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Abstract. The aim of this paper is to show that the spectral theory for
linear autonomous and periodic functional differential equations yields explicit

formulas for the large time behaviour of solutions. Our results are based on

resolvent computations and Dunford calculus and yield insight, new proofs and
generalizations of results that have recently appeared in the literature.

1. Introduction

Several aspects of the theory of functional differential equations can be under-
stood as a proper generalization of the theory of ordinary differential equations.
However, the fact that the state space for functional differential equations is infinite
dimensional requires the development of methods and techniques from functional
analysis and operator theory. The application of the theory of semigroups of op-
erators on a Banach space allows one to use methods from dynamical systems in
an infinite dimensional context. In particular, the perturbation theory, including
a variation-of-constants formula, gives rise to a complete theory of invariant mani-
folds [1, 4]. The explicit computation of the flow on the unstable or center manifold
requires precise information about the underlying unstable or center subspace of
the linearized equation. In this paper it is our aim to show how resolvent compu-
tations and Dunford calculus yield explicit formulas for the spectral projection on
the unstable or center subspace and, in particular, direct insight in the large time
behaviour of both autonomous and periodic functional differential equations.

We begin to introduce the precise class of equations studied in this paper. After
we have introduced the notion of transposed equation, we present the duality the-
ory between the original and the transposed equation based on a bilinear form first
introduced by Hale [4]. In Appendix A, we derive a functional analytic foundation
of the Hale bilinear form. We show how to use the bilinear form to explicitly com-
pute spectral projections for simple eigenvalues of the equation. We then continue
with the computation of the spectral projections using resolvent computations and
Dunford calculus. The advantage of this second approach is that the computations
not only become much simpler, but also easily generalize to periodic equations. In
Section 4, we present our main results on the large time behaviour of solutions of
autonomous equations. In Section 5 we present our main results for periodic equa-
tions and in Section 6, we present applications of our main results to autonomous
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and periodic equations. Finally, in Appendix B, we collect some basic properties of
characteristic equations needed in the examples.

2. Background on FDE

2.1. Notation and definitions. In order to recall the basic spectral theory for
linear functional differential equations, we first need some preparations. Let C =
C
(
[−r, 0],Cn

)
denote the Banach space of continuous functions endowed with the

supremum norm. From the Riesz representation theorem it follows that every
bounded linear mapping L : C → Cn can be represented by

Lϕ =
∫ 0

−r
dη(θ)ϕ(θ)

where η(θ), −r 6 θ 6 0, is an n×n-matrix whose elements are of bounded variation,
normalized so that η is continuous from the left on (−r, 0) and η(0) = 0. The same
approach yields a representation for the dual space of C. Every bounded linear
functional f : C → C can be written as

f(ϕ) =
∫ 0

−r
dψ(θ)ϕ(θ) def=

〈
ψ,ϕ

〉
,

where ψ(θ), −r 6 θ 6 0, is an n-column vector whose elements are complex-valued
functions of bounded variation, normalized so that ψ is continuous from the left on
(−r, 0) and ψ(0) = 0. This gives a representation for the dual space C∗ as a set of
Cn-valued functions of normalized bounded variation.

For a function x : [−r,∞)→ Cn, we define xt ∈ C by xt(θ) = x(t+θ), −r 6 θ 6 0
and t > 0.

An initial value problem for a linear autonomous functional differential equation
(FDE) is given by the following relation

(2.1)

{
d
dtDxt = Lxt, t > 0,
x0 = ϕ, ϕ ∈ C,

where D : C → Cn is continuous, linear and atomic at zero, L : C → Cn is linear
and continuous and both operators are, respectively, given by

(2.2) Lϕ =
∫ 0

−r
dη(θ)ϕ(θ), Dϕ = ϕ(0)−

∫ 0

−r
dµ(θ)ϕ(θ),

where η and µ are n×n matrix functions of bounded variation, and µ is continuous
at zero.

As an example, the following equation

(2.3)
dx

dt
(t) = Ax(t) +Bx(t− 1), t > 0,

where A and B are n× n-matrices can be written in the form (2.1) with µ, η given
by µ ≡ 0 and η(θ) = 0 for θ > 0, η(θ) = −A for −1 < θ < 0 and η(θ) = −A − B
for θ 6 −1.

Although it is possible to develop the adjoint theory for functional equations, it
turns out to be simpler to introduce the transposed equation and study its duality
with the original equation.
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There are two equivalent ways to deal with the transposed equation. One is to
consider the transpose µT and ηT of the matrices µ and η used in (2.1) and (2.2).
In this case the transposed equation takes the form

d

dt

[
z(t)−

∫ 0

−r
dµT(θ)z(t+ θ)

]
=
∫ 0

−r
dηT(θ)z(t+ θ), t > 0,

z0 = ϕ, ϕ ∈ C.

This form has C as it state space too. The second approach is slightly more natural
and will be considered in this article.

Define C′ = C
(
[0, r],Cn∗

)
, where Cn∗ denotes the row n-vectors with complex

entries, and consider y : (−∞, r] → Cn∗. For each s ∈ [0,∞) let ys designate
the element in C′ defined by ys(ξ) = y(−s + ξ), 0 6 ξ 6 r. We define operators
D′, L′ : C′ → C′ by

(2.4) D′ψ = ψ(0)−
∫ 0

−r
ψ(−ξ)dµ(ξ), L′ψ =

∫ 0

−r
ψ(−ξ)dη(ξ),

where µ and η are the same measures as in the definition of D and L in (2.2). The
transpose of (2.1) is defined to be

(2.5)

{
d
dt

[
D′y(t+ · )

]
= −L′y(t+ · ), t 6 0,

y0 = ψ, ψ ∈ C′.

