Lista 2 - Geometria Analítica e Álgebra Linear

Exercício 1. Determinar as coordenadas do vetor $\vec{u} = (4, -5, 3) \in \mathbb{R}^3$, em relação às seguintes bases:

a) Canônica, isto \acute{e} , $E = \{\vec{e_1}, \vec{e_2}, \vec{e_3}\};$

b)
$$B_1 = \{(1,1,1), (1,2,0), (3,1,0)\};$$

c)
$$B_2 = \{(1,2,1), (0,3,2), (1,1,4)\}.$$

Exercício 2. Determinar as coordenadas do polinômio t^3 em relação à seguinte base de $\mathcal{P}^3(\mathbb{R})$: $B = \{1, 2-t, t^2+1, 1+t+t^3\}$.

Exercício 3. A matriz de mudança de uma base B do \mathbb{R}^2 para a base $C = \{(1,1), (0,2)\}$ desse mesmo espaço é:

$$M_B^C = \left(\begin{array}{cc} 1 & 0 \\ 2 & 3 \end{array}\right).$$

Determine a base B.

Exercício 4. A matriz de mudança da base $B = \{1 + t, 1 - t^2\}$ para uma base C ambas de um mesmo subespaço de $\mathcal{P}^2(\mathbb{R})$ é:

$$M_B^C = \left(\begin{array}{cc} 1 & 2 \\ 1 & -1 \end{array}\right).$$

Determine a base C.

Exercício 5. Considere as bases $B = \{\vec{e_1}, \vec{e_2}, \vec{e_3}\}$ e $C = \{\vec{g_1}, \vec{g_2}, \vec{g_3}\}$ de \mathbb{R}^3 assim relacionadas:

$$\vec{g_1} = \vec{e_1} - \vec{e_2} - \vec{e_3}$$

 $\vec{g_2} = 2\vec{e_2} + 3\vec{e_3}$

 $\vec{g_3} = 3\vec{e_1} + \vec{e_3}$

a) Determine as matrizes de mudança de base M_B^C de B para C, e a matriz de mudança de base M_C^B de C para B.

b) Se um vetor \vec{u} de \mathbb{R}^3 apresenta coordenadas 1, 2 e 3, em relação a B, quais as coordenadas de u relativamente a C?

Exercício 6. Considere o seguinte subespaço vetorial de $M_2(\mathbb{R})$:

$$U = \left\{ \left(\begin{array}{cc} x & y \\ z & t \end{array} \right) : x - y - z = 0 \right\}.$$

a) Mostre que os seguintes subconjuntos de $M_2(\mathbb{R})$ são bases de U:

$$B = \left\{ \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}, C = \left\{ \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}.$$

- b) Ache a matriz de mudança de base M_B^C de B para C e a matriz de mudança de base M_C^B de C para B.
- c) Encontre uma base D de U de tal maneira que a matriz de mudança de D para B seja:

$$M_D^B = \left(egin{array}{ccc} 1 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 3 & 1 \end{array}
ight).$$

Exercício 7. Determine a matriz de mudança M_E^F da base $E = \{\vec{e_1}, \vec{e_2}, \vec{e_3}\}$ para a base $F = \{\vec{f_1}, \vec{f_2}, \vec{f_3}\}$ nos casos:

a)
$$\vec{f_1} = -3\vec{e_1} + \vec{e_2} + \vec{e_3}$$

$$\vec{f_2} = \vec{e_1} - 2\vec{e_2} + \vec{e_3}$$

$$\vec{f_3} = \vec{e_1} + 2\vec{e_2}$$

b)
$$\vec{f_1} = \vec{e_1} - \vec{e_3}$$

$$\vec{f_2} = 3\vec{e_1}$$

$$\vec{f_3} = 4\vec{e_1} - 3\vec{e_2}$$

Exercício 8. Sendo $\vec{v} = -4\vec{f_1} + \vec{f_2} - \vec{f_3}$ ache \vec{v} em função de $\vec{e_1}, \vec{e_2}, \vec{e_3}$, nos casos do exercício anterior.

