Sistemas Dinâmicos Não Lineares Vigésima Quinta Aula

Alexandre Nolasco de Carvalho

30 de Novembro de 2022

・ 回 ト ・ ヨ ト ・ ヨ ト

Alexandre N. Carvalho - USP/São Carlos Segundo Semestre de 2022

Invariant Manifolds Stable Manifold of an Invariant Manifold The saddle point property Roughness of Exponential Dichotomy

Exponential Splitting and Dichotomy

Definição (Exponential Splitting)

A linear evolution process $\{L(t, \tau) : t \ge \tau\} \subset \mathcal{L}(X)$ has exponential splitting, with constant $M \ge 1$, exponents $\gamma, \rho \in \mathbb{R}$, with $\gamma > \rho$, and a family of projections $\{Q(t) : t \in \mathbb{R}\} \subset \mathcal{L}(X)$, if

i)
$$Q(t)L(t,\tau) = L(t,\tau)Q(\tau)$$
, for all $t \ge au$,

ii) $L(t,\tau)$: $Im(Q(\tau)) \rightarrow Im(Q(t))$ is an isomorphism, with inverse denoted by $L(\tau,t)$,

iii) the following estimates hold

$$\begin{aligned} \|L(t,\tau)Q(\tau)\|_{\mathcal{L}(X)} &\leq M e^{-\rho(t-\tau)}, \quad t \leq \tau, \\ \|L(t,\tau)(I-Q(\tau))\|_{\mathcal{L}(X)} &\leq M e^{-\gamma(t-\tau)}, \quad t \geq \tau. \end{aligned}$$
(1)

イロト イヨト イヨト イヨト

Invariant Manifolds and Exponential Splitting and Dichotomy

Invariant Manifolds Stable Manifold of an Invariant Manifold The saddle point property Roughness of Exponential Dichotomy

Inertial Manifolds

Consider the following semilinear differential initial value problem

$$\begin{split} \dot{u} &= A(t)u + f(t,u), \ t > \tau, \\ u(\tau) &= u_0 \in X, \end{split}$$

イロト イヨト イヨト イヨト

with $f : \mathbb{R} \times X \to X$ continuous, f(t,0) = 0, for all $t \in \mathbb{R}$ and uniformly Lipschitz in the second variable with Lipschitz constant $\ell > 0$, i.e., $||f(t,u) - f(t, \tilde{u})|| \le \ell ||u - \tilde{u}||$ for any $(t, u), (t, \tilde{u}) \in \mathbb{R} \times X$. Invariant Manifolds and Exponential Splitting and Dichotomy

Assume that the family of linear operators $\{A(t) : t \in \mathbb{R}\}$ (not bounded) defines a linear evolution process $\{L(t,\tau) : t \ge \tau\} \subset \mathcal{L}(X)$, i.e., for each $(\tau, u_0) \in \mathbb{R} \times X$, the 'solution' of the linear problem,

$$\dot{u} = A(t)u, \quad t \ge \tau, u(\tau) = u_0 \in X,$$
(3)

イロト イヨト イヨト ・

is given by $u(t, \tau, u_0) = L(t, \tau)u_0$, for $t \ge \tau$, $L(t, t) = Id_X$, $L(t, s)L(s, \tau) = L(t, \tau)$, $t \ge s \ge \tau$ and $[\tau, \infty) \ni t \mapsto L(t, \tau)u_0 \in X$ is continuous, for all $(\tau, u_0) \in \mathbb{R} \times X$.

With this, solutions of (2) define a nonlinear evolution process $\{T(t,\tau): t \ge \tau\} \subset C(X)$ given by the variation of constants formula, that is,

$$T(t,\tau)u = L(t,\tau)u + \int_{\tau}^{t} L(t,s)f(s,T(s,\tau)u) \, ds, \quad t \ge \tau, u \in X.$$
(4)

イロト イポト イヨト イヨト

Teorema

Suppose that the linear evolution process $\{L(t, \tau): t \ge \tau\}$ has exponential splitting, with constant $M \ge 1$, exponents $\gamma > \rho$ and a family of projections $\{Q(t): t \in \mathbb{R}\}$. If $f: \mathbb{R} \times X \to X$ is continuous, f(t,0)=0, $f(t, \cdot): X \to X$ is Lipschitz continuous with Lipschitz constant $\ell > 0$, for all $t \in \mathbb{R}$, and

$$\frac{\gamma - \rho}{\ell} > \max\{M^2 + 2M + \sqrt{8M^3}, 3M^2 + 2M\},$$
 (5)

then there is a continuous function

$$\Sigma^* : \mathbb{R} \times X \to X$$

$$(t, u) \mapsto \Sigma^*(t, u)$$
such that $\Sigma^*(t, u) = \Sigma^*(t, Q(t)u) = (I - Q(t))\Sigma^*(t, u)$ and
$$\Sigma^*(t, 0) = 0, \text{ for all } t \in \mathbb{R}.$$
(6)

