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Defini¢do (Exponential Splitting)
A linear evolution process {L(t,7) : t > 7} C L(X) has
exponential splitting, with constant M > 1, exponents v, p € R,
with vy > p, and a family of projections {Q(t) : t € R} C L(X), if
i) Q(t)L(t,7) = L(t,7)Q(T), for all t > T,
i) L(t,7): Im(Q(T)) — Im(Q(t)) is an isomorphism, with
inverse denoted by L(r,t),

iii) the following estimates hold

T,

(1)

IL(t, T)Q(T) | e(x) < Me=P=T) ¢
IL(t, 7)1 = Q(T)llex) < Me 77, ¢
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Inertial Manifolds

Consider the following semilinear differential initial value problem

u=A(t)u+ f(t,u), t >,
u(t) = up € X,

()

with f : R x X — X continuous, f(t,0) =0, for all t € R and
uniformly Lipschitz in the second variable with Lipschitz constant
>0, ie., ||f(t,u) —f(t,d)| <£||u— dl for any

(t,u),(t,d) e R x X.
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Assume that the family of linear operators {A(t) : t € R} (not
bounded) defines a linear evolution process {L(t,7):t>7}C L(X),
i.e., for each (7, up) € R x X, the 'solution’ of the linear problem,

u=A(t)u, t=>r,
u(t) =up € X,

3)

is given by u(t, T, up) = L(t,T)ug, for t > 7, L(t,t) = ldx,
L(t,s)L(s,7) = L(t,7), t =s>7and [r,00) Dt — L(t,T)up € X
is continuous, for all (7,ug) € R x X.

With this, solutions of (2) define a nonlinear evolution process
{T(t,7):t>71} CC(X) given by the variation of constants
formula, that is,

T(t,T)U:L(t,T)U—I-/tL(t,S)f(S, T(s,T)u)ds, t=T,ucX. (4)

T
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Teorema

Suppose that the linear evolution process {L(t,T):t>7} has
exponential splitting, with constant M > 1, exponents v>p and a
family of projections {Q(t):teR}. If f:Rx X — X is continuous,
f(t,0)=0, f(t,-): X — X is Lipschitz continuous with Lipschitz
constant £ > 0, for all t € R, and

1o A L > max{M? + 2M + VBM3,3M?2 + 2M}, (5)
then there is a continuous function
Y RxX—=X
(t,u) — X*(t,u)
such that X*(t,u) = £*(t, Q(t)u) = (I — Q(t))X*(t, u) and
Y*(t,0) =0, for all t € R.

(6)

In addition ¥*(t,-) : X — X Lipschitz continuous with Lipschitz
constant k = k(v,p, ¢, M) > 0, for all t € R, that is,
|Z*(t,u) — T*(t, 4)|| < , for all (t,u),(t,d) € R x X.
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Moreover, the graph of ¥*(t,.), for each t € R, given by
M(t):={ve X : u=qg+X%(t,q),q € Im(Q(t))}, (7)

yields an invariant manifold {M(t) : t € R} for the evolution
process {T(t,7) : t > 7} given by (4).

In other words, it is invariant and if
Py« (t)u == Q(t)u+ X*(t, Q(t)u), (t,u) e R x X

is the nonlinear projection onto M(t).
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(i) {M(t):t€R} has controlled growth: for (tT,u)eRx X, t<,
1T (2, 7)Pe-(T)ull S M(1+r)e” PHMEEDET | pe. (7). (8)

(i) {M(t) : t € R} satisfies: for any (T,u) € R x X and t > T,
IT(t,7)u = Pee () T(t, 7)ull < M1 = Ps-())ulle "7, (9)

242 K
where 5::7_M5_%’\W' Ifé6 >0, {M(t):t € R}

is an inertial manifold.
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Prova: The proof is divided into two parts. First, we show that
there is a function ¥* yielding the graph of the invariant manifold,
as desired. Second, we show that this graph is exponentially
dominated.

