stable, and our
framework can animate scenarios with high resolution of SPH
particles in which the simulation speed is significantly acceler-
ated by using Computer Unified Device Architecture (CUDA)
computing platform. This work also includes several examples
that demonstrate the ability of our technique.

Keywords-SPH fluids; jet buckling; viscous liquids; CUDA;
computer animation.

I. INTRODUCTION

A daily life example of viscous jet buckling is the coiling
and folding of a thin thread of syrup or honey falling onto a
spoon. The characteristic motion of a jet buckling is controlled
by the balance among inertia, gravity and viscous forces that
arise from the compressive stress caused by the impact of
the fluid on a rigid surface. In the last years, Smoothed
Particle Hydrodynamics (SPH) [1] has become a popular
numerical meshfree tool for visually realistic animation of
liquids [2]. However, simulating the complex free surface of a
viscous jet buckling in an efficient and realistic way remains
a big challenge for the previous SPH frameworks in computer
animation. The difficulties are related to propose a variable

viscosity model which has a non-linear dependence of the
fluid’s shear rate, an accurate and stable SPH approximation
for viscous acceleration which involves second order deriva-
tives of each component of the velocity field and enforcing
boundary conditions suited to SPH.

In this paper, we present a novel meshfree technique based
on SPH fluids for simulating viscous jet buckling behaviors.
Our technique allows a wide range of realistic viscous effects
of the free surface of liquids, such as coiling and folding, as
shown in Figure 1. In order to capture the viscous behavior
that is characteristic of jet buckling, the time interval between
two consecutive frames needs to be very short, as discussed
in Section III-C, thus increasing the number of time-steps
along the simulation total time. Since the computation in
each time-step is highly intense, but can be performed in
parallel and independently for each SPH particle, the problem
can be suitably mapped to graphics processing units (GPUs).
We use the Computer Unified Device Architecture (CUDA)
by NVIDIA due to its efficiency, object-oriented programming
capability, easy integration with the development environment
we have used, and availability of a lot of libraries and demos
which accompany the CUDA toolkit. The adequacy of using
CUDA for standard SPH fluids can be demonstrated by other
implementations reported in the literature [3], [4]. In summary,
the main contributions of this paper are:

Variable viscosity model. The viscous liquid is modeled
as a non-Newtonian fluid flow and the variable viscosity is
governed by a rheological model known as Cross model [5].

SPH viscous acceleration. We introduce a stable and ro-
bust SPH approximation of fluid’s viscous acceleration using
derivative operators of first order.

SPH jet buckling on CUDA. Using CUDA enables the
animation of jet buckling scenes involving millions of SPH
particles in affordable computational times, notably when
compared to sequential processing, as showed by the exper-
iments presented in Section IV, freeing the CPU for other
tasks.

A. Related work

In order to better contextualize our approach and highlight
its properties, we organize the existing frameworks for ani-
mating viscous jet buckling into two main groups, Eulerian
mesh-based and Lagrangian meshfree-based methods.

Eulerian mesh-based. A seminal work in computer ani-
mation was introduced by Goktekin et al. [6]. They simulate
solids and viscoelastic fluids with a small effect of buckling
using an explicit grid-based method with viscosity transition
between solid and non-Newtonian fluid controlled by a quasi-
linear plasticity model. Batty and Bridson [7] developed an
implicit and unconditionally stable method using marker-and-
cell (MAC) grid. Although this method provides high-accuracy
free surface boundary conditions, it is limited to viscous New-
tonian fluids. Bergou et al. [8] proposed a discrete model for
viscous threads using elastic rods to represent thin Newtonian
liquid jets. Despite this method’s realistic results, spurious
results may occur when the jet becomes thick. Recently, this
model was extend to discrete viscous thin sheets [9]. Batty and
Houston [10] presented an adaptive tetrahedral mesh solver to
animate Newtonian liquids with high viscosity. However, the
level set surface generated by this method does not preserve
temporal coherence due to the slow motion of the liquid.
In computational physics literature, there are several papers
using variations of generalized simplified MAC (GENSMAC)
method to simulate viscous jet buckling in arbitrary 2D/3D
domains with explicit [11], [12], [13] and implicit [14] free
surface boundary conditions.