イロト イヨト イヨト イヨト

In addition $\Sigma^*(t, \cdot) : X \to X$ Lipschitz continuous with Lipschitz constant $\kappa = \kappa(\gamma, \rho, \ell, M) > 0$, for all $t \in \mathbb{R}$, that is, $\|\Sigma^*(t, u) - \Sigma^*(t, \tilde{u})\| \leq \kappa \|u - \tilde{u}\|$, for all $(t, u), (t, \tilde{u}) \in \mathbb{R} \times X$.

Moreover, the graph of $\Sigma^*(t,.)$, for each $t\in\mathbb{R}$, given by

$$\mathcal{M}(t) := \{ u \in X : u = q + \Sigma^*(t,q), q \in \mathit{Im}(Q(t)) \}, \qquad (7)$$

yields an invariant manifold $\{\mathcal{M}(t) : t \in \mathbb{R}\}$ for the evolution process $\{T(t, \tau) : t \ge \tau\}$ given by (4).

In other words, it is invariant and if

$$P_{\Sigma^*}(t)u := Q(t)u + \Sigma^*(t,Q(t)u), \ (t,u) \in \mathbb{R} imes X$$

is the nonlinear projection onto $\mathcal{M}(t)$.

・ロト ・四ト ・ヨト ・ヨト

2

(i)
$$\{\mathcal{M}(t): t \in \mathbb{R}\}\$$
 has controlled growth: for $(\tau, u) \in \mathbb{R} \times X$, $t \leq \tau$,
 $\|T(t, \tau)P_{\Sigma^*}(\tau)u\| \leq M(1+\kappa)e^{-(\rho+\ell M(1+\kappa))(t-\tau)}\|P_{\Sigma^*}(\tau)u\|$. (8)
(ii) $\{\mathcal{M}(t): t \in \mathbb{R}\}\$ satisfies: for any $(\tau, u) \in \mathbb{R} \times X$ and $t \geq \tau$,
 $\|T(t, \tau)u - P_{\Sigma^*}(t)T(t, \tau)u\| \leq M\|(I - P_{\Sigma^*}(\tau))u\|e^{-\delta(t-\tau)}$, (9)
where $\delta := \gamma - M\ell - \frac{M^2\ell^2(1+\kappa)(1+M)}{\gamma - \rho - \ell M(1+\kappa)}$. If $\delta > 0$, $\{\mathcal{M}(t): t \in \mathbb{R}\}\$ is an inertial manifold.

Invariant Manifolds Stable Manifold of an Invariant Manifold The saddle point property Roughness of Exponential Dichotomy

Stable Manifold of an Invariant Manifold

Teorema

Suppose that the linear evolution process $\{L(t, \tau) : t \ge \tau\}$ has exponential splitting, with constant $M \ge 1$, exponents $\gamma > \rho$ and a family of projections $\{Q(t) : t \in \mathbb{R}\}$. If $(\gamma - \rho)/\ell$ satisfies (5), then there is a continuous function

$$\Theta^* : \mathbb{R} \times X \to X (t, u) \mapsto \Theta^*(t, u),$$
 (10)

(日) (四) (三) (三)

such that $\Theta^*(t, u) = \Theta^*(t, (I - Q(t))u) = Q(t)\Theta^*(t, u)$, and $\Theta^*(t, 0) = 0$ for all $t \in \mathbb{R}$, which is Lipschitz with constant $\kappa = \kappa(\gamma, \rho, \ell, M) > 0$, i.e., $\|\Theta^*(t, u) - \Theta^*(t, \tilde{u})\| \le \kappa \|u - \tilde{u}\|$ for all $(t, u), (t, \tilde{u}) \in \mathbb{R} \times X$.