For the first part, given k > 0, consider the following complete
metric space,

LBs (k) ::{ZEC(RX X,X): sup IEEGUZED] o
er el

(10)
T(£,0)=0, X(t, u) =X(t, Q(t)u) € N(Q(t),VtER}

3 2 (t,u) —x(t
with the metric ||X — X|| := supsup 1=, u) ( ,u)H.
teR u#0 HUH
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We are looking for ¥ € LBy (k) such that, if (7,17) € R x X, then
a solution v of (2) with initial data u(7)= Q(7)n+X (7, Q(T)n)e X
can be decomposed as u(t) = q(t)+ p(t), where p(t) = X(t, q(t))
for all t € R. Thus, g and p must satisfy

q(t)=L(t, T)Q(T)n+/ L(t,s)Q(s)f (s, q(s)+X(s, q(s)))ds, (11a)
for t <7 and

p(r)=L(r, t)(/—Q(t))p(t)Jr/tZ(T, s)(1I=Q(s))f (s, q(sHX(s, q(s))ds, (11b)
fort <.
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First, let us control the growth of g(t). Since {L(t,s): t > s} has
exponential splitting, f(¢,0) = 0 and f and X are Lipschitz with
respective constants ¢ and x, we obtain

lq(t)ll < Me—p(t_T)Han/ (Me ") (1+k)|q(s)l|ds, t<T.
t

(12)
Then, by Gronwall's Lemma,

la(2)]| < Ml MUEDT=0 )| ¢ < 7. (13)

Heuristically, since we wish that p(t) = X(t, q(t)) for
Y € LBs(k), the growth in equation (??) implies that the limit
e =9 |p(t)|| = 0, as t — —o0.
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Thus, due to the exponential splitting of {L(t,7) : t > 7}, the first
term in (?7) goes to zero as t — —oo, yielding

p(T)Z/_T L(7,s)(1 = Q(s))f (s, q(s) + (s, q(s))ds.  (14)

Hence, to prove that X € LBy (k) that satisfies p(7)=%(7, Q(7)n),
it is equivalent to find a fixed point of the following map,

T

G(X)(7n) ¢=/ L(t,s)(I=Q(s))f (s, a(s)+X(s, q(s)))ds. (15)

—00

Next, we show that G : LBy (k) — LBy (k) is a well defined
contraction in the complete metric space LBy (k).

Let n,iie X, I,¥ € LBy (k) with corresponding solutions
a(t). d(t) of (77).
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Thus, for t < 7

la() = a(0)] < M0 —j|

o "I f(s.9(s) + E(s. a(5))) ~ F(s.(5) + £(s. 4(5)))]ds
< Me!7=9) 5|

+ M / " ((lgls) — a(s)] + 15(s. a(s)) — E(s. a()]) ds

< Metm= 9|l —ij|

+m/ e (||Z(s, 4(s)) (s, a(s)) | +(1+r)lla(s) - G(s)) s

< M”70 |l — |

o [ (0 m)lats) A + 1~ £l os
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Then, due to (?7),

T

”q(t) - El(t)” gMep(T_f)Hn—ﬁ”—ka(l—l—ﬁ)/ eP(S—t)Hq(S)_d(s)”ds
t
+ M|l — £ / (P ME(1L+.))(7=$) gpl5—t) 4o
t

<Me'°(7_t)Hn—ﬁIHW(Hﬂ)/ 59| g(s)— & (s) | ds

t

M|
(1+ k)

+ Iz — im e(p-l-ME(l—i—n))(r—t)’

(16)

and, by Gronwall's Lemma, for t < 7,

late)-ate)) < M |l =l + 2L i £ eeramtsne—o,
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Finally, we now discuss bounds of the function G. Indeed,
equations (??) and (?7?) imply

IG(E)(7,m) — G(E)(r, )
I\/I/ “T=9)|1£(s, g(s)+ (s, q(s)))—F (s, G(s)+2(s, d(s)))|| x ds