2.2. Spectral theory for functional differential equations. It is standard to
view (2.1) as an evolutionary system describing the evolution of the state xt in the
Banach space C. In order to do so, we associate with (2.1) a semigroup of solution
operators in C. The semigroup is strongly continuous and given by translation along
the solution of (2.1)

T (t)ϕ = xt( · ;ϕ),

where x( · ;ϕ) denotes the solution of (2.1). See [4] for further details and more
information. The infinitesimal generator A of the semigroup T (t) is given by

(2.6)

{
D
(
A
)

=
{
ϕ ∈ C | dϕdθ ∈ C, D

dϕ
dθ = Lϕ

}
Aϕ = dϕ

dθ .

Let λ ∈ σ(A) be an eigenvalue ofA. The kernelN
(
λI−A

)
is called the eigenspace

at λ and its dimension dλ, the geometric multiplicity. The generalized eigenspace
Mλ is the smallest closed subspace that contains all N

(
(λI − A)j

)
, j = 1, 2, . . .

and its dimension mλ is called the algebraic multiplicity. It is known that there is
a close connection between the spectral properties of the infinitesimal generator A
and the characteristic matrix ∆(z), associated with (2.1), given by

(2.7) ∆(z) = z
[
I −

∫ 0

−r
eztdµ(t)

]
−
∫ 0

−r
eztdη(t).

See [1] and [6]. In particular, the geometric multiplicity dλ equals the dimension
of the null space of ∆(z) at λ and the algebraic multiplicity mλ is equal to the
multiplicity of z = λ as a zero of det ∆(z). Furthermore, the generalized eigenspace
at λ is given by

(2.8) Mλ = N
(
(λI −A)kλ

)
,
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where kλ is the order of z = λ as a pole of ∆(z)−1. Using the matrix of cofactors
adj ∆(z) of ∆(z), we have the representation

(2.9) ∆(z)−1 =
1

det ∆(z)
adj ∆(z).

From representation (3.10), we immediately derive that the spectrum of A consists
of point spectrum only, and is given by the zero set of an entire function

σ(A) =
{
λ ∈ C

∣∣ det ∆(λ) = 0
}
.

The zero set of the function det ∆(λ) is contained in a left half plane {z | Re z < γ}
in the complex plane. For retarded equations (i.e., Dϕ = ϕ(0)), the function
det ∆(λ) has finitely many zeros in strips of the form Sα,β = {z | α < Re z < β},
where α, β ∈ R. However, in general, for neutral functional differential equations,
det ∆(z) can have infinitely many zeros in Sα,β .

An eigenvalue λ of A is called simple if mλ = 1. So simple eigenvalues of A
correspond to the simple roots of the characteristic equation

det ∆(λ) = 0.

For kλ = 1, in particular if λ is simple, it is known that

(2.10) Mλ =
{
θ 7→ eλθv | v ∈ N

(
∆(λ)

)}
.

We refer to Chapter 7 of [4]. In [6] and Section IV.3 of [1] a systematic procedure
has been developed to construct a canonical basis for Mλ using Jordan chains for
generic λ ∈ σ(A). For the transposed system (2.5), we have similar notions.

Let y(·) ∈ Cn∗ be a solution of Equation (2.5) on the interval (−∞, r]. Similarly
as before, we can write (2.5) as an evolutionary system for ys, s > 0, in the Banach
space C′. In order to do so, we associate, by translation along the solution, a
C0-semigroup T

T(s) with Equation (2.5), the transposed semigroup, defined by

(2.11) T
T(s)ψ = ys( · ;ψ), s > 0.

The infinitesimal generator AT associated with TT(t) is given by (see Lemma 1.4
of Chapter 7 and Lemma 2.3 of Chapter 9 in [4])

(2.12)

{
D
(
A

T) =
{
ψ ∈ C′ | dψdξ ∈ C

′, D′ dψdξ = −L′ψ
}

A
T
ψ = −dψdξ .

The spectra of A and A
T coincide. If we define

Mλ(AT) = N
(
(λI −AT)kλ

)
,

and if kλ = 1, then

(2.13) Mλ(AT) =
{
θ 7→ e−λθv | 0 6 θ 6 r, v ∈ Cn∗, v∆(λ) = 0

}
.

We denote by Φλ the mλ-vector row{ϕ1, . . . , ϕmλ}, where ϕ1, . . . , ϕmλ form a
basis of eigenvectors and generalized eigenvectors of A at λ. Let ψ1, . . . , ψmλ be a
basis of eigenvectors and generalized eigenvectors of AT at λ. Define the column mλ-
vector Ψλ by col{ψ1, . . . , ψmλ} and let (Ψλ,Φλ) =

(
(ψi, ϕj)

)
, i, j = 1, 2, . . . ,mλ.

The matrix (Ψλ,Φλ) is nonsingular and thus can be normalized to be the identity.
The decomposition of C can be written explicitly as

ϕ = Pλϕ+ (I − Pλ)ϕ,
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where Pλϕ ∈Mλ and (I − Pλ)ϕ ∈ Qλ and

C =Mλ ⊕Qλ
Mλ = {ϕ ∈ C : ϕ = Φλb for some mλ-vector b},
Qλ = {ϕ ∈ C : (Ψλ, ϕ) = 0}.

The spaces Mλ and Qλ are closed subspaces that are invariant under T (t).
We finish this section with exponential estimates on the complementary subspace

Qλd when λd is simple and a dominant eigenvalue of A, that is, there exists a ε > 0
such that if λ is another eigenvalue of A, then Reλ < Reλd − ε. The next lemma
shows the importance of computing the projections Pλ explicitly.