A B M A B M

Moreover, if $P_{\Theta^*}(t)u := \Theta^*(t, (I - Q(t))u) + (I - Q(t))u$, for all $(t, u) \in \mathbb{R} \times X$, the family given by

 $\{Im(P_{\Theta^*}(t)): t \in \mathbb{R}\} := \{\{P_{\Theta}^*(t, u): u \in X\}: t \in \mathbb{R}\}, \quad (11)$

is positively invariant such that

 $\|T(t,\tau)P_{\Theta^*}(\tau)u\| \leq M(1+\kappa)e^{-(\gamma-M\ell(1+\kappa))(t-\tau)}\|P_{\Theta^*}(\tau)u\|,$ (12) $t \geq \tau, \ u \in X, \ and$

 $\|u - P_{\Theta^*}(\tau)u\| \leqslant M e^{\hat{\delta}(t-\tau)} \| (I - P_{\Theta^*}(t))T(t,\tau)u\|, \qquad (13)$

 $t \ge \tau, u \in X$, where $\hat{\delta} = \rho + M\ell + \frac{M^2\ell^2(1+\kappa)(1+M)}{\gamma - \rho - M\ell(1+\kappa)}$. Furthermore, if $\gamma - M\ell(1+\kappa) > 0$, $\{Im(P_{\Theta^*}(t)) : t \in \mathbb{R}\}$ is the stable manifold of the inertial manifold $\{Im(P_{\Sigma^*}(t)) : t \in \mathbb{R}\}$.

Proof: Given $\kappa > 0$ consider the complete metric space $\mathcal{LB}_{\Theta}(\kappa) = \left\{ \Theta \in C(\mathbb{R} \times X, X) : \|\Theta(t, u) - \Theta(t, \tilde{u})\| \leq \kappa \|u - \tilde{u}\|, \Theta(t, 0) = 0, \\ \Theta(t, u) = \Theta(t, (I - Q(t))u) \in Im(Q(t)), \forall (t, u), (t, \tilde{u}) \in \mathbb{R} \times X \right\}.$ (14) with the metric $\|\Theta - \tilde{\Theta}\| = \sup_{t \in \mathbb{R}} \sup_{u \neq 0} \frac{\|\Theta(t, u) - \tilde{\Theta}(t, u)\|}{\|u\|}.$

イロト イポト イヨト イヨト

Next we outline the heuristic procedure that will establish the way of proving that the invariant manifold is given as a graph of a map in $\mathcal{LB}_{\Theta}(\kappa)$. We are looking for $\Theta \in \mathcal{LB}_{\Theta}(\kappa)$ with the property that, if $(\tau, \eta) \in \mathbb{R} \times X$, then a solution u of (2), with initial data $u(\tau) = \Theta(\tau, (I - Q(\tau))\eta) + (I - Q(\tau))\eta \in X$, can be decomposed as u(t) = q(t) + p(t), where $q(t) = \Theta(t, p(t))$ for all $t \ge \tau$. Thus, q and p must satisfy, for $t \ge \tau$,

$$q(t) = L(t,\tau)Q(\tau)\eta + \int_{\tau}^{t} L(t,s)Q(s)f(s,p(s) + \Theta(s,p(s)))ds,$$

$$p(t) = L(t,\tau)(I - Q(\tau))\eta + \int_{\tau}^{t} L(t,s)(I - Q(s))f(s,p(s) + \Theta(s,p(s)))ds.$$
(15)

・ロト ・日ト ・ヨト ・ヨト

It follows that

$$egin{aligned} \|p(t)\| &\leqslant \|\mathcal{L}(t, au)(I-Q(au))\eta\| \ &+ \int_{ au}^t \|\mathcal{L}(t,s)(I-Q(s))f(s,p(s)+\Theta(s,p(s)))\|ds \ &\leqslant Me^{-\gamma(t- au)}\|\eta\| + \int_{ au}^t M\ell e^{-\gamma(t-s)}(1+\kappa)\|p(s)\|ds. \end{aligned}$$

Using Grownwall's inequality,

$$\|p(t)\| \leqslant Me^{-(\gamma - M\ell(1+\kappa))(t-\tau)} \|\eta\|.$$

From this and from the fact that $q(t) = \Theta(p(t))$, we conclude that

$$\begin{split} \|L(\tau,t)Q(t)q(t)\| &= \|L(\tau,t)\Theta(p(t))\| \\ &\leqslant \kappa M^2 e^{-(\gamma-\rho-M\ell(1+\kappa))(t-\tau)} \|\eta\|. \end{split}$$

イロト イボト イヨト イヨト

Applying $L(\tau, t)Q(t)$ to (15), using that $\Theta(\tau, (I - Q(\tau))\eta) = Q(\tau)\eta$ and making $t \to \infty$ we have

$$0 = \Theta(\tau, (I - Q(\tau))\eta) + \int_{\tau}^{\infty} L(\tau, s)Q(s)f(s, p(s) + \Theta(s, p(s)))ds.$$

Inspired by this we define the operator $\tilde{G} : \mathcal{LB}_{\Theta}(\kappa) \to \mathcal{LB}_{\Theta}(\kappa)$ by

$$\tilde{G}(\Theta)(\tau,\eta) = -\int_{\tau}^{\infty} L(\tau,s)Q(s)f(s,p(s)+\Theta(s,y(s)))ds, \quad (16)$$

