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Exponential Splitting and Dichotomy

Definição (Exponential Splitting)

A linear evolution process {L(t, τ) : t > τ} ⊂ L(X ) has
exponential splitting, with constant M > 1, exponents γ, ρ ∈ R,
with γ > ρ, and a family of projections {Q(t) : t ∈ R} ⊂ L(X ), if

i) Q(t)L(t, τ) = L(t, τ)Q(τ), for all t > τ ,

ii) L(t, τ) : Im(Q(τ)) → Im(Q(t)) is an isomorphism, with
inverse denoted by L(τ, t),

iii) the following estimates hold

‖L(t, τ)Q(τ)‖L(X ) 6 Me−ρ(t−τ), t 6 τ,

‖L(t, τ)(I − Q(τ))‖L(X ) 6 Me−γ(t−τ), t > τ.
(1)
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Inertial Manifolds

Consider the following semilinear differential initial value problem

u̇ = A(t)u + f (t, u), t > τ,

u(τ) = u0 ∈ X ,
(2)

with f : R× X → X continuous, f (t, 0) = 0, for all t ∈ R and
uniformly Lipschitz in the second variable with Lipschitz constant
ℓ > 0, i.e., ‖f (t, u)− f (t, ũ)‖ 6 ℓ‖u − ũ‖ for any
(t, u), (t, ũ) ∈ R× X .
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Assume that the family of linear operators {A(t) : t ∈ R} (not
bounded) defines a linear evolution process {L(t, τ) :t>τ}⊂L(X ),
i.e., for each (τ, u0) ∈ R× X , the ‘solution’ of the linear problem,

u̇ = A(t)u, t > τ,

u(τ) = u0 ∈ X ,
(3)

is given by u(t, τ, u0) = L(t, τ)u0, for t > τ , L(t, t) = IdX ,
L(t, s)L(s, τ) = L(t, τ), t > s > τ and [τ,∞) ∋ t 7→ L(t, τ)u0 ∈ X
is continuous, for all (τ, u0) ∈ R× X .

With this, solutions of (2) define a nonlinear evolution process
{T (t, τ) : t > τ} ⊂ C(X ) given by the variation of constants
formula, that is,

T (t, τ)u=L(t, τ)u+

∫ t

τ

L(t, s)f (s,T (s, τ)u) ds, t>τ, u∈X . (4)
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Teorema
Suppose that the linear evolution process {L(t, τ) :t>τ} has
exponential splitting, with constant M>1, exponents γ>ρ and a
family of projections {Q(t) :t ∈R}. If f :R×X→X is continuous,
f (t, 0)=0, f (t, ·) :X →X is Lipschitz continuous with Lipschitz
constant ℓ > 0, for all t ∈ R, and

γ − ρ

ℓ
> max{M2 + 2M +

√
8M3, 3M2 + 2M}, (5)

then there is a continuous function
Σ∗ : R× X → X

(t, u) 7→ Σ∗(t, u)
(6)

such that Σ∗(t, u) = Σ∗(t,Q(t)u) = (I − Q(t))Σ∗(t, u) and
Σ∗(t, 0) = 0, for all t ∈ R.
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In addition Σ∗(t, ·) : X → X Lipschitz continuous with Lipschitz
constant κ = κ(γ, ρ, ℓ,M) > 0, for all t ∈ R, that is,
‖Σ∗(t, u)− Σ∗(t, ũ)‖ 6 κ‖u − ũ‖, for all (t, u), (t, ũ) ∈ R× X.

Moreover, the graph of Σ∗(t, .), for each t ∈ R, given by

M(t) := {u ∈ X : u = q +Σ∗(t, q), q ∈ Im(Q(t))}, (7)

yields an invariant manifold {M(t) : t ∈ R} for the evolution
process {T (t, τ) : t > τ} given by (4).

In other words, it is invariant and if

PΣ∗(t)u := Q(t)u +Σ∗(t,Q(t)u), (t, u) ∈ R× X

is the nonlinear projection onto M(t).