Lemma 2.1. Suppose that λd is a dominant eigenvalue of A. For δ > 0 sufficiently
small there exists a positive constant K = K(δ) such that

(2.14) ‖T (t)(I − Pλ)ϕ‖ 6 Ke(Reλd−δ)t‖ϕ‖, t > 0.

Proof. From the fact that λd is dominant, it follows that we can choose δ > 0
sufficiently small such that

σ(A | Qλd) ⊂ {z ∈ C | Re z < Reλd − 2δ} .

Therefore, the lemma follows from the spectral mapping theorem for retarded func-
tional differential equations (see Theorem IV.2.16 of [1]) or from the spectral map-
ping theorem for neutral equations (see Corollary 9.4.1 of [4]). �

3. Computing the spectral projections

In this section we explicitly compute the spectral projections on the generalized
eigenspaces of the infinitesimal generator A associated with equation (2.1) and
explicitly given by (2.6). First we recall the standard approach based on duality
and the transposed equation. We continue with the computation of the spectral
projections using resolvent computations and Dunford calculus. The advantage of
the second approach is that the computations not only become much simpler, but
also easily generalize to periodic equations which we will pursue in Section 6.

3.1. Spectral projection via duality. For a simple eigenvalue λ of an operator
A, the spectral projection onto the eigenspace Mλ can be explicitly given by

Pλϕ = 〈ϕ∗λ, ϕ〉ϕλ,

where ϕλ is an eigenvector at λ for A, ϕ∗λ is an eigenvector at λ for A∗ and 〈ϕ∗λ, ϕλ〉 =
1 (here 〈·, ·〉 denotes the duality pairing between C and the dual space C∗). Before
we can compute the projection explicitly, we need some more definitions in order to
avoid the adjoint operator A∗ and the duality pairing between C and its dual space
C∗.

It turns out that using a specific bilinear form, it is possible to view the trans-
posed equation (2.5) as the ‘adjoint’ equation. This approach is developed in [4]
and in Appendix A, we present the functional analytic foundation for this approach.
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For now, consider the Hale bilinear form (·, ·) which is given by

(3.1) (ψ,ϕ) = ψ(0)ϕ(0)−
∫ 0

−r
dθ

[∫ θ

−r
ψ(θ − ξ)dµ(ξ)

]
ϕ(θ)

+
∫ 0

−r

∫ θ

−r
ψ(θ − ξ)dη(ξ)ϕ(θ)dθ.

In Appendix A we show that the dual of A using the bilinear form (·, ·) is AT.
The following lemma provides us with an explicit formula for the spectral projection
onto the eigenspace Mλ corresponding to a simple eigenvalue λd.

Lemma 3.1. Let A be given by (2.6). If λ is a simple eigenvalue of A, then the
spectral projection Pλ onto Mλ(A) along R

(
(λI − A)kλ

)
can be written explicitly

as follows

(3.2) Pλϕ = eλ ·
[ d
dz

det ∆(λ)
]−1

adj ∆(λ)
(
Dϕ

+
∫ 0

−r
dτ [λµ(τ) + η(τ)]

∫ −τ
0

e−λσϕ(σ + τ) dσ
)
,

where adj ∆(λ) denotes the matrix of cofactors of ∆(λ).

Proof. Let ψλ and ϕλ be a basis for Mλ(AT) and Mλ(A), respectively, such that
(ψλ, ϕλ) = 1. The spectral projection is given by

(3.3) Pλϕ = ϕλ(ψλ, ϕ).

Since z = λ is a simple zero of det ∆(z), we know from (2.10) and (2.13) that

ψλ(s) = e−λsdλ, 0 6 s 6 r, dλ∆(λ) = 0,

ϕλ(θ) = eλθcλ, −r 6 θ 6 0, ∆(λ)cλ = 0.

So, using the bilinear form (3.1),

(3.4) (ψλ, ϕ) = dλ

[
ϕ(0)−

∫ 0

−r
ds

(∫ s

−r
e−λ(s−θ) dµ(θ)

)
ϕ(s)

+
∫ 0

−r

∫ s

−r
e−λ(s−θ) dη(θ)ϕ(s)ds

]
.

Therefore

(ψλ, ϕλ) = dλ

[
cλ −

∫ 0

−r
ds

(∫ s

−r
e−λ(s−θ) dµ(θ)

)
eλscλ

+
∫ 0

−r

∫ s

−r
e−λ(s−θ) dη(θ) eλscλ ds

]
= dλ

[
I −

∫ 0

−r
eλθdµ(θ)

+ λ

∫ 0

−r

∫ s

−r
eλθ dµ(θ) ds+

∫ 0

−r

∫ s

−r
eλθ dη(θ) ds

]
cλ.

Since ∫ 0

−r

∫ s

−r
eλθ dη(θ) ds = −

∫ 0

−r
θeλθ dη(θ)



LARGE TIME BEHAVIOUR OF LINEAR FDES 7

and

λ

∫ 0

−r

∫ s

−r
eλθ dµ(θ) ds = −λ

∫ 0

−r
θeλθ dµ(θ),

it follows that

(ψλ, ϕλ) = dλ

[
I −

∫ 0

−r
eλθdµ(θ)− λ

∫ 0

−r
θeλθ dµ(θ)−

∫ 0

−r
θeλθ dη(θ)

]
cλ.

This together with the definition of ∆(z) in (2.7) and the normalization condition,
(ψλ, ϕλ) = 1, yields

(3.5) dλ

[ d
dz

∆(λ)
]
cλ = 1.