 $(\tau,\eta)\in\mathbb{R}\times X.$

イロト イポト イヨト イヨト

The fact that \tilde{G} is a well-defined contraction is similar to Theorem 1, and we refrain from giving a proof. Hence \tilde{G} admits a unique fixed point $\Theta^* \in \mathcal{LB}_{\Theta}(\kappa)$ satisfying the desired properties. We now embark in the proof of (13). For any $(\tau, \eta) \in X$ and $t \ge \tau$.

$$p(t) = L(t,\tau)(I-Q(\tau))\eta + \int_{\tau}^{t} L(t,s)(I-Q(s))f(s,q(s)+p(s))ds$$

and thus we wish to bound the variable $\eta(t) := T(t, \tau)u - P_{\Theta^*}(t)T(t, \tau)u$ for any $u \in X$ and $t \ge \tau$. Note that $\eta(t) = q(t) - \Theta^*(t, p(t))$ due to the definitions in (15). Invariant Manifolds and Exponential Splitting and Dichotomy

Define
$$p^{*}(s, t)$$
, for $s \ge t$, as
 $p^{*}(s, t) := L(s, t)p(t)$
 $+ \int_{t}^{s} L(s, r)(I - Q(r))f(r, \Theta^{*}(r, p^{*}(r, t)) + p^{*}(r, t))dr.$
(17)

Since f,Θ^* are Lipschitz with respective constants $\ell,\kappa>$ 0, we obtain

$$\|p^{*}(s,t) - p(s)\| \leq M \int_{t}^{s} e^{-\gamma(s-r)} \|f(r,\Theta^{*}(r,p^{*}(r,t)) + p^{*}(r,t)) - f(r,q(r) + p(r))\| dr$$
(18)

$$\leq M \ell \int_{t}^{s} e^{-\gamma(s-r)} (\|q(r) - \Theta^{*}(r,p(r))\| + (1+\kappa) \|p^{*}(r,t) - p(r)\|) dr,$$

and, by Grönwall's Lemma,

$$\|p^*(s,t)-p(s)\| \leq M\ell \int_t^s e^{-(\gamma-M\ell(1+\kappa))(s-r)} \|\eta(r)\| dr.$$
 (19)

3

Also, for
$$s \ge t \ge \tau$$
, we obtain
 $\|p^*(s,\tau) - p^*(s,t)\| \le \|L(s,t)(I - Q(t))[p^*(t,\tau) - p(t)]\|$
 $+ \|\int_t^s L(s,r)(I - Q(r))[f(r,\Theta^*(r,p^*v(r,\tau)) + p^*(r,\tau)) - f(r,\Theta^*(r,p^*(r,t)) + p^*(r,t))]\|dr$
 $\le M^2 \ell e^{-\gamma(s-t)} \int_{\tau}^t e^{-(\gamma - M\ell(1+\kappa))(t-r)} \|\eta(r)\|dr$
 $+ M\ell(1+\kappa) \int_t^s e^{-\gamma(s-r)} \|p^*(r,\tau) - p^*(r,t)\|dr,$

and again by Grönwall's Lemma,

$$\|p^*(s,\tau) - p^*(s,t)\| \leq M^2 \ell \int_{\tau}^{t} e^{-(\gamma - M\ell(1+\kappa))(s-r)} \|\eta(r)\| dr.$$
 (20)

・ロト ・日ト ・ヨト ・ヨト

3

Now, we use these inequalities to estimate $\|\eta(\tau)\|$. Note that

$$\begin{split} \eta(\tau) - \mathcal{L}(\tau, t) Q(t) \eta(t) &= q(\tau) - \mathcal{L}(\tau, t) q(t) - \Theta^*(\tau, p(\tau)) + \mathcal{L}(\tau, t) \Theta^*(t, p(t)) \\ &= \int_t^\tau \mathcal{L}(\tau, s) Q(s) [f(s, q(s) + p(s)) - f(s, \Theta^*(s, p^*(s, \tau)) + p^*(s, \tau))] ds \\ &+ \int_t^\infty \mathcal{L}(\tau, s) Q(s) [f(s, \Theta^*(s, p^*(s, \tau)) + p^*(s, \tau)) - f(s, \Theta^*(s, p^*(s, t)) + p^*(s, t))] ds. \end{split}$$