Alexandre N. Carvalho - USP/São Carlos Segundo Semestre de 2022



Invariant Manifolds and Exponential Splitting and Dichotomy

Invariant Manifolds
Stable Manifold of an Invariant Manifold
The saddle point property
Roughness of Exponential Dichotomy

(i) {M(t) :t ∈R} has controlled growth: for (τ, u)∈R×X, t6τ ,

‖T (t, τ)PΣ∗(τ)u‖6M(1+κ)e−(ρ+ℓM(1+κ))(t−τ)‖PΣ∗(τ)u‖. (8)

(ii) {M(t) : t ∈ R} satisfies: for any (τ, u) ∈ R× X and t > τ ,

‖T (t, τ)u − PΣ∗(t)T (t, τ)u‖ 6 M‖(I − PΣ∗(τ))u‖e−δ(t−τ), (9)

where δ :=γ−Mℓ−M2ℓ2(1+κ)(1+M)
γ−ρ−ℓM(1+κ) . If δ > 0, {M(t) : t ∈ R}

is an inertial manifold.
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Stable Manifold of an Invariant Manifold

Teorema
Suppose that the linear evolution process {L(t, τ) : t > τ} has
exponential splitting, with constant M > 1, exponents γ > ρ and a
family of projections {Q(t) : t ∈ R}.
If (γ − ρ)/ℓ satisfies (5), then there is a continuous function

Θ∗ : R× X → X

(t, u) 7→ Θ∗(t, u),
(10)

such that Θ∗(t, u) = Θ∗(t, (I − Q(t))u) = Q(t)Θ∗(t, u), and
Θ∗(t, 0) = 0 for all t ∈ R, which is Lipschitz with constant
κ = κ(γ, ρ, ℓ,M) > 0 , i.e., ‖Θ∗(t, u)−Θ∗(t, ũ)‖ 6 κ‖u − ũ‖ for
all (t, u), (t, ũ) ∈ R× X.
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Moreover, if PΘ∗(t)u := Θ∗(t, (I − Q(t))u) + (I − Q(t))u, for all
(t, u) ∈ R× X, the family given by

{Im(PΘ∗(t)) : t ∈ R} := {{P∗
Θ(t, u) : u ∈ X} : t ∈ R} , (11)

is positively invariant such that

‖T (t, τ)PΘ∗(τ)u‖ 6 M(1+κ)e−(γ−Mℓ(1+κ))(t−τ)‖PΘ∗(τ)u‖, (12)

t > τ, u ∈ X , and

‖u − PΘ∗(τ)u‖ 6 Me δ̂(t−τ)‖(I − PΘ∗(t))T (t, τ)u‖, (13)

t > τ, u ∈ X, where δ̂ = ρ+Mℓ+ M2ℓ2(1+κ)(1+M)
γ−ρ−Mℓ(1+κ) .

Furthermore, if γ −Mℓ(1 + κ) > 0, {Im(PΘ∗(t)) : t ∈ R} is the
stable manifold of the inertial manifold {Im(PΣ∗(t)) : t ∈ R}.

Alexandre N. Carvalho - USP/São Carlos Segundo Semestre de 2022



Invariant Manifolds and Exponential Splitting and Dichotomy

Invariant Manifolds
Stable Manifold of an Invariant Manifold
The saddle point property
Roughness of Exponential Dichotomy