Lagrangian meshfree-based. SPH fluids have been ap-
plied with success in simulations of highly viscous liquids
with variable viscosity [15], [16], [17], [18], [19]. However,
none of these methods in computer animation have captured
viscous buckling behavior. In computational physics, Rafiee et
al. [20] used an incompressible version of SPH to simulate 2D
jet buckling of non-Newtonian fluids, while Xu et al. [21], [22]
extended the traditional weakly compressible SPH method to
deal with 3D simulations. This paper is inspired in [21] and it
improves that work in several ways: our stable SPH approx-
imation of momentum equation does not require additional
terms, artificial stress and artificial viscosity, to prevent particle
clustering and unphysical behavior of free surface.

To our best knowledge, this paper is the first work to
propose a meshfree framework to animate viscous jet buckling
in computer animation literature.

II. GOVERNING EQUATIONS

The governing equations for simulating fluid flow are
derived from mass and momentum conservation laws. La-
grangian framework describes these laws from the viewpoint
of an infinitesimally small fluid element, i.e., a particle. In this
framework the mass conservation is naturally satisfied, since
the particle mass is constant, then the total mass of the system
is preserved. For weakly compressible fluids, the momentum
equation can be written as follow:

dv

dt
= −1

ρ
∇p+

1

ρ
∇ · τ + g (1)

where t denotes the time, v the velocity field, ρ the density,
p the pressure, g the gravity acceleration vector and τ the
shear stress tensor.

Lagrangian formulation of Equation (1) represents the ac-
celeration of a particle moving with the fluid flow. The term
− 1
ρ∇p is related to particle acceleration due to pressure

changes in the fluid. While, the term 1
ρ∇ · τ describes the

viscous acceleration due to friction forces caused by particles
with different velocities. This last term plays a key role in
viscous jet buckling animation.

Cross model

In order to animate a wide variety of buckling effects,
Newtonian and non-Newtonian fluid flows are used in this
paper. In particular, non-Newtonian fluids have non-linear
dependence of the shear stress τ with respect to the rate-of-
deformation tensor D = ∇v + (∇v)

> as follows

τ = ρ ν(D) D , with D =

√
1
2 · trace (D)

2
. (2)

The Cross model [5] is one of simplest and most used model
for shear-thinning behavior, i.e., the fluid’s viscosity decreases
with increasing of the local shear rate D, thus the kinematic
viscosity ν is defined as a function of D:

ν (D) = ν∞ +
ν0 − ν∞

1 + (KD)n
, (3)

where K and n are positive parameters, and ν0, ν∞ are the
limiting values of the viscosity at low and high shear rates,
respectively. The units of viscosity are m2/s.

Assuming K = 0 in Equation (3), the non-Newtonian
fluid model is simplified to a Newtonian fluid with constant
kinematic viscosity ν0.

III. OUR TECHNIQUE

There are several SPH frameworks to animate fluid flow.
In our animation framework, we use a SPH version for weakly
compressible fluids [23], extended by our method. A wide
description of SPH fluids for graphics can be found in [2].

A. SPH fluids
The main idea of SPH in fluid flow simulation is to dis-

cretize the fluid by a set of particles where each particle i has
attributes such as position xi, velocity vi, pressure pi, mass mi

(constant across all particles) and density ρi. A scalar or vector
attribute fi = f(xi) is updated using a SPH approximation

fi =
∑
j∈Ni

fjWh(xij)
mj

ρj
, (4)

where j indexes the particles lying in the neighborhood Ni of
the particle i and xij = ‖xi−xj‖. The kernel function Wh is
a radially symmetric, positive, smooth, compactly supported
function and the value h defines the region of influence of Wh.
Fluid attributes and the differential operators of the momentum
equation (1) can be approximated in a similar manner as
follows.
Density computation. We compute the density using the
traditional direct summation derived from Equation (4) with
poly6 kernel presented in [23]:

ρi =
∑
j∈Ni

mjWh(xij) . (5)

This form preserves mass exactly without involving kernel
derivatives.
Equation of state. In standard SPH frameworks, an in-
compressible fluid is approximated by a weakly compressible
fluid. In other words, the pressure is computed directly from
density through an equation of state. For simplicity, we choose
an equation of state proposed by Morris et al. [24]:

pi = c2(ρi − ρ0) , (6)

where c is the speed of sound in the fluid and ρ0 is a reference
density. The values c =

√
1.5m/s and ρ0 = 103 kg/m3 are

tuned out to be suitable for all experiments.
Pressure acceleration. We use Müller’s SPH pressure
gradient with spiky kernel [23]. The pressure acceleration for
each particle is given by:

− 1

ρi
∇pi = −

∑
j∈Ni

mj
pi + pj

2ρj
∇iWh(xij) . (7)

This choice avoids numerical instabilities associated with
particle clustering, because the SPH gradient does not vanish
when xij becomes closer to zero.
Viscous acceleration. In order to compute the shear stress
τi at particle i in Equation (2), we adopt the same SPH
approximation as Paiva et al. [19] for the deformation tensor
Di = ∇vi +∇v>i with:

∇vi =
∑
j∈Ni

mj

ρj
(vj − vi)⊗∇iWh(xij) . (8)

After updating shear stress at all particles, the viscous accel-
eration is approximated by:

1

ρi
∇ · τi =

∑
j∈Ni

(
τi
ρ2i

+
τj
ρ2j

)
· ∇iWh(xij) . (9)

w
all

Fig. 2. SPH particles: fluid (yellow) and boundary (blue) particles.

B. Boundary conditions

We represent the solid wall boundaries by fixed virtual
particles [25]. These boundary particles perform similar to the
fluid particles and contribute to the SPH approximation of the
fluid attributes. The density of the fluid particles is extrapolated
for boundary particles using Equation (5). Then, the pressure
is computed in the boundary particles directly from (6).
The increasing pressure at boundary particles prevents the
fluid particles from penetrating to the solid walls. In order to
enforce the no-slip condition, the velocities of the boundary
particles are set to zero throughout the entire simulation. Those
particles are placed outside the computational domain with
particle spacing equal to the initial particle spacing of the fluid
particles. The wall boundaries are modeled by a few layers of
the boundary particles as illustrated in Figure 2. The particle
deficiency at wall boundaries is alleviated by taking the total
width of boundary particle layers at least equal to the radius
of influence of the SPH kernel.

Another boundary condition is the stress-free condition for
momentum equation (1), which states that the total normal
stress must be zero at free surface. Mathematically, it can
be expressed as (−pI + τ) · n = 0, where I is the iden-
tity matrix and n is the normal to the free surface. This
condition is trivially satisfied by the SPH gradients because
the boundary integrals are ignored in the SPH derivatives
approximation [26].

C. Implementation

We implement our technique in C++ and CUDA C++ using
the Microsoft Visual Studio 2012 for Windows and CUDA 6.0.
The input data of the program are given in an initialization file
or interactively by the user and include: the material properties
of the fluid model, configuration of the jet (shape, position,
trajectory along the simulation, injection rate, maximum num-
ber of particles), and simulation parameters (time-step δt,
maximum number of steps, total time), among others. For
each time-step δt, the program updates the particle attributes
following the sequence in Algorithm 1.

The first task is to add new fluid particles into the scene,
which are generated by the jet inlet in CPU and then sent to
a preallocated area (enough to store the maximum number of

Fig. 3. Numerical simulation of the torus fluid spreading. The initial configuration of the torus fluid is illustrated in top-left. In bottom-left, we plot (loglog
scales) the Cross model with parameters: [ν∞, ν0] = [0.2, 2], n = 1 and K = 0, 1, 10 and 100. Fluid flow simulations at different times (rows) in the right
side: the first column illustrates a Newtonian fluid (K = 0) and non-Newtonian fluids on the remaining columns. The colors code the viscosity νi ∈ [ν∞, ν0]
in the SPH particles.

Algorithm 1 Single time step of the SPH framework
1: Inject new fluid particles into the scene
2: for each particle i do
3: Find neighbors Ni
4: end for
5: for each particle i do
6: Update ρi using Equation (5)
7: Update pi using Equation (6)
8: end for
9: for each particle i do

10: Update ∇vi using Equation (8)
11: Update τi using Equation (2)
12: end for
13: for each particle i do
14: Compute pressure acceleration using Equation (7)
15: Compute viscous acceleration using Equation (9)
16: end for
17: for each particle i do
18: Update vi and xi with leap-frog scheme
19: end for

particles) in the global memory of the GPU. New particles are
created iff:

1) The set of particles previously generated by the jet inlet
has moved a given distance from the jet position;

2) The maximum number of particles into the scene has
not yet been reached.

The data structure for the particle system representing the fluid
is implemented using the Thrust library [27] and organized as
a structure of arrays (of position, velocity, density, pressure,
etc.) in order to allow coalesced access to the GPU global
memory.