・ロン ・四 と ・ ヨ と ・ ヨ と

æ

Thus, using (19) and (20), we obtain

$$\|\eta(\tau) - L(\tau, t)Q(t)\eta(t)\| \leq M\ell \int_{\tau}^{t} e^{-\rho(\tau-s)} (\|q(s) - \Theta^{*}(s, p^{*}(s, \tau))\| + \|p(s) - p^{*}(s, \tau)\|) ds + M\ell(1+\kappa) \int_{t}^{\infty} e^{-\rho(\tau-s)} \|p^{*}(s, t) - p^{*}(s, \tau)\| ds \leq M\ell \int_{\tau}^{t} e^{-\rho(\tau-s)} \|\eta(s)\| ds + M^{2}\ell^{2}(1+\kappa) \int_{\tau}^{t} e^{-(\gamma-\rho-M\ell(1+\kappa))(s-\tau)} \int_{\tau}^{s} e^{-(\gamma-M\ell(1+\kappa))(\tau-r)} \|\eta(r)\| drds + M^{3}\ell^{2} (1+\kappa) \int_{t}^{\infty} e^{-(\gamma-\rho-M\ell(1+\kappa))(s-\tau)} \int_{\tau}^{t} e^{-(\gamma-M\ell(1+\kappa))(\tau-r)} \|\eta(r)\| drds.$$

・ロン ・回 と ・ ヨ と ・ ヨ と

3

Hence

$$\begin{aligned} \|\eta(\tau) - L(\tau,t)Q(t)\eta(t)\| &\leq M\ell \int_{\tau}^{t} e^{-\rho(\tau-s)} \|\eta(s)\| ds \\ &+ \frac{M^{2}\ell^{2}(1+\kappa)(1+M)}{\gamma-\rho-M\ell(1+\kappa)} \int_{\tau}^{t} e^{-(\gamma-\rho-M\ell(1+\kappa))(\tau-r)} e^{-\rho(\tau-r)} \|\eta(r)\| dr \end{aligned}$$

and we have that

$$\|\eta(\tau)-L(\tau,t)Q(t)\eta(t)\| \leqslant \left[M\ell + \frac{M^2\ell^2(1+\kappa)(1+M)}{\gamma-\rho-M\ell(1+\kappa)}\right]\int_{\tau}^{t} e^{-\rho(\tau-r)}\|\eta(r)\|dr.$$

Thus,

$$\|\eta(\tau)\| \leq M e^{-\rho(\tau-t)} \|\eta(t)\| + \left[M \ell + \frac{M^2 \ell^2 (1+\kappa)(1+M)}{\gamma - \rho - M \ell (1+\kappa)} \right] \int_{\tau}^{t} e^{-\rho(\tau-r)} \|\eta(r)\| dr.$$

By Grönwall's Lemma, we obtain the bound in (13). \Box

Invariant Manifolds and Exponential Splitting and Dichotomy

Invariant Manifolds Stable Manifold of an Invariant Manifold The saddle point property Roughness of Exponential Dichotomy

The saddle point property

We now obtain the saddle point property as an immediate consequence of Theorems 1 and 2. We define the **unstable** and **stable sets** of a hyperbolic global solution u_* of (2) as

$$W^{u}(u_{*}) := \begin{cases} \text{there is a solution } u : (-\infty, \tau] \to X \\ \{(\tau, u_{0}) \in \mathbb{R} \times X : \text{such that } u(\tau) = u_{0} \text{ and} \\ \lim_{t \to -\infty} \|u(t) - u_{*}(t)\|_{X} = 0 \end{cases}$$

(21a)

イロト イポト イヨト イヨト

$$W^{s}(u_{*}) := \begin{cases} \text{there is a solution } u : [\tau, \infty) \to X \\ (\tau, u_{0}) \in \mathbb{R} \times X : \text{ such that } u(\tau) = u_{0} \text{ and} \\ \lim_{t \to +\infty} \|u(t) - u_{*}(t)\|_{X} = 0 \end{cases}$$
(21b)

イロト イヨト イヨト イヨト

Corolário

Suppose that the linear evolution process $\{L(t, \tau) : t \ge \tau\}$ has exponential dichotomy, with constant $M \ge 1$, exponent $\gamma > 0$ and a family of projections $\{Q(t) : t \in \mathbb{R}\}$.

Suppose that $\ell > 0$ is sufficiently small, then there are continuous functions $\Sigma^u \in \mathcal{L}_{\Sigma}(\kappa)$ and $\Theta^s \in \mathcal{L}_{\Theta}(\kappa)$ such that the unstable and stable manifolds of $u_* = 0$ are given by

$$W^{u}(0) = \{(\tau, u) \in \mathbb{R} \times X : u = Q(\tau)u + \Sigma^{u}(\tau, Q(\tau)u)\},$$
(22a)

 $W^{s}(0) = \{(\tau, u) \in \mathbb{R} \times X : u = \Theta^{s}(\tau, (I - Q(\tau))u) + (I - Q(\tau))u\}.$ (22b)

Moreover, solutions within the unstable (resp. stable) manifold exponentially decay to zero backwards (resp. forwards) in time, according to (8) and (12).

