Identifying Multidocument Relations

Erick G. Maziero Maria Lucía R. Castro Jorge **Thiago A. S. Pardo**

Núcleo Interinstitucional de Lingüística Computacional (NILC)
Instituto de Ciências Matemáticas e de Computação
Universidade de São Paulo

FAPESP & CNPq

Multidocument scenario

- Huge amount of information
 - □ IDC: 800 exabytes of new information only in 2009
- Several information sources with a variety of multidocument phenomena
 - Redundant, complementary and contradictory information
 - Events that evolve in time
 - Different perspectives and positions
 - Diverse writing styles

Multidocument processing

Google and GoogleNews are not enough

- Text Summarization
 - □ For example, *NewsBlaster* (McKeown et al., 2001) and *MEAD* (Radev et al., 2000)
- Question answering
 - For example, Wolfram Alpha and Ask.com

Multidocument processing

- Room for a lot of improvements in the available systems
 - Appropriately dealing with multidocument phenomena
- Possible solution
 - Better understanding and representation of the multidocument phenomena
 - How text parts relate to one another
 - Multidocument parsing

Multidocument parsing

- Questions to answer
 - Which multidocument phenomena happen in news texts?
 - Which ones are more frequent?
 - Are we able to grasp them?
 - How good we are?
 - Is it possible to automate this task?

This work

- Our experience
 - Method, tools and results for corpus annotation
 - Experiment on automatic multidocument parsing
- Language: Brazilian Portuguese

Previous work

- Trigg et al. (1983, 1986) and the TextNet system for scientific papers
- RST (Rhetorical Structure Theory) (Mann and Thompson, 1987): single document relations
- Radev and Mckeown (1995): SUMMONS and its operators
- Allan (1996): typology of links for relating documents
- Radev et al. (2000, 2001, 2002): CST (Cross-document Structure Theory) and initiatives of automatic parsing
- Afantenos et al. (2004, 2007): problems with CST and new proposal

CST (Radev, 2000)

- Model of multidocument relationship for related texts
 - Any level of analysis is possible

CST (Radev, 2000)

Originally 24 relations

dentity	Modality	Judgment
Equivalence	Attribution	Fulfillment
Translation	Summary	Description
Subsumption	Follow-up	Reader profile
Contradiction	Elaboration	Contrast
Historical background	Indirect speech	Parallel
Cross-reference	Refinement	Generalization
Citation	Agreement	Change of perspective

CST refinement (Zhang et al., 2003)

18 relations

Identity	Modality	Change of perspective
Equivalence	Attribution	Fulfillment
Translation	Summary	Description
Subsumption	Follow-up	Reader profile
Contradiction	Elaboration	Citation
Historical background	Indirect speech	Generalization

CST: example

■ Contradiction, overlap, historical background (←)

D1: A plane crash in the town of Bukavu in Congo killed 13 people on Thursday afternoon, said on Friday a spokesman from the United Nations.

D2: At least 17 people died with the crash of a plane in Congo. According to a spokesman from the UN, the plane was trying to land in the airport of Bukavu during a storm. Congo has a history of more than 30 aircraft accidents.

CST parsing

- CSTBank (Radev et al., 2004): unique corpus for English
 - Clusters of related news texts
 - For a sample of 88 segment pairs
 - 58% of total or partial annotation agreement
 - No kappa values reported
 - Some relations are difficult to understand (Afantenos et al., 2004)

CST parsing

- Zhang et al., 2003, 2004: only known attempt for English
 - 2 steps
 - Determining which segments may present relations
 - Finding the relations
 - Machine learning
 - Simple features: number of words, POS tags, semantic similarity of words (using Wordnet), etc.
 - Subset of relations: equivalence, subsumption, follow-up, elaboration and overlap
 - Best results: 0.29 average f-measure

Our experiments: corpus

- CSTNews (Aleixo and Pardo, 2008)
 - 50 clusters of related news texts from several online sources
 - Each cluster has 2-4 texts
 - Each text has ½-1 page

Our experiments: annotation tool

- CSTTool (Aleixo and Pardo, 2008)
 - Automatic sentence segmentation
 - Suggestion of segment pairs to relate
 - Also based on Zhang and Radev (2004), word overlap measure
 - □ Otherwise, too many segment pairs to consider
 - Zhang et al. (2003): CST relations are unlikely to exist between segments that are lexically very dissimilar to each other
 - XML output in CSTBank format