Proof: Given κ > 0 consider the complete metric space

LBΘ(κ)=
{

Θ∈C (R×X ,X ) :‖Θ(t, u)−Θ(t, ũ)‖6κ‖u−ũ‖,Θ(t, 0)=0,

Θ(t, u)=Θ(t, (I−Q(t))u)∈ Im(Q(t)), ∀(t, u), (t, ũ)∈R×X
}

.
(14)

with the metric |||Θ − Θ̃||| = sup
t∈R

sup
u 6=0

‖Θ(t, u)− Θ̃(t, u)‖
‖u‖ .
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Next we outline the heuristic procedure that will establish the way
of proving that the invariant manifold is given as a graph of a map
in LBΘ(κ). We are looking for Θ ∈ LBΘ(κ) with the property
that, if (τ, η) ∈ R× X , then a solution u of (2), with initial data
u(τ) = Θ(τ, (I − Q(τ))η) + (I − Q(τ))η ∈ X , can be decomposed
as u(t) = q(t) + p(t), where q(t) = Θ(t, p(t)) for all t > τ . Thus,
q and p must satisfy, for t > τ ,

q(t)=L(t, τ)Q(τ)η+

∫ t

τ

L(t, s)Q(s)f (s, p(s)+Θ(s, p(s)))ds,

p(t)=L(t, τ)(I−Q(τ))η+

∫ t

τ

L(t, s)(I−Q(s))f (s, p(s)+Θ(s, p(s)))ds.

(15)
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It follows that

‖p(t)‖ 6 ‖L(t, τ)(I − Q(τ))η‖

+

∫ t

τ

‖L(t, s)(I − Q(s))f (s, p(s) + Θ(s, p(s)))‖ds

6 Me−γ(t−τ )‖η‖+
∫ t

τ

Mℓe−γ(t−s)(1 + κ)‖p(s)‖ds.

Using Grownwall’s inequality,

‖p(t)‖ 6 Me−(γ−Mℓ(1+κ))(t−τ)‖η‖.

From this and from the fact that q(t) = Θ(p(t)), we conclude that

‖L(τ, t)Q(t)q(t)‖ = ‖L(τ, t)Θ(p(t))‖
6 κM2e−(γ−ρ−Mℓ(1+κ))(t−τ)‖η‖.
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Applying L(τ, t)Q(t) to (15), using that
Θ(τ, (I − Q(τ))η) = Q(τ)η and making t → ∞ we have

0 = Θ(τ, (I −Q(τ))η) +

∫

∞

τ

L(τ, s)Q(s)f (s, p(s) + Θ(s, p(s)))ds.

Inspired by this we define the operator G̃ : LBΘ(κ) → LBΘ(κ) by

G̃ (Θ)(τ, η) = −
∫

∞

τ

L(τ, s)Q(s)f (s, p(s) + Θ(s, y(s)))ds, (16)

(τ, η) ∈ R× X .
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The fact that G̃ is a well-defined contraction is similar to Theorem
1, and we refrain from giving a proof. Hence G̃ admits a unique
fixed point Θ∗ ∈ LBΘ(κ) satisfying the desired properties.
We now embark in the proof of (13). For any (τ, η) ∈ X and
t > τ .

p(t) = L(t, τ)(I −Q(τ))η+

∫ t

τ

L(t, s)(I −Q(s))f (s, q(s)+p(s))ds

and thus we wish to bound the variable
η(t) := T (t, τ)u − PΘ∗(t)T (t, τ)u for any u ∈ X and t > τ . Note
that η(t) = q(t)−Θ∗(t, p(t)) due to the definitions in (15).
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Define p∗(s, t), for s > t, as

p∗(s, t) :=L(s, t)p(t)

+

∫ s

t

L(s, r)(I − Q(r))f (r ,Θ∗(r , p∗(r , t))+p∗(r , t))dr .
(17)

Since f ,Θ∗ are Lipschitz with respective constants ℓ, κ > 0, we
obtain

‖p∗(s, t)− p(s)‖

6M

∫ s

t

e−γ(s−r)‖f (r ,Θ∗(r , p∗(r , t))+p∗(r , t))−f (r , q(r)+p(r))‖dr

6Mℓ

∫ s

t

e−γ(s−r)(‖q(r) −Θ∗(r , p(r))‖+(1+κ)‖p∗(r , t)− p(r)‖)dr ,

(18)

and, by Grönwall’s Lemma,

‖p∗(s, t)− p(s)‖ 6 Mℓ

∫ s

t

e−(γ−Mℓ(1+κ))(s−r)‖η(r)‖dr . (19)
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Also, for s > t > τ , we obtain