イロト イヨト イヨト ・

Proof: For $\ell > 0$ sufficiently small, the condition (5) is satisfied and $\delta > 0$, and thus we obtain the graph of Σ^* from Theorem 1. We now prove that the unstable set $W^u(0)$ defined in (21a) coincides with the graph of $\Sigma^u := \Sigma^*$. On one hand, the graph of Σ^u is contained in the unstable set by (8). On the other hand, any solution $z : (-\infty, t] \to X$ which backwards converges to zero satisfies, from (9),

$$\begin{split} \|z(t) - P_{\Sigma^*}(t)z(t)\| &= \|(I - Q(t))z(t) - \Sigma^u(t, Q(t)z(t))\| \\ &\leq M \|(I - P_{\Sigma^*}(\tau))z(\tau)\|e^{-\delta(t-\tau)}, \quad t \geq \tau. \end{split}$$

Since $\delta > 0$, we obtain that $(I - Q(t))z(t) = \Sigma^u(t, Q(t)z(t))$ for all $t \in \mathbb{R}$ as $\tau \to -\infty$, and thus any element in the unstable set lies in the graph of Σ^u . The case of stable manifold is analogous applying Theorem 2. \Box

Roughness of Exponential Dichotomy

We now prove that the roughness of exponential dichotomy, i.e., that exponential dichotomies are preserved under perturbations. Assume that the linear evolution process $\{L(t, \tau) : t \ge \tau\}$ associated to the problem

$$\dot{u} = A(t)u, t \ge \tau, \quad u(\tau) = u_0.$$
 (23)

has exponential dichotomy with constant M and exponent $\gamma > 0$ and consider the linear evolution process $\{T(t, \tau) : t \ge \tau\}$, associated to a perturbation of it, given by the linear equation,

$$\dot{u} = A(t)u + B(t)u, t \ge \tau, u(\tau) = u_0.$$
 (24)

イロン イヨン イヨン ・

where the map $t \mapsto B(t) \in \mathcal{L}(X)$ is strongly continuous for $t \in \mathbb{R}$ and $\sup_{t \in \mathbb{R}} \|B(t)\|_{\mathcal{L}(X)} \leq \ell$, for some suitably small $\ell > 0$.

< ロ > < 同 > < 回 > < 回 >

Recall that, as in (4), the evolution process $\{T(t,\tau): t \ge \tau\} \subset \mathcal{L}(X)$ associated to (24) is given by

$$T(t,\tau) = L(t,\tau) + \int_{\tau}^{t} L(t,s)B(s)T(s,\tau)\,ds, \quad t \ge \tau.$$
 (25)

We wish to prove that (24) has exponential dichotomy for suitably small ℓ .

This result can be obtained by firstly applying Theorems 1 and 2 in a linear setting, which are suitable in order to establish the existence of the linear invariant manifold and its stable manifold (see Corollary 2) and then apply it to (24) with $\gamma > 0$ and $\rho = -\gamma$.

Corolário

If $\{L(t,\tau) : t \ge \tau\}$ has exponential splitting with constant M, exponents $\gamma > \rho$ and projections $\{Q(t) : t \in \mathbb{R}\}$ and (5) is satisfied, then

- ► There are maps $\Sigma^*, \Theta^* : \mathbb{R} \times X \to X$, $\Sigma^*(t, \cdot), \Theta^*(t, \cdot) \in \mathcal{L}(X)$ and $\|\Sigma^*(t, u)\| \leq \kappa \|u\|_X$, $\|\Theta^*(t, u)\|_X \leq \kappa \|u\|_X$ for all $(t, u) \in \mathbb{R} \times X$ and for some $\kappa = \kappa_\ell > 0$;
- The graph G(Σ*) of Σ* is an invariant family and (9) holds, the graph G(Θ*) of Θ* is a positively invariant family;

► The evolution process { $T(t, \tau) : t \ge \tau$ } given by (25) satisfies $||T(t, \tau)P_{\Sigma^*}(\tau)|| \le M(1+\kappa)e^{-(\rho+M\ell(1+\kappa))(t-\tau)}, t \le \tau,$ (26) $||T(t, \tau)P_{\Theta^*}(\tau)|| \le M(1+\kappa)e^{-(\gamma-M\ell(1+\kappa))(t-\tau)}, t \ge \tau,$ where $P_{\Sigma^*}(t)u := Q(t)u + \Sigma^*(t, Q(t)u)$ and $P_{\Theta^*}(t)u := \Theta^*(t, (I-Q(t))u) + (I-Q(t))u, t \in \mathbb{R}.$