<om [ e (14 m)lats)  a(s)] + I - Ella(e)) os

£M2(1—|—/€) |:||77 ,,7||+ ||77|| |||Z Z|||:|/ —('y—p—2M€(1+l-€))(T—s)dS

—00

+eyls ~ 5 [ emr g

Due to (5) and upcoming choice of , we obtain that
v —p—2M(1+ k) > 0 and the above integrals are convergent.
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Thus, o2
I6(E)r 1) - GENr DI < —— el ~ 5]

+ = ﬁﬂféwﬁ o |l + Il s 5
< ML il + e I~ £l

where the denominators are positive, due to (5). Consequently,

IG(E)(r.n) — GE)m i < wlln =l +vIE = Zllllnl, (18)

in case that €M2(1 )
+ K
~ ) 19
v—p—2M(1+ k) " (19)
20M?
< 1. (19b)

v—p—2M(1+ k)
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Now, (??) can be rewritten as 2Mk2+(M>+M—(y—p)/0)k+M?<0,
which can be seen as a quadratic polynomial (in x), admitting two
real roots (due to (5)) given by

L M2 2M &\ (2~ M2 — 2M)2 — B3
y

R4 = (20)

Moreover, the condition (y — p)/¢ > M? + 2M + v/8M3 in (5)
implies that (y — p)/¢ > M? 4+ 2M and thus k. > x_ > 0. Thus,
(?7) is satisfied for any k € [k_, k4]

Equation (??) holds true for x_, due to (y — p)/¢ > 3M? +2M in
(5). Moreover, we can isolate x in (??), and thus this inequality is
satisfied for any k < ks := (v — p)/(2ML) — M — 1.

Due to (5), (y — p)/¢ > 3M? +2M and k_ < k.. Therefore, both
conditions (?7?) are satisfied for any k€ [k_, min{k4, ks }).
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Consequently, inequality (??) with ¥ = ¥ implies that the image
of the map G lies in LBy (D) and, inequality (??) with n =7,
shows that G is a contraction.

Therefore, the map G has a unique fixed point, G(X*) = X*. This
establishes the existence of the invariant manifold and its
invariance.

Furthermore, ¥* being Lipschitz with constant x > 0 and
¥(t,0) = 0, together with (??), implies the growth estimate (8)

within the invariant manifold.

This completes the first part of the proof.
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We now embark in the second part of the proof.
For (t,u) eRx X, define Py« (t)u:=Q(t)u+X*(t, u).

We show that M(t) = {Im(Ps=(t)) : t € R} is has the property
that any solution satisfies (9) (exponential attraction if 6 > 0), and
thus we wish to bound &(t) := T(t,7)u — Ps-(t) T(t,7)u for any
neXandt>r.

Note that £(t) = p(t) — X*(t, g(t)) due to the definitions in (?7?).

Define g*(s, t), for s < t, as

q(s, t):=L(s, t)q(t)+/ L(s,r)Q(r)f(r,q*(r, t)+X*(r,g*(r,t)))dr. (21)

t
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Since f,X* are Lipschitz with constants ¢,k > 0, for s<t,
llg*(s, t) —q(s)l

g/\/l/ U= f(r,q*(r, t)+X(r, q"(r, 1))~ (r, q(r)+p(r))| dr
t 22
< Mé/ e (I (r, g7 (r, 1)) = p(r)Il + llq"(r, t) — q(r)[)dr, 22

<Mt / e = (|127(r, (r)) — p(r) |+ (1+ )| (r, ) — a(r)]]) dr.
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Hence, by Gronwall's Lemma and definition of &,

t
lg*(s.t) — q(s)[[<Me | elPtMOATNT=2)) e (r)||dr, s < t. (23)
S
Also, for s < 7 < t, we obtain
la*(s,t) —a" (s, 7)Il < [IL(s, 7)Q(T)[q" (7, t) — a(7)]ll
+||/ s, N)Q(N[F(r, g*(r, t)+X*(r, q*(r, t)))—f(r, g (r,7)+X*(r, g*(r,7))]|ldr