Next tasks are performed entirely in parallel on GPU.
For the neighbor search, we use the algorithm described in
the Particles demo in the CUDA’s toolkit [28], which is
based on a subdivision of the simulation space into a regular
grid of linearly indexed cells. The algorithm relies on several
CUDA kernels. The first one calculates a hash value for each
particle based on the index of the cell containing the particle.
We then use the Thrust sorting function to reorder the particles
according to their hash values. Finally, a kernel which uses a
thread per particle builds its neighbor list by comparing the
cell index of the current particle with the cell index of the
previous particle in the sorted list (see [28] for details).

The remaining tasks in Algorithm 1 are implemented by
four CUDA kernels which also use one thread per particle.
Each kernel computes, respectively, density and pressure,
deformation tensor and shear stress, pressure and viscous ac-
celerations, and velocity and position of each particle. We use
the leap-frog scheme to integrate the system of differential
equations provided by the SPH approximation of (1) along
the particle trajectories. The numerical stability in this explicit
time integration scheme is ensured under time-step constraints
given by Courant-Friedrichs-Lewy (CFL) and viscous force
conditions [19]:

δt ≤ 0.1 min

(
h

c
,
h2

8ν0

)
. (10)

Respecting the Equation (10), we choose δt = 10−6 seconds
in our experiments.

The free surface rendering is performed by blobs (metaballs)
from POV-Ray. The blob radius is equal to the radius of
influence of the SPH kernel used in the simulation.

Fig. 4. Numerical simulation of the torus fluid spreading (Figure 3 shows initial configuration of the torus fluid). Fixing K = 1, the graphs (log-log scales)
illustrate the Cross model with parameters: [ν∞, ν0] = [0.2, 2], n = 0.5, 1.0 and 10 (top-left); and n = 1, [ν∞, ν0] = [0.2, 2], [0.2, 20] and [0.002, 2]
(bottom-left). In the right side, the respective simulations at different times (rows) are shown. The first three columns illustrate the non-Newtonian fluid with
variations of the parameter n. The last three columns, non-Newtonian fluid with distinct viscosity ranges. The colors code the viscosity νi ∈ [ν∞, ν0] in the
SPH particles.

IV. RESULTS AND COMPARISONS

In this section, we present the results provided by our
technique, including animations of viscous liquids with coiling
and folding effects.

Initially, we discuss the variable viscosity effects of non-
Newtonian fluids in simulations of gravity spreading. Then,
we apply our technique to a variety of situations involving jet
buckling.

All examples have been generated in a computer equipped
with a CPU Intel i5 3570 3.4Hz with 8GB of RAM, and a
NVIDIA GeForce 650 with 384 CUDA cores and 1GB of
RAM.

Torus fluid

In this first result, to demonstrate that our method can model
shear-thinning behavior using the Cross model, we performed
the numerical simulation of a torus fluid spreading on a plane
surface due to gravity (9.8m/s2).

Figure 3 shows the results of our method using the Cross
model with n = 1, ν0 = 2.0, ν∞ = 0.2 and four values of K,
namely K = 0 for a Newtonian fluid (which corresponds to
assign a constant viscosity at ν0) and K = 1.0, 10.0 and 100.0
for a non-Newtonian fluid. The shear-thinning is increased at
higher values of K allowing the fluid to spread more over the
surface (see last row).

Another feature of the Cross model is the parameter n which
determines the rate of decay of the viscosity as a function of
the shear rate. The viscosity transition between the viscosity
limits ν∞ and ν0 becomes faster at high values of n. Moreover,
different rates between these limits also produce different
behaviors in the fluid flow.

Figure 4 illustrates the effect of the parameters n, ν∞ and ν0
in our method, fixing K = 1. Left graphs show the viscosity
variation under influence of those parameters, varying either

n (top) or [ν∞, ν0] (bottom). On the right, corresponding
simulations with those combinations of parameters are shown.
The first three columns show the viscosity function, setting
K = 1 and [ν∞, ν0] = [0.2, 2], varying the index parameters
n = 0.5, 1 and 10. The last three columns show the viscosity
function depending only of ν∞ and ν0. Fixing n = 1, we test
different ranges of viscosity [ν∞, ν0]: [0.2, 2], [0.002, 2] and
[0.2, 20].