‖p∗(s, τ) − p∗(s, t)‖ 6 ‖L(s, t)(I − Q(t))[p∗(t, τ)− p(t)]‖

+‖
∫ s

t

L(s, r)(I−Q(r))[f(r ,Θ∗(r , p∗v(r , τ))+p∗(r ,τ))−f(r ,Θ∗(r , p∗(r , t))+p∗(r , t))]‖dr

6 M2ℓe−γ(s−t)

∫ t

τ

e−(γ−Mℓ(1+κ))(t−r)‖η(r)‖dr

+Mℓ(1 + κ)

∫ s

t

e−γ(s−r)‖p∗(r , τ) − p∗(r , t)‖dr ,

and again by Grönwall’s Lemma,

‖p∗(s, τ)− p∗(s, t)‖ 6 M2ℓ

∫ t

τ

e−(γ−Mℓ(1+κ))(s−r)‖η(r)‖dr . (20)
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Now, we use these inequalities to estimate ‖η(τ)‖. Note that

η(τ)−L(τ, t)Q(t)η(t)=q(τ)−L(τ, t)q(t)−Θ∗(τ, p(τ))+L(τ, t)Θ∗(t, p(t))

=

∫ τ

t

L(τ, s)Q(s)[f (s, q(s) + p(s)) − f (s,Θ∗(s, p∗(s, τ)) + p∗(s, τ))]ds

+

∫ ∞

t

L(τ, s)Q(s)[f (s,Θ∗(s, p∗(s, τ))+p∗(s, τ))−f (s,Θ∗(s, p∗(s, t))+p∗(s, t))]ds.
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Thus, using (19) and (20), we obtain

‖η(τ) − L(τ, t)Q(t)η(t)‖

6 Mℓ

∫ t

τ

e−ρ(τ−s) (‖q(s)−Θ∗(s, p∗(s, τ))‖ + ‖p(s)− p∗(s, τ)‖) ds

+Mℓ(1 + κ)

∫ ∞

t

e−ρ(τ−s)‖p∗(s, t)− p∗(s, τ)‖ds

6Mℓ

∫ t

τ

e−ρ(τ−s)‖η(s)‖ds

+M2ℓ2(1+κ)

∫ t

τ

e−(γ−ρ−Mℓ(1+κ))(s−τ )

∫ s

τ

e−(γ−Mℓ(1+κ))(τ−r)‖η(r)‖drds

+M3ℓ2 (1 + κ)

∫ ∞

t

e−(γ−ρ−Mℓ(1+κ))(s−τ )

∫ t

τ

e−(γ−Mℓ(1+κ))(τ−r)‖η(r)‖drds.
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Hence

‖η(τ) − L(τ, t)Q(t)η(t)‖ 6 Mℓ

∫ t

τ

e−ρ(τ−s)‖η(s)‖ds

+
M2ℓ2(1 + κ)(1 +M)

γ − ρ−Mℓ(1 + κ)

∫ t

τ

e−(γ−ρ−Mℓ(1+κ))(τ−r)e−ρ(τ−r)‖η(r)‖ dr

and we have that

‖η(τ)−L(τ, t)Q(t)η(t)‖ 6

[

Mℓ+
M2ℓ2(1+κ)(1+M)

γ − ρ−Mℓ(1 + κ)

]
∫ t

τ

e−ρ(τ−r)‖η(r)‖dr .

Thus,

‖η(τ)‖6Me−ρ(τ−t)‖η(t)‖+
[

Mℓ+
M2ℓ2(1+κ)(1+M)

γ − ρ−Mℓ(1 + κ)

]
∫ t

τ

e−ρ(τ−r)‖η(r)‖dr .