・ロト ・日ト ・ヨト ・ヨト

Proof: The proof is a direct consequence of Theorems 1 and 2 in the case that $f(t, \cdot)$ is linear and uniformly (with respect to t) bounded. Note that, the linearity of $\Sigma(t, \cdot)$ follows since $f(t, \cdot)$ is linear, and thereby $G(\Sigma)$ given is also linear. Consequently, the fixed point, $G(\Sigma^*)(t, u) = \Sigma^*(t, u)$, is linear. Similarly, \tilde{G} in equation (16) is also linear and so is Θ^* .

Next, we show the robustness of the exponential dichotomy.

Corolário

Suppose that $\{L(t, \tau) : t \ge \tau\}$ has exponential dichotomy with constant $M \ge 1$, exponent $\gamma > 0$ and family of projections $\{Q(t) : t \in \mathbb{R}\}$. If $\sup_{t \in \mathbb{R}} ||B(t)||_{\mathcal{L}(X)} \le \ell$, where $0 < \ell < \frac{2\gamma}{3M(M+1)}$, then $\{T(t, \tau) : t \ge \tau\}$ has exponential dichotomy, that is, there are projections $\{Q_{\ell}(t) : t \in \mathbb{R}\}$ with $T(t, \tau) : Im(Q_{\ell}(\tau)) \to Im(Q_{\ell}(t))$ being an isomorphism, $t \ge \tau$, and

$$\begin{aligned} \|T(t,\tau)Q_{\ell}(\tau)\|_{\mathcal{L}(X)} &\leq M_{\ell}e^{\gamma_{\ell}(t-\tau)}, \quad t \leq \tau \\ \|T(t,\tau)(I-Q_{\ell}(\tau))\|_{\mathcal{L}(X)} &\leq M_{\ell}e^{-\gamma_{\ell}(t-\tau)}, \quad t \geq \tau, \end{aligned}$$
(27)
where $M_{\ell} := M(1+\kappa_{\ell})/(1-2\kappa_{\ell}) > 1$ and $\gamma_{\ell} := \gamma - \ell M(1+\kappa_{\ell}) > 0$ for

the Lipschitz constant κ_{ℓ} obtained in Corollary 2. Moreover,

$$\sup_{t\in\mathbb{R}} \|Q(t) - Q_{\ell}(t)\|_{\mathcal{L}(X)} \leqslant \frac{2\kappa_{\ell}}{1 - 2\kappa_{\ell}}.$$
(28)

ヘロン 人間 とくほ とくほ とう

Proof: If
$$P_{\Theta^*}(t)u := (I - Q(t))u + \Theta^*(t, (I - Q(t))u)$$
 and
 $P_{\Sigma^*}(t)u := Q(t)u + \Sigma^*(t, Q(t)u)$, for $(t, u) \in \mathbb{R} \times X$, where Σ^* and
 Θ^* are the bounded linear maps obtained in Corollary 2, with norm
less than $\kappa_{\ell} > 0$. We will prove that $X = Im(P_{\Sigma^*}(t)) \oplus Im(P_{\Theta^*}(t))$,
for every $t \in \mathbb{R}$. That is, we show that, for each $(t, u) \in \mathbb{R} \times X$,

$$\mathcal{I}_{u}(t): X \to X$$

$$v \mapsto \mathcal{I}_{u}(t)v := u - \Sigma^{*}(t, v) - \Theta^{*}(t, v), \qquad (29)$$

has a unique fixed point. If that is the case, for each $(t, u) \in \mathbb{R} \times X$, there exists a unique $v_u \in X$ such that $\mathcal{I}_u(t)v_u = v_u$, that is,

$$u - \Sigma^{*}(t, v_{u}) - \Theta^{*}(t, v_{u}) = v_{u} = Q(t)v_{u} + (I - Q(t))v_{u}, \text{ or } (30)$$

$$u = Q(t)v_{u} + \Sigma^{*}(t, v_{u}) + (I - Q(t))v_{u} + \Theta^{*}(t, v_{u})$$

$$= P_{\Sigma^{*}}(t)v_{u} + P_{\Theta^{*}}(t)v_{u}, \qquad (31)$$

Which is the unique representation of u as a sum of elements of $Im(P_{\Sigma^*}(t))$ and $Im(P_{\Theta^*}(t))$ and proves the desired decomposition.