Figures 3 and 4 help us to understand the shear-tinning
behavior provided by Cross model with different sets of
parameters. The results show that the Cross model determines
the spatial variation of the viscous force that reflects the
behavior of the fluid flow. This model allows a wide range
of viscous effects of the free surface of Newtonian and non-
Newtonian fluids in a small set of user parameters.

Jet buckling

D

H

The Jet buckling problem has
been studied in several experi-
mental and analytical investiga-
tions [29], [30]. This phenomenon
is characterized by the formation
of a physical instability when a
thin viscous jet hits a rigid plate.
The geometry of a jet buckling
problem is given by the height H

between the inlet and the rigid plate and by the jet width D in
meters. In our simulations of this problem, we use values for
H , D and physical parameters consistent with the conditions
described by Tomé et al. [13].

When a stream of viscous fluid falls onto a surface, the
deceleration of the stream near impact causes the buckling
effect and the fluid starts to coil on itself. Figure 5 illustrates
the coiling formation in our results. Note that, as the coiling

Fig. 5. The formation of coils in a falling stream of viscous liquid.

Fig. 6. Jet buckling of a Newtonian fluid. In top row, the result given
by an implementation of [23] which uses the Laplacian velocity operator in
the viscous acceleration. In bottom row, we show the result achieved by our
technique with same parameters (Cross model with K = 0).

develops, the fluid tends to have a more viscous behavior at
the surface, which prevents the fluid from further spreading.
Hence, when the falling stream contacts the coils already
formed, the viscosity decreases and new coils are created.

Figure 6 compares our technique with the popular SPH
framework proposed by Müller et al. [23] in which the viscous
term of Equation (1) is simplified using the Laplacian velocity
operator ν0∆v. Choosing the same parameters in both simula-
tions, we can verify that using the Laplacian velocity prevents

the buckling development, leading to a spurious result.
In order to illustrate the relevance of the viscosity variation

in our method, Figure 7 shows two jet buckling with distinct
behaviors by applying Cross model in different viscosity
intervals. Despite the fact that the fluids are fairly viscous,
we can note, on the bottom of the fluid, the shear-thinning
action, where the fluid becomes less viscous, spreading and
mixing.

The shear-thinning behavior provided by inlet flow using
rectangular jets are illustrated in Figure 8. The flow behavior
of the Newtonian fluid (using K = 0 in Cross model) is more
viscous than non-Newtonian fluid (using K = 1) due to the
viscosity variation given by our technique. It is noted that the
number of layers is reasonably pronounced in the Newtonian
case and less pronounced in the non-Newtonian case.

Moving inlet jet
Figure 9 illustrates some ‘stitching’ patterns obtained with

our method when a viscous liquid is injected by a moving jet.
The buckling of the fluid and motion of jet combine to give
a wide range of regular and periodic patterns, like a “sewing
machine”.

Comparison between CPU and GPU
Table I compares the performance of our implementation

running a dam break sequentially on CPU and in parallel
on GPU. The parameters of the Cross model are: K = 1,
n = 1, ν0 = 0.05, and ν∞ = 0.005. The first column is
the number of particles; the columns labeled CPU and GPU
show the simulation times, in seconds, for 1000 steps on CPU
and GPU, respectively; the column Speedup is the relation
CPU/GPU; and the column Efficiency is the speedup divided
by the number of CUDA cores used in the experiment (384).
Though the low efficiency, the speedup of about 27 for de
number of particles varying between 64K and 256K justifies
the use of the GPU: keeping that speedup, the CPU time for
the simulation of 1M particles (not measured in our test) would
be about v3.3 hours, against v7.4 minutes on GPU.

Fig. 7. Jet buckling with different viscosity intervals. Our method provides different coiling effects varying the parameters of Cross model.

Fig. 8. Effect of the variable viscosity in our technique. At top, the simulation
of a Newtonian fluid (K = 0) defines well-defined fluid layers, while a non-
Newtonian fluid (K = 1) the fluid layers are mixed due to the shear-thinning.