Exercício 9. Sejam $E = \{\vec{e_1}, \vec{e_2}, \vec{e_3}\}, F = \{\vec{f_1}, \vec{f_2}, \vec{f_3}\} \ e \ G = \{\vec{g_1}, \vec{g_2}, \vec{g_3}\} \ bases, \ com:$

$$\vec{e_1} = \frac{\sqrt{3}}{2}\vec{f_1} - \frac{1}{2}\vec{f_3}$$
 $\vec{g_1} = \vec{e_1} + \vec{e_2} + \vec{e_3}$

$$\vec{e_2} = \frac{1}{2}\vec{f_1} + \frac{\sqrt{3}}{2}\vec{f_3}$$
 $\vec{g_2} = \vec{e_1} + \vec{e_2}$

$$\vec{e_3} = \vec{f_2} \qquad \qquad \vec{g_3} = \vec{e_1}$$

Ache todas as matrizes de mudança de base.

Exercício 10. Mostre que a função

$$\langle,\rangle:\mathbb{R}^2\times\mathbb{R}^2\to\mathbb{R}$$

definida por

$$\langle (x_1, y_1), (x_2, y_2) \rangle = 2x_1x_2 + 25y_1y_2,$$

 \acute{e} um produto interno em \mathbb{R}^2 .

Exercício 11. Refaça o exercício anterior considerando

$$\langle (x_1, y_1), (x_2, y_2) \rangle = 2x_1x_2 - x_1y_2 - x_2y_1 + 2y_1y_2.$$

Exercício 12. Mostre que a função

$$\langle,\rangle:\mathbb{R}^4\times\mathbb{R}^4\to\mathbb{R}$$

definida por

$$\langle (a, b, c, d), (x, y, z, w) \rangle = 2ax + by + cz + dw$$

 \acute{e} um produto interno em \mathbb{R}^4 .

Exercício 13. Considere o espaço vetorial $M_2(\mathbb{R})$ e a função

$$\langle,\rangle:M_2(\mathbb{R})\times M_2(\mathbb{R})\to\mathbb{R}$$

dada por $\langle A, B \rangle = tr(A^T B)$, onde $tr(A^T B)$ é o traço da matriz $A^T B$ e A^T indica a transposta da matriz A. Mostre que a função \langle , \rangle assim definida é um produto interno em $M_2(\mathbb{R})$.

Exercício 14. Sejam P=(1,3,-3), Q=(-2,-1,4) e $\vec{u}=(-1,4,0)$. Calcule d(P,Q) e determine as coordenadas dos vetores $\overrightarrow{QP}, P+\vec{u}$ e $Q+2\overrightarrow{PQ}$.

Exercício 15. Considere o espaço vetorial real \mathbb{R}^3 munido do produto interno canônico. Dados vetores $u=(u_1,u_2,u_3), v=(v_1,v_2,v_3)\in\mathbb{R}^3$, mostre que a norma

$$||u - v|| = \sqrt{\langle u - v, u - v \rangle}$$

indica a distância usual em \mathbb{R}^3 entre $u \in v$.

Exercício 16. No exercício anterior, conclua que se v = (0,0,0) então

$$||u|| = \sqrt{u_1^2 + u_2^2 + u_3^2},$$

o qual representa a distância entre u e a origem (lembre que no exercício anterior utilizamos o produto interno canônico).

Exercício 17. Conforme o Exercício 15, dado um vetor v, escrevemos

$$||v|| = \sqrt{\langle v, v \rangle}.$$

O objetivo deste exercício é mostrar que a norma de v depende do produto interno considerado. Para isto, considere o espaço vetorial real \mathbb{R}^2 e tome $v=(1,0)\in\mathbb{R}^2$. Calcule a norma de v, considerando:

- a) O produto interno canônico de \mathbb{R}^2 ;
- b) O produto interno definido no Exercício 10.

Exercício 18. Considere os vetores u = (1, -3) e v = (2, 5) de \mathbb{R}^2 . Encontre.

- a) $\langle u,v \rangle$ em relação ao produto interno canônico de \mathbb{R}^2 ;
- b) $\langle u, v \rangle$ em relação ao produto interno de \mathbb{R}^2 do **Exercício 11**;
- c) ||v|| usando o produto interno canônico de \mathbb{R}^2 ;
- d) ||v|| usando o produto interno de \mathbb{R}^2 do **Exercício 11**.