By Grönwall’s Lemma, we obtain the bound in (13).
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The saddle point property

We now obtain the saddle point property as an immediate
consequence of Theorems 1 and 2. We define the unstable and
stable sets of a hyperbolic global solution u∗ of (2) as

W u(u∗) :=







(τ,u0)∈R×X :
there is a solutionu : (−∞, τ ]→X
such that u(τ) = u0 and
limt→−∞ ‖u(t)− u∗(t)‖X = 0







(21a)

W s(u∗) :=







(τ,u0)∈R×X :
there is a solutionu : [τ,∞)→X
such that u(τ) = u0 and
limt→+∞ ‖u(t)−u∗(t)‖X =0







(21b)
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Corolário
Suppose that the linear evolution process {L(t, τ) : t > τ} has
exponential dichotomy, with constant M > 1, exponent γ > 0 and
a family of projections {Q(t) : t ∈ R}.
Suppose that ℓ > 0 is sufficiently small, then there are continuous
functions Σu ∈ LΣ(κ) and Θs ∈ LΘ(κ) such that the unstable and
stable manifolds of u∗ = 0 are given by

W u(0)={(τ, u)∈R×X :u=Q(τ)u+Σu(τ,Q(τ)u)}, (22a)

W s(0)={(τ, u)∈R×X :u=Θs(τ,(I−Q(τ))u)+(I−Q(τ))u}. (22b)

Moreover, solutions within the unstable (resp. stable) manifold
exponentially decay to zero backwards (resp. forwards) in time,
according to (8) and (12).
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Proof: For ℓ > 0 sufficiently small, the condition (5) is satisfied
and δ > 0, and thus we obtain the graph of Σ∗ from Theorem 1.
We now prove that the unstable set W u(0) defined in (21a)
coincides with the graph of Σu := Σ∗. On one hand, the graph of
Σu is contained in the unstable set by (8). On the other hand, any
solution z : (−∞, t] → X which backwards converges to zero
satisfies, from (9),

‖z(t)− PΣ∗(t)z(t)‖ = ‖(I − Q(t))z(t)− Σu(t,Q(t)z(t))‖
6 M‖(I − PΣ∗(τ))z(τ)‖e−δ(t−τ) , t > τ.

Since δ > 0, we obtain that (I − Q(t))z(t) = Σu(t,Q(t)z(t)) for
all t ∈ R as τ → −∞, and thus any element in the unstable set
lies in the graph of Σu. The case of stable manifold is analogous
applying Theorem 2.
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Roughness of Exponential Dichotomy

We now prove that the roughness of exponential dichotomy, i.e.,
that exponential dichotomies are preserved under perturbations.
Assume that the linear evolution process {L(t, τ) : t > τ}
associated to the problem

u̇ = A(t)u, t > τ, u(τ) = u0. (23)

has exponential dichotomy with constant M and exponent γ > 0
and consider the linear evolution process {T (t, τ) : t > τ},
associated to a perturbation of it, given by the linear equation,

u̇ = A(t)u + B(t)u, t > τ, u(τ) = u0. (24)

where the map t 7→ B(t) ∈ L(X ) is strongly continuous for t ∈ R

and supt∈R‖B(t)‖L(X ) 6 ℓ, for some suitably small ℓ > 0.
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Recall that, as in (4), the evolution process
{T (t, τ) : t > τ} ⊂ L(X ) associated to (24) is given by

T (t, τ) = L(t, τ) +

∫ t

τ

L(t, s)B(s)T (s, τ) ds, t > τ. (25)

We wish to prove that (24) has exponential dichotomy for suitably
small ℓ.