V. CONCLUDING REMARKS

In this paper, we introduced a novel SPH-based technique
for animating free surface viscous liquids with jet buckling.
Unlike the previous SPH frameworks, our technique allows
visually realistic viscous behaviors, such as coiling and fold-

TABLE I
PERFORMANCE STATISTICS.

part. CPU GPU Speedup Efficiency
1K 7.20s 1.03s 7.0 1.8%
4K 35.66s 2.40s 14.9 3.9%

16K 156.42s 6.81s 23.0 6.0%
64K 682.00s 25.80s 26.4 6.9%

128K 1374.86s 51.35s 26.8 7.0%
256K 2887.20s 104.84s 27.6 7.2%

1M — 444.93s — —

ing. The technique relies on the SPH approximation of a
non-Newtonian fluid, where the variable viscosity is ruled
by the Cross model. The effectiveness of the technique is
demonstrated on simple and intuitive examples which match
with the physics, leading to an efficient and attractive scheme
for animation. Moreover, simulation time is considerably im-
proved by using CUDA computing platform.

One limitation of our technique is that its results depend
of the time-step size, the condition (10) may not permit large
time-steps in the simulation, thus resulting a time consuming
animation.

A natural direction for future work is to extend our tech-
nique to deal with truly incompressible fluid flows.

ACKNOWLEDGMENT

This work is supported by FAPESP (São Paulo Research
Foundation) under grants #2013/19760-5 and #2014/11981-
5, FAPES (Espı́rito Santo Research Foundation) grant
#53600100/11 and CNPq (Brazilian National Council for
Scientific and Technological Development). We would like
to thank the anonymous reviewers for their valuable com-
ments and suggestions. The real image of honey (Figure 1)
was provided by Domiriel under Creative Commons license
(www.flickr.com/photos/domiriel/8037182858/).

www.flickr.com/photos/domiriel/8037182858/

Fig. 9. Stitching patterns of a viscous thread poured by a moving jet.

REFERENCES

[1] G. R. Liu and M. B. Liu, Smoothed Particle Hydrodynamics. World
Science, 2005.

[2] M. Ihmsen, J. Orthmann, B. Solenthaler, A. Kolb, and M. Teschner,
“SPH Fluids in Computer Graphics,” in Eurographics 2014 – State of
the Art Reports.

[3] A. Herault, G. Bilotta, and R. A. Dalrymple, “SPH on GPU with
CUDA,” Journal of Hydraulic Research, vol. 48, no. Extra Issue, pp.
74–79, 2010.

[4] Ø. E. Krog and A. C. Elster, “Fast gpu-based fluid simulations using
sph,” in Applied Parallel and Scientific Computing. Springer, 2012, pp.
98–109.

[5] M. M. Cross, “Rheology of non-newtonian fluids: A new flow equation
for pseudoplastic systems,” Journal of Colloid Science, vol. 20, no. 5,
pp. 417 – 437, 1965.

[6] T. G. Goktekin, A. W. Bargteil, and J. F. O’Brien, “A method for
animating viscoelastic fluids,” ACM Transactions on Graphics, vol. 23,
no. 3, pp. 463–468, 2004.

[7] C. Batty and R. Bridson, “Accurate viscous free surfaces for buckling,
coiling, and rotating liquids,” in Proceedings of the 2008 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, 2008, pp.
219–228.

[8] M. Bergou, B. Audoly, E. Vouga, M. Wardetzky, and E. Grinspun,
“Discrete viscous threads,” ACM Transactions on Graphics, vol. 29,
no. 4, pp. 116:1–116:10, 2010.

[9] C. Batty, A. Uribe, B. Audoly, and E. Grinspun, “Discrete viscous
sheets,” ACM Transactions on Graphics, vol. 31, no. 4, pp. 113:1–113:7,
2012.

[10] C. Batty and B. Houston, “A simple finite volume method for
adaptive viscous liquids,” in Proceedings of the 2011 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, ser. SCA
’11, 2011, pp. 111–118.

[11] M. F. Tomé and S. Mckee, “Numerical simulation of viscous flow:
buckling of planar jets,” International Journal for Numerical Methods
in Fluids, vol. 29, no. 6, pp. 705–718, 1999.

[12] M. Tomé, A. Filho, J. Cuminato, N. Mangiavacchi, and S. Mc-
kee, “GENSMAC3D: a numerical method for solving unsteady three-
dimensional free surface flows,” International Journal for Numerical
Methods in Fluids, vol. 37, no. 7, pp. 747–796, 2001.

[13] M. Tomé, L. Grossi, A. Castelo, J. Cuminato, N. Mangiavacchi, V. Fer-
reira, F. de Sousa, and S. McKee, “A numerical method for solving
three-dimensional generalized Newtonian free surface flows,” Journal
of Non-Newtonian Fluid Mechanics, vol. 123, no. 2–3, pp. 85 – 103,
2004.