- The problem was harder than we thought
 - 2 computational linguistics with some study and training in CST
 - Very low agreement: 0.26 in the traditional kappa measure
 - Very naïve approach!
 - Not enough training
 - No suggestions from CSTTool

- Consistent training step with 4 computational linguists
 - □ 1-2 months

CST refinement

- Refined relation set
- Better relations definitions
- Relations typology
- Constraints

- New relation set: 14 relations
 - Some confusing relations were joined
 - Some relations that were never observed were not considered

Example of definition

Relation name: subsumption

<u>Directionality</u>: S1→S2

Restrictions: S1 presents the information of S2 and as well as additional

information

Comments: S1 presents contents X and Y, S2 presents only X

Typology of relations

It is not possible that 2 content relations happen for the same information piece

Summary

Presentation/form relations usually happen with some content relation Relations Presentation/form Content Redundancy Complement Authorship Style Contradiction Non-temporal **Partial** Temporal Total Contradiction Indirect speech Citation **Attribution** Translation Modality Follow-up Subsumption Elaboration Identity Equivalence Overlap Historical background

- Annotation step with 4 computational linguistics
 - 1-hour daily sections during 3-4 months
- Kappa periodically measured

Annotation agreement

		Percentage agreemen			
	Kappa	Full	Partial	Null	
Relations	0.51	0.54	0.27	0.18	
Directionality	0.45	0.58	0.27	0.14	
Relations categories	0.61	0.70	0.21	0.09	

Annotation agreement

		Percentage agreemen		
	Kappa	Full	Partial	Null
Relations	0.51	0.54	0.27	0.18
Directionality	0.45	0.58	0.27	0.14
Relations categories	0.61	0.70	0.21	0.09

80% of full or partial agreement vs. 58% for English

kappa 96% better than the original annotation for Portuguese

- Problem modeled as a machine learning task
 - Learning instance: segment pair codified as a set of features
 - Simple features
 - Classes: CST relations

Features

- Difference of segments size
- Number of common words in the segments
- Same segments?
- Position of segments in their texts
- Number of nouns in the segments
- Number of verbs in the segments
- Number of adjectives in the segments
- Number of adverbs in the segments
- Number of numerals in the segments

- WEKA (Witten and Frank, 2005)
 - J48, naïve-bayes, SVM
 - 10-fold cross-validation
- Data: only content relations from CSTNews
 - 1.561 instances
 - Unbalanced data: SMOTE (Chawla et al., 2002)
 - Using the presentation/form relations would generate a multi-label classification problem

- Results: 0.44 average F-Measure
 - Versus 0.29 for English

Confusion matrix

	Α	В	C	D	Ε	F	G	Н	I
Subsumption (A)	10 5	20	49	15	4	7	1	6	0
Elaboration (B)	27	11 9	11 5	56	17	5	0	3	1
Overlap (C)	52	96	20 4	81	7	14	1	11	1
Follow-up (D)	25	56	83	95	7	22	1	4	0
Historical B. (E)	9	22	12	10	91	7	0	3	0

Portuguese vs. English

	English	Portuguese
Subsumption	0.05	0.47
Overlap	0.43	0.42
Equivalence	0.34	0.48
Elaboration	0.24	0.35
Follow-up	0.39	0.33

Differences in results

 Better corpus for Portuguese, slightly different versions of CST, language differences

Multidocument parsing

- Questions to answer
 - Which multidocument phenomena happen in news texts? Which ones are more frequent?
 - Ok
 - Are we able to grasp them? How good we are?
 - Ok, not perfect, but hard to be better
 - Is it possible to automate this task?
 - Possibly yes, with a more knowledge-based approach

Multidocument parsing

- Questions to answer
 - Which multidocument phenomena happen in news texts? Which ones are more frequent?
 - Ok
 - Are we able to grasp them? How good we are?
 - Ok, not perfect, but hard to be better
 - Is it possible to automate this task?
 - Possibly yes, with a more knowledge-based approach

Future work

Identifying Multidocument Relations

www.nilc.icmc.usp.br taspardo@icmc.usp.br