Returning to representation (3.3) for Pλ and representation (3.4) for (ψλ, ϕ), we
claim that, for a given vector v,

(3.6) cλdλv =
[ d
dz

det ∆(λ)
]−1

adj ∆(z) v.

From the relation

(3.7) ∆(z) adj ∆(z) = det ∆(z),

it follows that for a given vector v, the vector cλ defined by cλ = adj ∆(λ)v, satisfies
∆(λ)cλ = 0. Next we choose dλ such that dλ∆(λ) = 0 and such that

dλ

[ d
dz

∆(λ)
]

adj ∆(λ)v = 1,

so that (3.5) is also satisfied. Differentiating equation (3.7) with respect to z yields

(3.8)
d

dz
∆(z) adj ∆(z) + ∆(z)

d

dz
adj ∆(z) =

d

dz
det ∆(z).

If we multiply (3.8) with z = λ from the left by dλ and from the right by v, and
use that dλ∆(λ) = 0 and that (3.5) holds, then it follows that

dλv =
[ d
dz

det ∆(λ)
]−1

.

This proves (3.6) and completes the proof of the lemma. �

An important application of Lemma 3.1 arises in the situation when λ = λd is a
dominant eigenvalue of A.

3.2. Spectral projection via Dunford calculus. From standard spectral theory
[1, 3, 12], it follows that the spectral projection ontoMλ along R

(
(λI −A)kλ

)
can

be represented by a Dunford integral

(3.9) Pλ =
1

2πi

∫
Γλ

(zI −A)−1 dz,

where Γλ is a small circle such that λ is the only singularity of (zI − A)−1 inside
Γλ. In order to compute the projection explicitly, we need an explicit formula for
the resolvent of A.
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Lemma 3.2. If A is defined by (2.6), then the resolvent (zI − A)−1 of A is given
by

(3.10) (zI −A)−1ϕ = ez ·
{∫ 0

·
e−zτϕ(τ)dτ + ∆(z)−1

[
Dϕ

+
∫ 0

−r
dθ
[
zµ(θ) + η(θ)

] ∫ −θ
0

e−zτϕ(τ + θ)dτ
]}
,

where ∆(z) is given by (2.7).

Proof. Let ϕ be fixed. If we define ψ = (zI−A)−1ϕ, then ψ ∈ D
(
A
)

and zψ−Aψ =
ϕ. From the definition of A, it follows that ψ satisfies the ordinary differential
equation

(3.11) zψ − dψ

dθ
= ϕ

with boundary condition

(3.12) D
dψ

dθ
= Lψ.

Equation (3.11) yields

(3.13) ψ(θ) = ezθ
[
ψ(0) +

∫ 0

θ

e−zτϕ(τ)dτ
]
.

Applying D on both sides of (3.11) and using (3.12), we obtain

0 = zDψ − Lψ −Dϕ

= z

[
ψ(0)−

∫ 0

−r
dµ(θ)ψ(θ)

]
−
∫ 0

−r
dη(θ)ψ(θ)−Dϕ

= zψ(0)− z
∫ 0

−r
dµ(θ)

(
ezθ
[
ψ(0) +

∫ 0

θ

e−zτϕ(τ)dτ
])

−
∫ 0

−r
dη(θ)

(
ezθ
[
ψ(0) +

∫ 0

θ

e−zτϕ(τ)dτ
])
−Dϕ

=
[
zI − z

∫ 0

−r
dµ(θ)ezθ −

∫ 0

−r
dη(θ)ezθ

]
ψ(0)

−Dϕ−
∫ 0

−r
dθ
[
zµ(θ) + η(θ)

] ∫ −θ
0

e−zτϕ(τ + θ)dτ

= ∆(z)ψ(0)−Dϕ−
∫ 0

−r
dθ
[
zµ(θ) + η(θ)

] ∫ −θ
0

e−zτϕ(τ + θ)dτ.

This allows us to solve for ψ(0) and

(3.14) ψ(0) = ∆(z)−1
[
Dϕ+

∫ 0

−r
dθ
[
zµ(θ) + η(θ)

] ∫ −θ
0

e−zτϕ(τ + θ)dτ
]
.

Substituting (3.14) into (3.13) yields the desired result. �

To illustrate the power of Dunford calculus, we give next a second simpler proof
of Lemma 3.1.
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Second proof of Lemma 3.1. Since the formula for the projection in (3.9) is
precisely the residue of the resolvent of A in z = λ, the representation for the
resolvent (3.10) yields

(3.15) Pλϕ = Resz=λ

{
ez ·∆(z)−1

[
Dϕ

+
∫ 0

−r
dθ
[
λµ(θ) + η(θ)

] ∫ −θ
0

e−zτϕ(τ + θ)dτ
]}
.

If λ is a simple eigenvalue of A, then λ is a simple zero of det ∆(z) and it suffices
to compute Resz=λ ∆(z)−1 explicitly and

Resz=λ ∆(z)−1 = lim
z→λ

(z − λ)[det ∆(z)]−1 adj ∆(z)

= lim
z→λ

[
det ∆(z)− det ∆(λ)

z − λ

]−1

adj ∆(z)

=
[ d
dz

det ∆(λ)
]−1

adj ∆(λ).

Using this together with (3.15), we arrive at (3.2). �

Example 3.1. Consider the retarded equation

(3.16) ẋ(t) = Bx(t− 1), t > 0, x0 = ϕ ∈ C,

where B 6= 0 is an n× n-matrix. The characteristic equation is given by

(3.17) ∆(z) = zI −Be−z.