Exercício 19. Sejam \vec{u}, \vec{v} e \vec{w} vetores tais que

$$\vec{u} + \vec{v} + \vec{w} = \vec{0}, \quad \|\vec{u}\| = \frac{3}{2}, \quad \|\vec{v}\| = \frac{1}{2}, \quad \|\vec{w}\| = 2.$$

Calcule $\langle \vec{u}, \vec{v} \rangle + \langle \vec{v}, \vec{w} \rangle + \langle \vec{w}, \vec{u} \rangle$.

Exercício 20. Sabemos que se um vetor v verifica ||v|| = 1, então v é chamado de vetor unitário ou versor. Utilizando o produto interno canônico do \mathbb{R}^3 , mostre que os vetores canônicos

$$\vec{i} = (1, 0, 0), \quad \vec{j} = (0, 1, 0), \quad \vec{k} = (0, 0, 1)$$

são vetores unitários.

Exercício 21. Determine o valor de $a \in \mathbb{R}$ de modo que o vetor $\vec{u} = (a, -2a, 2a)$ seja um vetor unitário.

Exercício 22. Sabemos que todo vetor não-nulo v pode ser normalizado, bastando apenas fazer

$$u = \frac{v}{\|v\|},$$

neste caso dizemos que u \acute{e} o vetor v normalizado. Considerando o espaço vetorial real \mathbb{R}^3 munido do produto interno canônico e o vetor $v=(1,2,3)\in\mathbb{R}^3$, obtenha o vetor v normalizado.

Exercício 23. Seja V um espaço vetorial real com produto interno $\langle , \rangle : V \times V \to \mathbb{R}$ e sejam $u, v \in V$. Prove que

$$\frac{1}{4}||u+v||^2 - \frac{1}{4}||u-v||^2 = \langle u, v \rangle$$

e também que

$$||u + v||^2 + ||u - v||^2 = 2||u||^2 + 2||v||^2.$$

Exercício 24. Seja V um espaço vetorial com produto interno. Então, sabemos que valem a desigualdade de Cachy-Schwarz

$$|\langle u, v \rangle| \le ||u|| \cdot ||v||; \ \forall \ u, v \in V$$

e a desigualdade triangular

$$||u + v|| \le ||u|| + ||v||; \ \forall \ u, v \in V.$$

Em cada um dos itens abaixo, mostre que a desigualdade de Cauchy-Schwarz e a desigualdade triangular são válidas para os vetores dados:

- a) u = (-4, 2, 1) e v = (8, -4, -2), usando o produto interno canônico de \mathbb{R}^3 .
- b) u = (-2, 1) ev = (1, 0), usando o produto interno $\langle (x_1, y_1), (x_2, y_2) \rangle = 3x_1x_2 + 2y_1y_2$.

Exercício 25. Seja V um espaço vetorial real munido de um produto interno $\langle \cdot, \cdot \rangle$. Observe que utilizando a desigualdade de Cauchy-Schwarz, concluímos que para quaisquer vetores não-nulos $u, v \in V$ o quociente

$$\frac{\langle u, v \rangle}{\|u\| \|v\|}$$

pertence ao intervalo [-1,1]. Deste modo, existe um único $\theta \in [0,\pi]$ tal que

$$\cos(\theta) = \frac{\langle u, v \rangle}{\|u\| \|v\|}.$$

O ângulo θ é chamado **ângulo entre os vetores não-nulos** u **e** v. Encontre $\cos(\theta)$, sendo θ o ângulo entre os vetores

- a) u = (1, -3) e v = (2, 4) de \mathbb{R}^2 , com o produto interno canônico de \mathbb{R}^2 ;
- a) u=(1,0) e v=(0,1) de \mathbb{R}^2 , com o produto interno canônico de \mathbb{R}^2 ;
- c) u = (1, 2, 3, 4) e v = (-1, 1, 4, -3) de \mathbb{R}^4 , com o produto interno do **Exercício 12**.

Exercício 26. Seja V um espaço vetorial real munido de um produto interno $\langle \cdot, \cdot \rangle$. Dizemos que $u, v \in V$ são **ortogonais** se $\langle u, v \rangle = 0$. Neste caso, escrevemos $u \perp v$. Prove que:

- a) O vetor nulo 0_V é ortogonal a todo vetor $v \in V$;
- b) Se $u \perp v$, então $v \perp u$;

- c) Se um vetor $v \in V$ verifica $v \perp u$, para todo $u \in V$, então v é o vetor nulo 0_V ;
- d) Se $v \perp w$ e $u \perp w$, então $(v + u) \perp w$;
- e) Se $v \perp u$ e λ é um escalar, então $\lambda v \perp u$.