< M2€ep7’ S)/ e(P+M£(1+K))(r_T)Hg(r)”dr

T

- ML+ ) / A |q*(r, 1) — g (r, 7) |,

)

and by Gronwall's Lemma
t
I4°(5,8) = 4" (7)< M2 [ el Mgy far. (20
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Now, we use these inequalities to estimate ||{(t)||. Note that

£(8) = L(t, 7)1 = Q())E() = p(t) = L(t, 7)p(7) = 2(¢, q(£)) + L(¢, 7)Z (7, 4(7))

t

( s)(I=QE))f (s, (5)+p(5))d5—/_L(t7S)(/—Q(S))f(&q*(sat))+z*(5,q*(57f)))d5

o0

+ [ LS = QUe)F(s a7 (s,7) + T (5.9 (s, 7)) ds

/ 490 QN5 606) (50 5,405 + (5., 01

SHIf (s, a’(s, t+E(s, 4"(s, 1)) (5, 4'(s, THE (s, 47(5, 7)))] ds.

Thus, using (??) and (??), we obtain
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€)= L&) = QE)]
<M [ e (lpls) 2 (5.7 (5, )] + a(s) 0" (5.0l s

t

+ Me(1+ n)/ e’V(t’s)Hq*(s, ) — g (s, t)||ds

— 00

t
<M [ eI g(s) s

t
+ M22(1 + n)/

T

== g(1)] / " o (== MU0 (—5) gy

t
+M3€2(1+n)/ (g (o= MULER ) ¢ 1) ”/ 1 (75) P+ MEL+R))(75) o iy

M202(1
< e (eI e(s)os+ - Mﬂ = [ etnlar

M32(1 + k) —(t—r)
/Ilf e
v—p— ML+ k)
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and we have that

Je(o)-Le. 7)1~ sr)] < [me+ ECEDLERD et yeoar

Thus,

M?¢? M t
Je(o)] < Mg+ e LR [ emtenpear

and

e le)l < Me syl + e+ MEOEDEERD ] [ ereqoyar

By Gronwall's Lemma, we obtain the bound in equation (9).
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Teorema

Suppose that the linear evolution process {L(t,T):t > 7} has
exponential splitting, with constant M > 1, exponents v > p and a
family of projections {Q(t) : t € R}.

If (v — p) /¢ satisfies (5), then there is a continuous function

O Rx X=X

(t,u) — ©*(t, u), (25)

such that ©*(t, u) = ©*(t, (I — Q(t))u) = Q(t)©*(t, u), and
©*(t,0) = 0 for all t € R, which is uniformly Lipschitz with
constant k = k(vy,p, ¢, M) >0, ie.,

|©*(t, u) — ©*(t, 0)|| < k|lu— dl for all (t,u),(t,id) € Rx X.
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Moreover, if Po-(t)u := ©*(¢t, (I — Q(t))u) + (I — Q(t))u, for all
(t,u) € R x X, the family given by

{Im(Po~(t)) : t e R} ;= {{Pg(t,u) :ue X}:teR}, (26)
is positively invariant such that
1T (£, 7)Pos(T)ul| < M(1+r)e” O~ MO Po. (r)ul|, (27)

t>71, ue X, and

|lu— Po-()ull < M D||(1 — Per (1)) T(t,7)ul,  (28)
t>T,u€X, wheregzp—l—l\/lf—l-%w

Furthermore, if v — M{(1 4+ k) > 0, {Im(Po~(t)) : t € R} is the
stable manifold of the inertial manifold {Im(Pg+(t)) : t € R}.
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Proof: Given x > 0 consider the complete metric space
£Bo(r) ={© €C(RXX,X): (¢, u) —O(t, 8)|| < k[u—], ©(t, 0)=0,

(29)
o(t, u)=0(t, (I - Q(t))u) € Im(Q(t)), V(t, u), (¢, ﬁ)e]RxX}.