[14] C. M. Oishi, M. F. Tomé, J. A. Cuminato, and S. McKee, “An implicit
technique for solving 3d low Reynolds number moving free surface
flows,” Journal of Computational Physics, vol. 227, no. 16, pp. 7446–
7468, 2008.

[15] S. Clavet, P. Beaudoin, and P. Poulin, “Particle-based viscoelastic fluid
simulation,” in Proceedings of the 2005 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, 2005, pp. 219–228.

[16] R. Keiser, B. Adams, D. Gasser, P. Bazzi, P. Dutré, and M. Gross, “A
unified lagrangian approach to solid-fluid animation,” in Symposium on
Point-Based Graphics 2005, 2005, pp. 125–134.

[17] A. Paiva, F. Petronetto, T. Lewiner, and G. Tavares, “Particle-based non-
newtonian fluid animation for melting objects,” in Sibgrapi 2006 (XIX
Brazilian Symposium on Computer Graphics and Image Processing).
IEEE, 2006, pp. 78–85.

[18] B. Solenthaler, J. Schläfli, and R. Pajarola, “A unified particle model
for fluid-solid interactions,” Computer Animation and Virtual Worlds,
vol. 18, no. 1, pp. 69–82, 2007.

[19] A. Paiva, F. Petronetto, T. Lewiner, and G. Tavares, “Particle-based
viscoplastic fluid/solid simulation,” Computer-Aided Design, vol. 41,
no. 4, pp. 306–314, 2009.

[20] A. Rafiee, M. Manzari, and M. Hosseini, “An incompressible SPH
method for simulation of unsteady viscoelastic free-surface flows,”
International Journal of Non-Linear Mechanics, vol. 42, no. 10, pp.
1210 – 1223, 2007.

[21] X. Xu, J. Ouyang, B. Yang, and Z. Liu, “SPH simulations of three-
dimensional non-Newtonian free surface flows,” Computer Methods in
Applied Mechanics and Engineering, vol. 256, pp. 101 – 116, 2013.

[22] X. Xu and J. Ouyang, “A SPH-based particle method for simulating
3D transient free surface flows of branched polymer melts,” Journal of
Non-Newtonian Fluid Mechanics, vol. 202, pp. 54 – 71, 2013.

[23] M. Müller, D. Charypar, and M. Gross, “Particle-based fluid simulation
for interactive applications,” in Proceedings of the 2003 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, 2003, pp.
154–159.

[24] J. P. Morris, P. J. Fox, and Y. Zhu, “Modeling low reynolds number for
incompressible flows using SPH,” Journal of Computational Physics,
vol. 136, pp. 214–226, 1997.

[25] S. Koshizuka, A. Nobe, and Y. Oka, “Numerical analysis of breaking
waves using the moving particle semi-implicit method,” International
Journal for Numerical Methods in Fluids, vol. 26, no. 7, pp. 751–769,
1998.

[26] J. Fang, R. G. Owens, L. Tacher, and A. Parriaux, “A numerical study
of the SPH method for simulating transient viscoelastic free surface
flows,” Journal of Non-Newtonian Fluid Mechanics, vol. 139, no. 1–2,
pp. 68–84, 2006.

[27] J. Hoberock and N. Bell, “Thrust: A parallel template library,” 2010,
version 1.7.0. [Online]. Available: http://thrust.github.io/

[28] S. Green, “Particle simulation using CUDA,” 2012. [Online]. Available:
docs.nvidia.com/cuda/samples/5 Simulations/particles/doc/particles.pdf

[29] J. O. Cruickshank, “Low-reynolds-number instabilities in stagnating jet
flows,” Journal of Fluid Mechanics, vol. 193, pp. 111–127, 1988.

[30] M. J. Blount and J. R. Lister, “The asymptotic structure of a slender
dragged viscous thread,” Journal of Fluid Mechanics, vol. 674, pp. 489–
521, 2011.

http://thrust.github.io/
docs.nvidia.com/cuda/samples/5_Simulations/particles/doc/particles.pdf

	Introduction
	Related work

	Governing Equations
	Our Technique
	SPH fluids
	Boundary conditions
	Implementation

	Results and Comparisons
	Concluding remarks
	References