This result can be obtained by firstly applying Theorems 1 and 2 in
a linear setting, which are suitable in order to establish the
existence of the linear invariant manifold and its stable manifold
(see Corollary 2) and then apply it to (24) with γ > 0 and ρ = −γ.
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Corolário
If {L(t, τ) : t > τ} has exponential splitting with constant M,
exponents γ > ρ and projections {Q(t) : t ∈ R} and (5) is
satisfied, then

◮ There are maps Σ∗,Θ∗ : R×X → X, Σ∗(t, ·),Θ∗(t, ·) ∈ L(X )
and ‖Σ∗(t, u)‖ 6 κ‖u‖X , ‖Θ∗(t, u)‖X 6 κ‖u‖X for all
(t, u) ∈ R× X and for some κ = κℓ > 0;

◮ The graph G(Σ∗) of Σ∗ is an invariant family and (9) holds,
the graph G(Θ∗) of Θ∗ is a positively invariant family;

◮ The evolution process {T (t, τ) : t > τ} given by (25) satisfies

‖T (t, τ)PΣ∗(τ)‖6M(1+κ)e−(ρ+Mℓ(1+κ))(t−τ) , t 6 τ,

‖T (t, τ)PΘ∗(τ)‖6M(1+κ)e−(γ−Mℓ(1+κ))(t−τ) , t > τ,
(26)

where PΣ∗(t)u :=Q(t)u+Σ∗(t,Q(t)u) and
PΘ∗(t)u :=Θ∗(t, (I−Q(t))u) + (I−Q(t))u, t ∈ R.
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Proof: The proof is a direct consequence of Theorems 1 and 2 in
the case that f (t, ·) is linear and uniformly (with respect to t)
bounded. Note that, the linearity of Σ(t, ·) follows since f (t, ·) is
linear, and thereby G (Σ) given is also linear. Consequently, the
fixed point, G (Σ∗)(t, u) = Σ∗(t, u), is linear. Similarly, G̃ in
equation (16) is also linear and so is Θ∗.

Next, we show the robustness of the exponential dichotomy.
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Corolário
Suppose that {L(t, τ) : t > τ} has exponential dichotomy with
constant M > 1, exponent γ > 0 and family of projections
{Q(t) : t ∈ R}. If supt∈R ‖B(t)‖L(X ) 6 ℓ, where 0<ℓ< 2γ

3M(M+1) ,

then {T (t, τ) : t > τ} has exponential dichotomy, that is, there are
projections {Qℓ(t) : t ∈ R} with T (t, τ) : Im(Qℓ(τ)) → Im(Qℓ(t))
being an isomorphism, t > τ , and

‖T (t, τ)Qℓ(τ)‖L(X ) 6 Mℓe
γℓ(t−τ), t 6 τ

‖T (t, τ)(I − Qℓ(τ))‖L(X ) 6 Mℓe
−γℓ(t−τ), t > τ,

(27)

where Mℓ :=M(1+κℓ)/(1−2κℓ)>1 and γℓ :=γ−ℓM(1+κℓ)>0 for
the Lipschitz constant κℓ obtained in Corollary 2.
Moreover,

sup
t∈R

‖Q(t)− Qℓ(t)‖L(X ) 6
2κℓ

1− 2κℓ
. (28)
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Proof: If PΘ∗(t)u :=(I−Q(t))u+Θ∗(t, (I−Q(t))u) and
PΣ∗(t)u :=Q(t)u+Σ∗(t,Q(t)u), for (t, u)∈R×X , where Σ∗ and
Θ∗ are the bounded linear maps obtained in Corollary 2, with norm
less than κℓ>0. We will prove that X = Im(PΣ∗(t))⊕Im(PΘ∗(t)),
for every t ∈ R. That is, we show that, for each (t, u)∈R×X ,

Iu(t) : X → X

v 7→ Iu(t)v := u − Σ∗(t, v)−Θ∗(t, v),
(29)

has a unique fixed point. If that is the case, for each (t, u)∈R×X ,
there exists a unique vu∈X such that Iu(t)vu=vu, that is,

u−Σ∗(t, vu)−Θ∗(t, vu) = vu = Q(t)vu + (I −Q(t))vu, or (30)

u = Q(t)vu +Σ∗(t, vu) + (I − Q(t))vu +Θ∗(t, vu)