Exercício 27. Seja B uma base de um espaço vetorial V com produto interno. Dizemos que B é uma base ortogonal se quaisquer dois vetores distintos de B são ortogonais. Considerando o produto interno de $M_2(\mathbb{R})$ definido no Exercício 13, obtenha uma base ortogonal de $M_2(\mathbb{R})$.

Exercício 28. Seja V um espaço vetorial. Prove que todo conjunto ortogonal de vetores não-nulos de V é um conjunto linearmente independente.

A recíproca é verdadeira? Caso sua resposta seja sim, prove este fato, caso sua resposta seja não, apresente um contraexemplo.

Exercício 29. Considere \mathbb{R}^2 com o produto interno usual. Aplique o processo de Gram-Schmidt ao conjunto $B = \{(2,1), (1,1)\}$ para encontrar uma base ortogonal $\{v_1, v_2\}$ de \mathbb{R}^2 .

Exercício 30. Considere \mathbb{R}^3 com o produto interno usual. Aplique o processo de Gram-Schmidt ao conjunto $A = \{(1,0,0), (1,1,1), (0,0,1)\}$ para encontrar uma base ortogonal $\{w_1, w_2, w_3\}$ de \mathbb{R}^3 .

Exercício 31. Sabemos que uma base ortogonal na qual cada vetor tem norma 1 é chamada base ortonormal. Mostre que:

- a) $B = \{(1,0), (0,1)\}$ é uma base ortonormal do \mathbb{R}^2 ;
- b) $C = \left\{ \left(\frac{2}{3}, -\frac{2}{3}, \frac{1}{3} \right), \left(\frac{2}{3}, \frac{1}{3}, -\frac{2}{3} \right), \left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3} \right) \right\} \text{ \'e uma base ortonormal do } \mathbb{R}^3;$
- c) Se $B = \{v_1, v_2, \dots, v_n\}$ é uma base ortogonal de um espaço vetorial n-dimensional V, sempre é possível obter (a partir de B) uma base ortonormal de V.

Exercício 32. Sabendo que $B = \{\vec{i}, \vec{j}, \vec{k}\}$ é base ortonormal de V^3 , descreva o conjunto solução do seguinte sistema de equações:

$$\begin{cases} \langle \vec{x}, \ \vec{i} - \vec{k} \rangle = 1, \\ \vec{x} + \vec{y} = \vec{i} + \vec{j}. \end{cases}$$

Exercício 33. Decomponha o vetor $\vec{v} = (-1, -3, 2)_B$ como soma de dois vetores \vec{p} e \vec{q} , de modo que \vec{p} seja paralelo e \vec{q} seja ortogonal ao vetor $\vec{u} = (0, 1, 3)_B$, onde $B = \{\vec{i}, \vec{j}, \vec{k}\}$ é base ortonormal de \mathbb{V}^3 .

Exercício 34. Seja $\alpha = \{v_1, v_2, \dots, v_n\}$ uma base ortonormal de um espaço vetorial n-dimensional V. Então, para todo $v \in V$, podemos escrever

$$v = \langle v, v_1 \rangle v_1 + \langle v, v_2 \rangle v_2 + \dots + \langle v, v_n \rangle v_n.$$

Note que este resultado nos permite obter facilmente as coordenadas de um vetor em relação a uma base ortonormal.

Exercício 35. Sejam V um espaço vetorial com produto interno e $B = \{v_1, v_2, v_3\}$ uma base ortonormal de V, onde

$$v_1 = (0, 1, 0), \quad v_2 = \left(-\frac{4}{5}, 0, \frac{3}{5}\right), \quad v_3 = \left(\frac{3}{5}, 0, \frac{4}{5}\right).$$

Obtenha as coordenadas do vetor v = (1, 1, 1) em relação à base ortonormal B.