For every simple root of det ∆(z), the spectral projection is given by

(Pλϕ)(θ) =
[ d
dz

det ∆(λ)
]−1

adj ∆(λ)
(
ϕ(0) +B

∫ 1

0

e−λτϕ(τ − 1)dτ
)
eλθ.

In the scalar case, a root λ of ∆ is not simple if and only if{
λ−Be−λ = 0,

1 +Be−λ = 0.

Therefore, if B 6= −1/e or equivalently λ = −1 is not a root of ∆, then all roots of
(3.17) are simple. So the spectral projections are given by

(3.18) (Pλϕ)(θ) =
1

1 + λ

(
ϕ(0) +B

∫ 1

0

e−λτϕ(τ − 1)dτ
)
eλθ,

where λ satisfies λ−Be−λ = 0. Furthermore, it follows from Corollary 3.12 of [10]
that

xt(ϕ) =
∞∑
j=0

PλjT (t)ϕ =
∞∑
j=0

T (t)Pλjϕ, t > 0,

where λj , j = 0, 1, . . ., denote the roots of λ − Be−λ = 0, ordered according to
decreasing real part. Using (3.18) and the fact that T (t)eλj · = eλj(t+·), we can now
explicitly compute the solution of (3.16) with initial condition x0 = ϕ

x(t;ϕ) =
∞∑
j=0

1
1 + λj

(
ϕ(0) +B

∫ 1

0

e−λjτϕ(τ − 1)dτ
)
eλjt, t > 0.
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(Compare Theorem 6 in [11].)
If B = −1/e, then all zeros of ∆(z) are simple except for λ = −1. For the simple

zeros we can again use (3.18). For the double zero λ = −1, we have to use (3.15)
to compute the projection onto the two dimensional space M−1 and P−1 is given
by

(P−1ϕ)(θ) =
(
−2

3
ϕ(0) +

8
3

∫ 0

−1

eτϕ(τ)dτ + 2
∫ 0

−1

τeτϕ(τ)dτ
)
e−θ

+ 2
(
ϕ(0)−

∫ 0

−1

eτϕ(τ)dτ
)
θe−θ.

Since T (t)φ = φ(t+ ·), where φ(θ) = θe−θ, we can again give the solution explicitly.

4. Large time behaviour for autonomous FDE’s

In this section we shall further investigate the case when det ∆(z) has a dominant
root z = λd.

Theorem 4.1. Let A to be given by (2.6). If A has a dominant simple eigenvalue
λd, then there exist positive numbers ε and M such that

(4.1) ‖e−λdtT (t)ϕ− Pλdϕ‖ 6Me−εt

and

(4.2) lim
t→∞

e−λdtT (t)ϕ = eλd ·
[ d
dz

det ∆(λd)
]−1

adj ∆(λd)
[
Dϕ

+
∫ 0

−r
[λddµ(τ) + dη(τ)]

∫ −τ
0

e−λdσϕ(σ + τ) dσ
]
.

Proof. From representation (3.9), it follows that Pλ and A commute, and therefore
Pλ and T (t) commute as well. The spectral decomposition with respect to λd yields

e−λdtT (t)ϕ = e−λdtT (t)Pλdϕ+ e−λdtT (t)(I − Pλd)ϕ.

From the exponential estimate (2.14), it follows that there exist positive ε and M
such that

‖e−λdtT (t)(I − Pλd)ϕ‖ 6Me−εt, t > 0.

The action of T (t) restricted to a one-dimensional eigenspace Mλ is given by

e−λdtT (t)Pλd = Pλd .

This shows (4.1) and using Lemma 3.1, we arrive at (4.2). �

If we evaluate (4.2) at θ = 0 we obtain the following corollary.

Corollary 4.1. Let A be given by (2.6) and suppose that A has a dominant simple
eigenvalue λd. If x(t) = x( · ;ϕ) denotes the solution of (2.1) with initial data
x0 = ϕ, then the large time as a function of the initial data ϕ is given by

(4.3) lim
t→∞

e−λdtx(t) =
[ d
dz

det ∆(λd)
]−1

adj ∆(λd)
[
Dϕ

+
∫ 0

−r
[λddµ(τ) + dη(τ)]

∫ −τ
0

e−λdσϕ(σ + τ) dσ
]
.
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5. Periodic FDE’s

A similar approach as presented for autonomous equations yields the asymptotic
behaviour of solutions of periodic delay equations. However, in this setting the
spectral projection Pλ can only be computed using Dunford calculus. The results
in this section provide a new approach and generalize earlier results in [13, 9].

5.1. Spectral theory for periodic FDE’s. We begin to recall some of the basic
theory for linear periodic delay equations that we use in this section. Consider the
scalar periodic differential difference equation

(5.1)

dx

dt
(t) = a(t)x(t) +

m∑
j=1

bj(t)x(t− rj), t > s,

xs = ϕ, ϕ ∈ C,
where the coefficients a and bj , 1 6 j 6 m, are real continuous periodic functions
with minimal period ω and the delays rj = jω are multiples of the period ω.

To emphasize the dependence of the solution x(t) of (5.1) with respect to the
initial condition xs = ϕ, we write x(t) = x(t; s, ϕ). The evolutionary system asso-
ciated with (5.1) is again given by translation along the solution

(5.2) T (t, s)φ = xt(s, φ),

where xt(s, φ)(θ) = x(t + θ; s, φ) for −mω 6 θ 6 0. The periodicity of the coeffi-
cients of (5.1) implies that

T (t+ ω, s+ ω) = T (t, s), t > s.

This together with the semigroup property T (t, τ)T (τ, s) = T (t, s), t > τ > s,
yields to

(5.3) T (t+ ω, s) = T (t, s)T (s+ ω, s) for t > s.