= PΣ∗(t)vu + PΘ∗(t)vu,
(31)

Which is the unique representation of u as a sum of elements of
Im(PΣ∗(t)) and Im(PΘ∗(t)) and proves the desired decomposition.
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Q(t)

I−Q(t)

Σ∗(t,·)

Θ∗(t,·)

PΘ∗ (t)u

PΣ∗ (t)u

u

Q(t)

I−Q(t)

Σ∗(t,·)

Θ∗(t,·)

Q(t)vu

(I−Q(t))vu

u

vu

Figure: Given a point u ∈ X , we find a unique point vu ∈ X such that
PΣ∗(t)u = Q(t)vu +Σ∗(t,Q(t)vu) and
PΘ∗(t)u = (I − Q(t))vu +Θ∗(t, (I − Q(t))vu).
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In order to show that Iu(t) has a unique fixed point, note that
Iu(t) is a contraction on X , since

‖Iu(t)v−Iu(t)ṽ‖=‖Σ∗(t, ṽ)−Σ∗(t, v)+Θ∗(t, ṽ)−Θ∗(t, v)‖,
6 2κ‖v − ṽ‖,

(32)

for any v , ṽ ∈ X , as the graphs Σ∗,Θ∗ are Lipschitz with constant
κ = κℓ > 0. Thus, Iu(t) is a contraction for each (t, u) ∈ R× X ,
and for all κ ∈ [κ−,min{1/2,min{κ+, κ∗}}), since the hypothesis
on ℓ in Corollary 3 implies that κ− < 1/2 and thus any κ as above
implies that we have a contraction.
Note that, for each u ∈ X , since vu is the unique element of X
satisfying vu = u − Σ∗(t, vu)−Θ∗(t, vu), the map u 7→ vu is a
linear bounded operator such that

‖vu‖X 6
‖u‖X
1− 2κ

. (33)
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For each t ∈ R, define Qℓ(t) ∈ L(X ) the linear projection onto
R(PΣ∗(t)) along R(PΘ∗(t)), which can be written as
Qℓ(t)u := PΣ∗(t)vu due to the first part of the proof. Its
complementary projection is given by (I − Qℓ(t))u = PΘ∗(t)vu, for
each (t, u) ∈ R× X .
From Corollary 2, we have that {R(Qℓ(t)) : t ∈ R} is invariant and
{R(I − Qℓ(t)) : t ∈ R} is positively invariant. Thus
T (t, τ)Qℓ(τ) = Qℓ(t)T (t, τ), for every t > τ . Equations (26) and
(33) imply the desired bounds (27). This proves that
{T (t, τ) : t > τ} has exponential dichotomy with constant
Mℓ := M(1 + κ)/(1 − 2κ) and exponent γℓ := γ −Mℓ(1 + κ) > 0.
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Lastly, we prove the bound in equation (28), that is, the continuous
dependence of the projections {Q(t) : t ∈ R} and {Qℓ(t) : t ∈ R},
correponding to the exponential dichotomies of the respective
evolution processes {L(t, τ) : t > τ} and {T (t, τ) : t > τ}.
Consider u ∈ X , which can be uniquely decomposed as
u = vu +Σ∗(t, vu) + Θ∗(t, vu). Hence,
Q(t)u = Q(t)vu +Θ∗(t, vu), since Q(t)Σ∗(t, vu) = 0, and
Qℓ(t)u = Q(t)vu +Σ∗(t, vu), by definition of Qℓ(t) and because
Qℓ(t)Θ

∗(t, vu) = 0. Therefore,

Q(t)u − Qℓ(t)u = Θ∗(t, vu)− Σ∗(t, vu). (34)

Since the maps Σ∗,Θ∗ are Lipschitz with constant κℓ > 0, and due
to equation (33), we obtain the desired bound (28).
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