Exercício 36. Considere os sequintes vetores em \mathbb{R}^2 :

$$\vec{v} = (a, b) \neq (0, 0), \quad \vec{w_1} = (-b, a), \quad \vec{w_2} = (b, -a).$$

Mostre que conjuntos $\mathcal{B}_1 = \{\vec{v}, \vec{w_1}\}\ e\ \mathcal{B}_2 = \{\vec{v}, \vec{w_2}\}\ são$ duas bases ortogonais de \mathbb{R}^2 e determine a orientação destas bases.

Exercício 37. Determine a orientação das bases ortonormais do Exercício 31.

Exercício 38. Sejam os vetores $\vec{u}=(2,1,0)$, $\vec{v}=(0,1,3)$ e $\vec{w}=(-1,2,1)$ (dados em relação à base canônica do \mathbb{R}^3). Mostre que estes vetores formam uma base do \mathbb{R}^3 , determine a orientação desta base e calcule os seguintes produtos vetoriais:

a)
$$\vec{u} \times \vec{v}$$
; b) $\vec{u} \times \vec{w}$; c) $\vec{v} \times \vec{w}$.

Exercício 39. Dada a base ortonormal positiva $\{\vec{i}, \vec{j}, \vec{k}\}$, calcule os seguintes produtos vetoriais:

a) $\vec{i} \times \vec{i}$;

 $d) \vec{i} \times \vec{j};$

 $g) \ \vec{j} \times \vec{i};$

b) $\vec{j} \times \vec{j}$;

 $e) \ \vec{j} \times \vec{k};$

 $h) \vec{k} \times \vec{j};$

c) $\vec{k} \times \vec{k}$;

 $f) \vec{k} \times \vec{i};$

i) $\vec{i} \times \vec{k}$.

Exercício 40. Calcule a área do paralelogramo ABCD cujos vértices são dados pelos seguintes pontos: A(1,1,0), B(0,1,2), C(4,1,0) e D(5,1,-2).

Exercício 41. Em relação à base ortonormal positiva $B = \{\vec{i}, \vec{j}, \vec{k}\}\ de\ \mathbb{V}^3$, são dados os vetores $\vec{u} = (1, 2, 3)\ e\ \vec{v} = (-1, 1, 2)$. Calcule $\vec{u} \times \vec{v}$ e obtenha um vetor unitário \vec{w} de tal modo que \vec{w} seja ortogonal aos vetores \vec{u} e \vec{v} .

Exercício 42. a) Sejam B = (-5, 2, 3) e C = (4, -7, -6). Escreva a equação na forma vetorial para a reta BC. Verifique se D = (3, 1, 4) pertence a essa reta.

b) Dados A = (1, 2, 3) e $\vec{u} = (3, 2, 1)$, escreva equações da reta que contém o ponto A e é paralela a \vec{u} , na forma vetorial. Obtenha dois vetores unitários dessa reta.

Exercício 43. Faça um esboço dos gráficos dos planos cujas equações gerais são dadas por:

(i)
$$x = 2$$
, (ii) $y + 1 = 0$, (iii) $z + 4 = 0$, (iv) $x - z = 0$.

Exercício 44. Obtenha uma equação vetorial da reta s que contém o ponto P=(1,1,0), é paralela ou está contida no plano dado por $\pi:2x+y-z-3=0$ e é concorrente à reta dada por $r:(x,y,z)=(1,0,0)+\lambda(-1,0,1)$, para $\lambda\in\mathbb{R}$.

Exercício 45. Obtenha um vetor normal ao plano π em cada caso:

- a) π contém $A=(1,1,1),\ B=(1,0,1)$ e C=(1,2,3);
- b) $\pi := X = (1, 2, 0) + \lambda(1, -1, 1) + \mu(0, 1, -2), \ \lambda, \mu \in \mathbb{R};$
- c) $\pi: x 2y + 4z + 1 = 0$.

Exercício 46. Seja r a reta determinada pelos pontos A=(1,0,4) e B=(3,-2,9). Obtenha a equação vetorial de r e verifique se o ponto P=(-9,10,-9) pertence ou não à reta r.

Exercício 47. Seja π o plano que contém o ponto A=(3,7,1) e é paralelo aos vetores $\vec{u}=(1,1,1)$ e $\vec{v}=(1,1,0)$.