The periodicity property (5.3) allows us to define the monodromy map or period
map Π(s) : C → C associated with (5.1) as follows

(5.4) Π(s)ϕ = T (s+ ω, s)ϕ, ϕ ∈ C.
From the general theory for functional differential equations (see [1, 4]), it follows
that Π(s) is a compact operator, i.e., Π(s) is a bounded operator with the property
that the closure of the image of the unit ball in C is compact. Hence, the spectrum
σ(Π(s)) of Π(s) is at most countable with the only possible accumulation point
being zero. If µ 6= 0 belongs to σ(Π(s)), then µ is in the point spectrum of Π, i.e.,
there exists a ϕ ∈ C, ϕ 6= 0, such that Π(s)ϕ = µϕ. If µ belongs to the nonzero
point spectrum of Π(s), then µ is called a characteristic multiplier of (5.1) and λ for
which µ = eλω (unique up to multiples of 2πi) is called a characteristic exponent of
(5.1). The characteristic multipliers are in fact independent of s and the generalized
eigenspace Mµ(s) of Π(s) at µ is defined to be N

(
µI − Π(s))kλ

)
, where kλ is the

smallest integer such that

Mµ(s) = N
(
(µI −Π(s))kλ

)
= N

(
(µI −Π(s))kλ+1

)
.

Since Π(s) is compact, there are two closed subspaces Mµ(s) and Qµ(s) of C such
that the following properties hold:

(i) C =Mµ(s)⊕Qµ(s).
(ii) mµ = dimMµ(s) <∞.



12 FRASSON AND VERDUYN LUNEL

(iii) Mµ(s) and Qµ are Π(s)-invariant.
(iv) σ(Π(s)|Mµ(s)) = {µ} and σ(Π(s)|Qµ(s)) = σ(Π(s)) \ {µ}.
Let ϕ1(s), . . . , ϕmµ(s) be a basis of eigenvectors and generalized eigenvectors of

Π(s) at µ. Define the row mλ-vector Φ(s) = {ϕ1(s), . . . , ϕmλ(s)}. Since Mλ(s) is
invariant under Π(s), there exists a mλ ×mλ matrix M(s) such that

Π(s)Φ(s) = Φ(s)M(s)

and Property (iv) implies that the only eigenvalue of M(s) is µ 6= 0. Therefore,
there is a mµ ×mµ matrix Bs such that Bs = 1/ω logM(s).

Define the vector P (t) with elements in C by

P (t) = T (t, 0)Φe−Bt

and let Φ = Φ(0), M = M(0) and B = B0. Then, for t > 0,

P (t+ ω) = T (t+ ω, 0)Φe−B(t+ω) = T (t, 0)T (ω, 0)Φe−Bωe−Bt

= T (t, 0)Π(0)Φe−Bωe−Bt = T (t, 0)ΦMe−Bωe−Bt

= P (t).

Since P (t) can be extended periodically for t ∈ R, we conclude that

T (t, 0)Φ = P (t)eBt for t ∈ R.

As for the case s = 0, one can define T (t, s)Φ(s) for all t ∈ R and for any real
number τ and µ ∈ σ(Π(s)) \ {0}, we have

Π(τ)T (τ, s)Φ(s) = T (τ + ω, τ)T (τ, s)Φ(s) = T (τ + ω, s)Φ(s)

= T (τ, s)T (s+ ω, s)Φ(s) = T (τ, s)Φ(s)M(s).

Therefore,

[µI −Π(τ)]T (τ, s)Φ(s) = T (τ, s)Φ(s)(µI −M(s)),

and it follows that µ ∈ σ(Π(τ)). Thus the dimension of Mµ(τ) is at least as large
as the dimension of Mµ(s). Since one can reverse the role of s and τ , we obtain
that the characteristic multipliers of (5.1) are independent of the starting time and
if Φ(s) is a basis forMµ(s), then T (t, s)Φ(s) is a basis forMµ(t) for any t ∈ R. In
particular, the subspaces Mµ(s) and Mµ(t) are diffeomorphic for all s and t.

Note that if µ = eλω is simple, i.e. mµ = 1, then M(s) is identical to µ,
Φ := Φ(0) = {ϕ1} and P (t) assumes the simpler form

(5.5) eλtP (t) = T (t, 0)ϕ1.

The spectral projection onto Mµ(s) along Qµ(s) can again be represented by a
Dunford integral (see [3])

(5.6) Pµ(s) =
1

2πi

∫
Γµ

(zI −Π(s))−1 dz,

where Γµ is a small circle such that µ is the only singularity of (zI−Π(s))−1 inside
Γµ.



LARGE TIME BEHAVIOUR OF LINEAR FDES 13

5.2. Large time behaviour. Similarly as for autonomous equations, we can relate
the solutions, corresponding to initial data ϕ ∈ Mµ(s), to an arbitrary solution
xt(s;ϕ) by an exponential bound for the remainder.

Theorem 5.1. Let µj, j = 1, 2, . . ., denote the nonzero eigenvalues of Π(s) ordered
by decreasing modulus and let ϕ ∈ C. If γ is an arbitrary real number, then there
are positive constants ε and M such that for t > s

(5.7)
∥∥∥xt(s;ϕ)−

∑
|µn|>eγω

Pµn(s)xt(s;ϕ)
∥∥∥ 6Me(γ−ε)(t−s)‖ϕ‖.