イロト イヨト イヨト イヨト

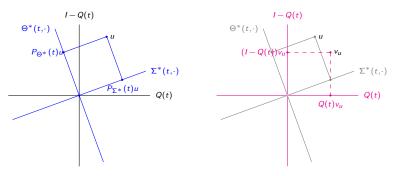


Figure: Given a point $u \in X$, we find a unique point $v_u \in X$ such that $P_{\Sigma^*}(t)u = Q(t)v_u + \Sigma^*(t, Q(t)v_u)$ and $P_{\Theta^*}(t)u = (I - Q(t))v_u + \Theta^*(t, (I - Q(t))v_u)$.

In order to show that $\mathcal{I}_{u}(t)$ has a unique fixed point, note that $\mathcal{I}_{u}(t)$ is a contraction on X, since $\|\mathcal{I}_{u}(t)v - \mathcal{I}_{u}(t)\tilde{v}\| = \|\Sigma^{*}(t,\tilde{v}) - \Sigma^{*}(t,v) + \Theta^{*}(t,\tilde{v}) - \Theta^{*}(t,v)\|, \quad (32)$ $\leq 2\kappa \|v - \tilde{v}\|,$

for any $v, \tilde{v} \in X$, as the graphs Σ^*, Θ^* are Lipschitz with constant $\kappa = \kappa_{\ell} > 0$. Thus, $\mathcal{I}_u(t)$ is a contraction for each $(t, u) \in \mathbb{R} \times X$, and for all $\kappa \in [\kappa_-, \min\{1/2, \min\{\kappa_+, \kappa_*\}\})$, since the hypothesis on ℓ in Corollary 3 implies that $\kappa_- < 1/2$ and thus any κ as above implies that we have a contraction.

Note that, for each $u \in X$, since v_u is the unique element of X satisfying $v_u = u - \Sigma^*(t, v_u) - \Theta^*(t, v_u)$, the map $u \mapsto v_u$ is a linear bounded operator such that

$$\|v_u\|_X \leqslant \frac{\|u\|_X}{1-2\kappa}.$$
(33)

イロト イヨト イヨト イヨト

イロン イロン イヨン イヨン 三日

For each $t \in \mathbb{R}$, define $Q_{\ell}(t) \in \mathcal{L}(X)$ the linear projection onto $R(P_{\Sigma^*}(t))$ along $R(P_{\Theta^*}(t))$, which can be written as $Q_{\ell}(t)u := P_{\Sigma^*}(t)v_u$ due to the first part of the proof. Its complementary projection is given by $(I - Q_{\ell}(t))u = P_{\Theta^*}(t)v_{\mu}$, for each $(t, u) \in \mathbb{R} \times X$. From Corollary 2, we have that $\{R(Q_{\ell}(t)) : t \in \mathbb{R}\}$ is invariant and $\{R(I - Q_{\ell}(t)) : t \in \mathbb{R}\}$ is positively invariant. Thus $T(t,\tau)Q_{\ell}(\tau) = Q_{\ell}(t)T(t,\tau)$, for every $t \ge \tau$. Equations (26) and (33) imply the desired bounds (27). This proves that $\{T(t,\tau):t \ge \tau\}$ has exponential dichotomy with constant $M_{\ell} := M(1+\kappa)/(1-2\kappa)$ and exponent $\gamma_{\ell} := \gamma - M\ell(1+\kappa) > 0$.

Lastly, we prove the bound in equation (28), that is, the continuous dependence of the projections $\{Q(t) : t \in \mathbb{R}\}$ and $\{Q_{\ell}(t) : t \in \mathbb{R}\}$, correponding to the exponential dichotomies of the respective evolution processes $\{L(t,\tau) : t \ge \tau\}$ and $\{T(t,\tau) : t \ge \tau\}$. Consider $u \in X$, which can be uniquely decomposed as $u = v_u + \Sigma^*(t, v_u) + \Theta^*(t, v_u)$. Hence, $Q(t)u = Q(t)v_u + \Theta^*(t, v_u)$, since $Q(t)\Sigma^*(t, v_u) = 0$, and $Q_{\ell}(t)u = Q(t)v_u + \Sigma^*(t, v_u)$, by definition of $Q_{\ell}(t)$ and because $Q_{\ell}(t)\Theta^*(t, v_u) = 0$. Therefore,

$$Q(t)u - Q_{\ell}(t)u = \Theta^{*}(t, v_{u}) - \Sigma^{*}(t, v_{u}).$$
(34)

イロト イヨト イヨト イヨト

Since the maps Σ^*, Θ^* are Lipschitz with constant $\kappa_{\ell} > 0$, and due to equation (33), we obtain the desired bound (28). \square