- a) Obtenha a equação vetorial de π ;
- b) Verifique se o ponto (1,2,2) pertence a π ;
- c) Verifique se o vetor $\vec{w} = (2, 2, 5)$ é paralelo a π ;
- d) Os pontos $A, A + \vec{u}$ e $A + \vec{v}$ pertencem a π (por quê?). Eles são colineares?

Exercício 48. Dados o ponto A = (0, 2, 1) e a reta $r : X = (0, 2, -2) + \lambda(1, -1, 2)$, ache os pontos da reta r que distam $\sqrt{3}$ do ponto A. A distância do ponto A à reta r é maior, menor ou iqual a $\sqrt{3}$? Por quê?

Exercício 49. Verifique se a aplicação $F: \mathbb{R}^3 \to \mathbb{R}^2$ definida por F(x, y, z) = (z, x + y) é linear.

Exercício 50. Verifique se a aplicação $F : \mathbb{R} \to \mathbb{R}^2$ definida por $F(x) = (x, 2), \ \forall x \in \mathbb{R}$ é linear.

Exercício 51. Quais das seguintes aplicações de \mathbb{R}^3 em \mathbb{R}^3 são transformações lineares?

- a) $F_1(x, y, z) = (x y, x + y, 0);$
- b) $F_2(x, y, z) = (x, x, x);$
- c) $F_3(x, y, z) = (2x^2 + 3y, x, z)$.

Exercício 52. Seja $F: \mathbb{R}^3 \to \mathbb{R}^3$ o operador linear assim definido na base canônica: $F(1,0,0) = (2,3,1), \ F(0,1,0) = (5,2,7)$ e F(0,0,1) = (2,0,7). Determine F(x,y,z), onde (x,y,z) é um vetor qualquer de \mathbb{R}^3 .

Exercício 53. Existe um operador linear $F: \mathbb{R}^3 \to \mathbb{R}^3$ tal que F(1,1,1) = (1,2,3), F(1,2,3) = (1,4,9) e F(2,3,4) = (1,8,27)? Justifique sua resposta.

Exercício 54. Seja F o operador linear do \mathbb{R}^2 tal que F(1,0)=(2,1) e F(0,1)=(1,4).

- a) Determine F(2,4);
- b) Determine $(x,y) \in \mathbb{R}^2$ tal que F(x,y) = (2,3);
- c) Prove que F é injetor e sobrejetor.

Exercício 55. Determine uma transformação linear $F: \mathbb{R}^3 \to \mathbb{R}^4$ tal que Im(F) = [(1,1,2,1),(2,1,0,1)].

Exercício 56. Seja F o operador linear de $M_2(\mathbb{R})$ definido por F(X) = BX, $\forall X \in M_2(\mathbb{R})$, onde $B \in M_2(\mathbb{R})$. No caso de $B = \begin{pmatrix} 1 & 0 \\ 2 & -1 \end{pmatrix}$, determine Ker(F) e uma base da imagem de F.

Exercício 57. Encontre uma transformação linear do \mathbb{R}^3 no \mathbb{R}^2 cujo núcleo seja gerado por (1,1,0).

Exercício 58. Para cada uma das transformações lineares abaixo, determine uma base e a dimensão do núcleo e da imagem:

- a) $F: \mathbb{R}^3 \to \mathbb{R}$ dada por F(x, y, z) = x + y z;
- b) $F: \mathbb{R}^2 \to \mathbb{R}^2$ dada por F(x,y) = (2x, x+y);
- c) $F: \mathbb{R}^3 \to \mathbb{R}^4$ dada por F(x, y, z) = (x y z, x + y + z, 2x y + z, -y);

d)
$$F: M_2(\mathbb{R}) \to M_2(\mathbb{R})$$
 dada por $F(X) = MX + X$, onde $M = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$.

Exercício 59. Mostre que o operador linear F do \mathbb{R}^3 dado por F(x,y,z)=(x+z,x-z,y) é um automorfismo. Determine F^{-1} .

Exercício 60. Considere uma transformação linear $T: U \to V$.

- a) Prove que, se o conjunto $\{T(u_1), T(u_2), ..., T(u_r)\}$ é l.i. em V, então $\{u_1, u_2, ..., u_r\}$ é l.i. em U.
- b) Prove que, se T é injetora e $\{u_1, u_2, ..., u_r\}$ é l.i. em U então $\{T(u_1), T(u_2), ..., T(u_r)\}$ é l.i. em V.