Proof. Let k = k(γ) be the integer such that |µk| > eγω and |µk+1| < eγω. Set
Σ = {µ1, µ2, . . . , µk} and define

MΣ(s) =
⊕
µ∈Σ

Mµ(s) and QΣ(s) =
⋂
µ∈Σ

Qµ(s).

Then, one has C =MΣ ⊕QΣ. To prove the exponential estimate, set

(5.8) Rk(s)ϕ = ϕ−
k∑
j=1

Pµj (s)ϕ.

It follows that Rk(s)ϕ ∈ QΣ(s) and T (t, s)Rk(s)ϕ ∈ QΣ(t) for all ϕ ∈ C. Further-
more, there exists a constant M0 such that ‖Rk(s)ϕ‖ 6 M0‖ϕ‖. If ε is such that
e(γ−2ε)ω = |µk+1|, then the spectral radius of

Π̂(s) def= Π(s)
∣∣QΣ(s)

is e(γ−2ε)ω. Therefore, limn→∞ ‖Π̂(s)n‖1/n = e(γ−2ε)ω and this implies that for
some m > 0

‖Π̂(s)mRk(s)ϕ‖ 6 e(γ−ε)mω‖Rk(s)ϕ‖.

Since T̂ (τ, s) def= T (τ, s)|QΣ(s), s 6 τ 6 s + ω is pointwise bounded, the uniform
boundedness principle yields a constant M1 such that ‖T̂ (τ, s)‖ 6 M1 for s 6 τ 6
s + ω. Set M2 = M1 maxj=1,...,m−1 ‖Π̂(s)j‖ and let t > s be given. If kt is the
largest integer so that s+ ktmω 6 t, then

‖T̂ (t, s)Rk(s)ϕ‖ 6M2‖Π̂(s)m‖kt‖Rk(s)ϕ‖ 6Me(γ−ε)(t−s)‖ϕ‖,
where M = M0M2. This proves the exponential estimate for the remainder term.

�

Corollary 5.1. Suppose that µd = eλdω is a simple dominant eigenvalue of Π(s).
If P (t) is as in (5.5), then there are positive constants M and ε so that large time
behaviour of the solution x(t; 0, ϕ) is given by

(5.9) ‖e−λdtxt(0, ϕ)− c(ϕ)P (t)‖ 6Me−εt‖ϕ‖, t > 0,

where c(ϕ) is defined so that Pµd(0)ϕ = c(ϕ)ϕ1.

Proof. If µ = eλω is a simple eigenvalue of Π, it follows from Equation (5.5) together
with the property that T (t, s) maps Mµd(s) into Mµd(t) diffeomorphically, that

Pµd(t)xt(0, ϕ) = Pµd(t)T (t, 0)ϕ

= T (t, 0)Pµd(0)ϕ

= c(ϕ)eλdtP (t).

Therefore the corollary follows directly from Theorem 5.1. �
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6. Applications to the large time behaviour

In order to make the analysis of the characteristic equations easier, we assume
throughout this section that the coefficients of the functional differential equations
are real-valued (the state space remains C([−r, 0],Cn)).

6.1. Applications for autonomous equations. Consider the scalar delay equa-
tion

(6.1) ẋ(t) = ax(t) + bx(t− τ), t > 0,

with a and b real numbers. The characteristic equation of (6.1) is given by

∆(z) = z − a− be−τz.

From Lemma B.3, it follows that if −e−1 < bτe−aτ , then ∆(z) has a simple real
dominant root and we can use Corollary 4.1 to compute the large time behaviour
of the solutions of (6.1). The next theorem presents a new approach for the result
in [2], where it was required that −e−1 < bτe−aτ < e, in order to get the same
conclusion.

Theorem 6.1. If −e−1 < bτe−aτ , then the long-time behaviour of the solution
x = x( · ;ϕ) of (6.1) with initial data x0 = ϕ is given by

(6.2) lim
t→∞

e−λdtx(t) =
1

1 + bτe−λdτ

[
ϕ(0) + be−λdτ

∫ 0

−τ
e−λdsϕ(s) ds

]
,

where λd is the simple real dominant root of z = a+ be−τz.

Proof. Lemma B.3 implies the existence of a simple real dominant zero λd of ∆(z).
So if we apply Corollary 4.1 with r = τ , µ = 0 and η a sum of a point-mass at 0 of
size a and at −τ of size b, Equation (6.2) follows from (4.3). �

The second application concerns the main result in [8]. Consider the scalar
neutral equation

(6.3)
d

dt

[
x(t) +

m∑
l=1

clx(t− σl)
]

= ax(t) +
k∑
j=1

bjx(t− hj).

The characteristic equation associated with (6.3) is given by

(6.4) ∆(z) = z
(

1 +
m∑
l=1

cle
−zσl

)
− a−

k∑
j=1

bje
−zhj .

If ∆(z) in (6.4) has a real zero λd that satisfies the condition

(6.5)
m∑
l=1

|cl| (1 + |λd|σl)e−λdσl +
k∑
j=1

hj |bj | e−λdhj < 1,

then Lemma B.1 implies that λd is a simple real dominant zero of (6.4).
Thus, if (6.5) holds, then we can again use Corollary 4.1 to compute the large

time behaviour of the solutions of (6.3).
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Theorem 6.2. If λd is a real zero of (6.4) such that (6.5) holds, then the large
time behaviour of the solution x = x( · ;ϕ) of (6.3) with initial data x0 = ϕ is given
by

(6.6) lim
t→∞

e−λdtx(t;ϕ) =
1

H(λd)

[
ϕ(0)−

m∑
l=1

clϕ(−σl)

+
m∑
l=1

λdcl

∫ −σl
0

e−λdσϕ(σ + σl) dσ +
k∑
j=1

bj

∫ −hj
0

e−λdσϕ(σ + hj) dσ
]
,

where

H(λd) = 1 +
m∑
l=1

cle
−λdσl − λd

m∑
l=1

clσle
−λdσl +

k∑
j=1

bjhje
−λdhj .