< o(t,u) — O(t
with the metric ||© — ©| = supsup 1©(t, v) ( ,u)||_
teR u£0 [|ull
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Next we outline the heuristic procedure that will establish the way
of proving that the invariant manifold is given as a graph of a map
in LBo(r). We are looking for © € LBg(k) with the property
that, if (7,77) € R x X, then a solution u of (2), with initial data
u(t) =0O(7,(I — Q(7))n) + (I — Q(7))n € X, can be decomposed
as u(t) = q(t) + p(t), where q(t) = ©(t, p(t)) for all t > 7. Thus,
g and p must satisfy, for t > T,

t

q(t)=L(t, T)Q(T)%L/L(t, s)Q(s)f (s, p(s)+O(s, p(s)))ds, (30a)

T
t

p(t)=L(t, T)(/—Q(T))ﬂJr/L(t, s)(I = Q(s))f(s, p(s)+©(s, p(s)))ds. (30b)

T

It follows that
[p(t)| < [IL(t, 7)(I = Q())nl|

+ /t IL(t, s)(I = Q(s))f (s, p(s) + O(s, p(s)))l|ds

t
< Me gl 4+ | Mee (1 k)| p(s)] ds.
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Using Grownwall’s inequality,
Ip(2)|| < Me™C=MEAFE=D .
From this and from the fact that g(t) = ©(p(t)), we conclude that

IL(m, £)Q(t)q()[| = [IL(7; )O(p(t))l]

< kMRe=(r=p=ME(1+r))(t=7) I91l-
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Applying L(7, t)Q(t) to (15), using that
O(r, (I — Q(7))n) = Q(7)n and making t — oo we have

o0

0=0(r,(/ = Q(r))n) +/ L(7,5)Q(s)f (s, p(s) + O(s, p(s)))ds.

T

Inspired by this we define the operator G : LBg(k) — LBo(x) by

G(©)(r,n) = — /oo L(7,5)Q(s)f (s, p(s) + ©(s,y(s)))ds, (31)

(1,m) € R x X.
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The fact that G is a well-defined contraction is similar to Theorem
1, and we refrain from giving a proof. Hence G admits a unique
fixed point ©* € LBg(k) satisfying the desired properties.

We now embark in the proof of (13). For any (7,7) € X and
t>T.

t

p(t) = L(t,7)(/ - Q(T))77+/ L(t,s)(1 = Q(s))f (s, a(s) + p(s))ds

T

and thus we wish to bound the variable
n(t) := T(t,7)u — Po«(t) T(t,7)u for any u € X and t > 7. Note
that 7(t) = q(t) — ©*(t, p(t)) due to the definitions in (15).
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Define p*(s, t), for s > t, as
p*(s,t):=L(s, t)p(t)

U0 = QU6 (1) 45" (1, ). (32)

Since f,©* are Lipschitz with respective constants ¢,k > 0, we
obtain

[[p" (s, ) = p(s)|

g/\/]/tse”(sr)||f(r’e*(r’p*(r’ t))+p*(r, t))—f(r,q(r)+p(r))ldr (33)

< W/tse‘”(s")(IIQ(r) = O (r, p(MI+ A +r)llp*(r, 8) = p(r)]])dr,

and, by Gronwall's Lemma,
S
[p*(s,t) — p(s)|| < W/ e~ mMETRNE= In(r)||dr.  (34)
t
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Also, for s > t > 7, we obtain
[p*(s,7) = p*(s, )| < [[L(s, t)(/ — Q(t))[p"(t,7) — p()]I|
+|%L(S, r)(I=Q(r))[fr,©*(r, p*v(r,7))+p"(r,7))—f(r,©(r, p(r, t))+p(r, t))]l dr

t
< M2pe—s—) / e~ (=MELHR)(E=N) | 1Y [
F M1+ R) [[€ () = (1, D),
t

and again by Gronwall's Lemma,

t
16%(s,7) — p*(s, £)]| < M2 / &= (MR ()| dr. (35)

T
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Now, we use these inequalities to estimate ||7(7)||. Note that

()= L(7, ) Q(t)n(t) = q(7) - L(7, t)q(t) —©7(7, p(7)) + L(7, )07 (¢, p(t))

T

= | Lm9)Qs)[f (s q(s) + p(s)) — £(s,07(s, p(s, 7)) + p*(s,7))]ds

t

+/tDZ(T s)Q(s)[f (s, ©(s, p(s, 7))+ P (s, 7))~F (5, ©%(s, p'(s, 1))+ P'(s, t))] ds.
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Thus, using (19) and (20), we obtain
[n(r) = L(r, ) Q(t)n (1)l

t

<ML | e (|lg(s) — 7 (s, p*(s, 7))l + Ip(s) — p*(s,7)]]) ds

T

+ ML+ n)/ e 9| p*(s, £) — p*(s, 7)||ds
t

t
<M / & 779 n(s)] ds
t

+ M2£2(1+/g)/e*(V*p*W(”"”"))(S*TV;*(W*W(”“))(T*’)Hn(r)||drds

T T

o] t
+ M3€2 (1 + Ii)/ ef(vfprZ(H»n))(sf‘r)/ ef('nyé(lJr/i))(-rfr)”,r](r)Hdrds.
t T
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Hence

In(r) — L(r. (D] < W/ e =9|(s)]|ds

M22(1 + k)(1 + M)

—(y—p—MU1+))(7=r) g=p(r—r)
] e (r)l| dr

and we have that

Io(r)=Ltr. Q0] < | XEEEREI) [emst o).

Thus,

(e Mo+ me EEECLICET ooty

By Gronwall's Lemma, we obtain the bound in (13).
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We now obtain the saddle point property as an immediate
consequence of Theorems 1 and 2. We define the unstable and
stable sets of a hyperbolic global solution wu, of (2) as

thereis asolution u: (—oo, 7] — X
WH(u,):=<(7,u0) €RxX: such that u(r) = up and (36a)
lim;—, oo [[u(t) — u(t)]x =0
there is a solution u: [7,00) = X
W¥(u,) :={(7,up) ERx X : such that u(7) = up and (36b)
limes oo [lu(t) = ua(t)lx =0
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Coroldrio

Suppose that the linear evolution process {L(t,T):t > T} has
exponential dichotomy, with constant M > 1, exponent v > 0 and
a family of projections {Q(t) : t € R}.

Suppose that £ > 0 is sufficiently small, then there are continuous
functions X" € Ly (k) and ©° € Lo(k) such that the unstable and
stable manifolds of u, = 0 are given by

WH0)={(r,u) eRx X:u=Q(7)u+X"(r, Q(7)u)}, (37a)
W0)={(r,u) eRx X :u=0°(7,(I—Q(7))u)+(I—Q(7))u}. (37b)

Moreover, solutions within the unstable (resp. stable) manifold
exponentially decay to zero backwards (resp. forwards) in time,
according to (8) and (12).
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Proof: For ¢ > 0 sufficiently small, the condition (5) is satisfied
and § > 0, and thus we obtain the graph of ¥* from Theorem 1.
We now prove that the unstable set W¥(0) defined in (21a)
coincides with the graph of X% := ¥*. On one hand, the graph of
¥ is contained in the unstable set by (8). On the other hand, any
solution z : (—o0, t] — X which backwards converges to zero
satisfies, from (9),

12(£) = Pe=(2)z(0) || = I(1 — Q(¢£))z(t) — £(¢, Q(¢)z(1))||
<M|(I = Ps=()z(7)[[e 7, t=
Since 0 > 0, we obtain that (/ — Q(t))z(t) = X¥(t, Q(t)z(t)) for
all t € R as 7 — —o0, and thus any element in the unstable set

lies in the graph of X“. The case of stable manifold is analogous
applying Theorem 2.
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Roughness of Exponential Dichotomy

We now prove that the roughness of exponential dichotomy, i.e.,
that exponential dichotomies are preserved under perturbations.
Assume that the linear evolution process {L(t,7) : t > 7}
associated to the problem

u=At)u, t=7, u(T)= uo. (38)
has exponential dichotomy with constant M and exponent v > 0

and consider the linear evolution process { T(t,7):t > 7},
associated to a perturbation of it, given by the linear equation,

u=At)u+ B(t)u, t =7, u(T)= wo. (39)
where the map t — B(t) € L(X) is strongly continuous for t € R
and sup,cg| B(t)ll£(x) < ¢, for some suitably small £ > 0.
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Recall that, as in (4), the evolution process
{T(t,7):t>71}C L(X) associated to (24) is given by

t
T(t,7) = L(t,7) + / L(t,$)B(s)T(s,7)ds, t>r  (40)
We wish to prove that (24) has exponential dichotomy for suitably
small ¢.

This result can be obtained by firstly applying Theorems 1 and 2 in
a linear setting, which are suitable in order to establish the
existence of the linear invariant manifold and its stable manifold
(see Corollary 2) and then apply it to (24) with v > 0 and p = —~.
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Coroldrio
If {L(t,7) : t > 7} has exponential splitting with constant M,
exponents vy > p and projections {Q(t) : t € R} and (5) is
satisfied, then
» There are maps X*,0* : Rx X — X, X*(t,-),0*(t,-) € L(X)
and [ (t, )| < slullx, [©%(t,u)llx < wlullx for al
(t,u) € R x X and for some k = Ky > 0;
» The graph G(X*) of ¥* is an invariant family and (9) holds,
the graph G(©*) of ©* is a positively invariant family;

» The evolution process {T(t,7) : t > T} given by (25) satisfies
I T(t,7)Pg-(7)]| < M(14k)e~ (PHMEATRNET) |y 7
I T(t,7)Por(7)|| < M(1+r)e” - MATRNET) "¢ > 7
where Py« (t)u:= Q(t)u+X*(t, Q(t)u) and
Po«(t)u:=0*(t, (I — Q(t))u) + (I — Q(¢t))u, t € R.
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Proof: The proof is a direct consequence of Theorems 1 and 2 in
the case that f(t,-) is linear and uniformly (with respect to t)
bounded. Note that, the linearity of X(t,-) follows since f(t,-) is
linear, and thereby G(X) given by equation (??) is also linear.
Consequently, the fixed point, G(X*)(t, u) = X*(t, u), is linear.
Similarly, G in equation (16) is also linear and so is ©* 0

Next, we show the robustness of the exponential dichotomy.
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Corolario
Suppose that {L(t,7) :t > T} has exponential dichotomy with
constant M > 1, exponent v > 0 and family of projections
{Q(t) : t € R} Ifsupyeg |B(t)ll£(x) < £, where 0<{< W
then {T(t,7) : t > 7} has exponential dichotomy, that is, there are
projections {Qu(t) : t € R} with T(t,7) : Im(Qe(7)) — Im(Qe(t))
being an isomorphism, t > T, and
IT(t, 7)Qe(T)ll cxy < Mee™ 7)) e <7

1Tt )= Qu(T))l ey < Mee™ ™)t > 7,
where My:=M(1+4£y)/(1—2k¢)>1 and ~p:=vy—CM(1+k¢) >0 for
the Lipschitz constant ry obtained in Corollary 2.
Moreover,

(42)

2Ky
1— 2k,

sup [[Q(t) — Qe(t)ll£(x) < (43)
teR
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Proof: If Po«(t)u:=(/—Q(t))u+0O*(t,(/—Q(t))u) and
Ps(t)u:= Q(t)u+X*(t, Q(t)u), for (t,u) eRx X, where * and
©* are the bounded linear maps obtained in Corollary 2, with norm
less than x,>0. We will prove that X =Im(Pg«(t))®Im(Pe-(t)),
for every t € R. That is, we show that, for each (t,u)eRx X,

Tu(t) : X = X
vie Zy(t)v = u—X(t,v) — ©%(t,v),
has a unique fixed point. If that is the case, for each (t,u)eRx X,
there exists a unique v, € X such that Z,(t)v,=v,, that is,
u—X*(t,vy) —O%(t,vy) = vy = Q(t)vy + (I — Q(t))vu, or (45)
u= Q(t)vy +X*(t,vy) + (I — Q(t))vu + ©*(t, vi)
= Py« (t)vy + Pox(t)vy,

Which is the unique representation of u as a sum of elements of

Im(Px+(t)) and Im(Pg+(t)) and proves the desired decomposition.
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(¢,

Py (t)u

Q1)

Figure: Given a point u € X, we find a unique point v, € X such that
Ps-(t)u = Q(t)vy, + X*(t, Q(t)vy) and
Po-(t)u = (I = Q(t))vu + ©7(¢, (I — Q(t))vu).
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In order to show that Z,(t) has a unique fixed point, note that

Z,(t) is a contraction on X, since

1Zu(t)v=Z(t) 7] = [[X(¢, V) = X(t, v)+O7(t, V) - O(¢, v)|,
< 2k[lv — 7],

for any v, v € X, as the graphs *, ©* are Lipschitz with constant

k = kg > 0. Thus, Z,(t) is a contraction for each (t,u) € R x X,

and for all k € [k—, min{1/2, min{k4, k«}}), where x_ is given by

(?7), since the hypothesis on ¢ in Corollary 3 implies that

k— < 1/2 and thus any k as above implies that we have a

contraction. Without loss of generality, we may choose ky := K_.

Note that, for each u € X, since v, is the unique element of X

satisfying v, = u — X*(¢t, v,) — ©*(t, v,), the map u— v, is a

linear bounded operator such that

(47)

[[ullx

<L L1
HVUHX ~N 1_2,1

(48)
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For each t € R, define Qy(t) € L(X) the linear projection onto
R(Ps+(t)) along R(Pe«(t)), which can be written as

Q¢(t)u := Pg«(t)v, due to the first part of the proof. Its
complementary projection is given by (I — Q(t))u = Po=(t)v,, for
each (t,u) € R x X.

From Corollary 2, we have that {R(Qy(t)) : t € R} is invariant and
{R(I — Q¢(t)) : t € R} is positively invariant. Thus

T(t,7)Qe(7) = Qu(t)T(t,7), for every t > 7. Equations (26) and
(33) imply the desired bounds (27). This proves that

{T(t,7): t > 7} has exponential dichotomy with constant

My := M(1 + k)/(1 — 2k) and exponent ~y, := v — M{(1 + k) > 0.
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Lastly, we prove the bound in equation (28), that is, the continuous
dependence of the projections {Q(t) : t € R} and {Q(t) : t € R},
correponding to the exponential dichotomies of the respective
evolution processes {L(t,7):t > 7} and {T(t,7):t>"7}.
Consider u € X, which can be uniquely decomposed as

u=vy+ X*t,v,) +O*(t, vy). Hence,

Q(t)u = Q(t)vy + ©*(t, vy), since Q(t)X*(t,v,) =0, and

Qu(t)u = Q(t)vy + X*(t, vy), by definition of Q,(t) and because
Qe(t)©*(t, vy) = 0. Therefore,

Q(t)u — Q(t)u = O*(t,vy) — T*(t, vy). (49)

Since the maps ¥*, ©* are Lipschitz with constant x, > 0, and due
to equation (33), we obtain the desired bound (28).

Alexandre N. Carvalho - USP/Sao Carlos Segundo Semestre de 2022



	Invariant Manifolds and Exponential Splitting and Dichotomy
	Invariant Manifolds
	Stable Manifold of an Invariant Manifold
	The saddle point property
	Roughness of Exponential Dichotomy