Proof. Let r1 = max16l6m σl, r2 = max16j6k hj and r = max{r1, r2}. Let µ be
a finite sum of point masses at −σl of size cl, 1 6 l 6 m, and let η be a finite
sum of point masses at −hj of size bj , 1 6 j 6 k. With these definitions we apply
Corollary 4.1 in the scalar case. Since H(λd) is the derivative of ∆(z) evaluated at
z = λd, the theorem follows from (4.3). �

Corollary 6.1. If a +
∑k
j=1 bj = 0 and

∑k
j=1 hj |bj | < 1, then the large time

behaviour of the solution x = x( · ;ϕ) of (6.3) with initial data x0 = ϕ is given by

lim
t→∞

x(t) =
(

1 +
m∑
l=1

cl +
k∑
j=1

bjhj

)−1[
ϕ(0)−

m∑
l=1

clϕ(−σl)

+
k∑
j=1

bj

∫ −hj
0

ϕ(σ + hj) dσ
]
.

The examples in this subsection illustrate that computing the spectral projection
on the dominant (finite dimensional) eigenspace yields an easy way to find explicit
formulas for the large time behaviour of solutions.

6.2. Application for periodic equations. In this section, we show that also
for linear periodic equations, the large time behaviour can be given explicitly by
computing a spectral projection onto the dominant eigenvalue of the monodromy
operator.

Consider the following linear periodic delay equation

(6.7) ẋ(t) = a(t)x(t) +
k∑
j=1

bj(t)x(t− τj), t > s,

where a(t + ω) = a(t) and bj(t + ω) = bj(t) for j = 1, 2 . . . , k. We assume the
particular case where τj = jω (i.e., the delays are integer multiples of the period
ω). The following lemma is clear.

Lemma 6.1. If y(t) = e−
R t
0 a(s)dsx(t), then y satisfies

ẏ(t) =
k∑
j=1

b̂j(t)y(t− τj),
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where b̂j(t) = e
−

R t
t−τj

a(s)ds
bj(t), j = 1, 2, . . . , k, are also ω-periodic.

So, it suffices to analyze the following system (recall τj = jω)

(6.8)
ẋ(t) =

k∑
j=1

bj(t)x(t− τj), t > s,

xs = ϕ, ϕ ∈ C([−kω, 0],Cn),

where bj are continuous real matrix-valued functions such that bj(t+ ω) = bj(t).
Let Π(s) : C → C denote the monodromy operator Π(s) = T (s+ ω, s), i.e.,

(Π(s)ϕ)(θ) = x(ω + θ; s, ϕ), −kω 6 θ 6 0.

Using the differential equation (6.8) and periodicity of bj , we have the following
representation for Π(s)

(Π(s)ϕ)(θ) =

{
ϕ(0) +

∑k
j=1

∫ ω+θ

0
bj(σ + s)ϕ

(
σ − τj

)
dσ, −ω 6 θ 6 0,

ϕ(θ + ω), −kω 6 θ 6 −ω.

Since the large time behaviour of the solutions is independent of the starting time
s, we can set s = 0 and define Π = Π(0).

Lemma 6.2. The resolvent (zI −Π)−1ϕ of the monodromy operator Π is given by

(6.9) (zI −Π)−1ϕ(θ) = Ωθ−ω(1/z)[zI − Ω0
−ω]−1

(
ϕ(−ω) +Gϕ,z(0)

)
+Gϕ,z(θ),

for −ω 6 θ 6 0 and

(6.10) (zI −Π)−1ϕ(θ) =
1
zm

(zI −Π)−1ϕ(θ +mω) +
m−1∑
j=0

ϕ(θ − jω)
zj+1

,

for −ω 6 θ +mω 6 0, m = 1, . . . , k − 1, where

(6.11) Gϕ,z(θ) =
1
z

(
ϕ(θ)− Ωθ−ω

(
1
z

)
ϕ(−ω)

+
k∑
l=1

l−1∑
j=0

∫ θ

−ω

1
zl−j

Ωθσ
(

1
z

)
bl(σ)ϕ(σ − jω)dσ

)
and Ωts(1/z) denotes the fundamental matrix solution of the differential equation

dψ

dt
(t) =

k∑
l=1

1
zl
bl(t)ψ(t).

Proof. If (zI −Π)−1ϕ = ψ (ϕ is given), then

ϕ = zψ −Πψ.

Suppose at first that ϕ is differentiable. We can derive the following system of
equations

ϕ(θ) = zψ(θ)− ψ(θ + ω), −kω 6 θ 6 −ω,(6.12)

d
dθϕ(θ) = z d

dθψ(θ)−
∑k
j=1 bj(θ)ψ(θ − (j − 1)ω),

ϕ(−ω) = zψ(−ω)− ψ(0),

}
−ω 6 θ 6 0.(6.13)
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Using (6.12) inductively, for l = 1, 2, . . . , k − 1 and −ω 6 θ 6 0, we obtain

(6.14) ψ(θ − lω) =
1
zl
ψ(θ) +

l∑
j=1

1
zl−j+1

ϕ(θ − jω).

Using (6.14), we can reduce the equation in (6.13) to a differential equation

(6.15)
dψ

dθ
(θ)−

k∑
l=1

bl(θ)
1
zl
ψ(θ) =

1
z

[
dϕ

dθ
(θ) +

k∑
l=2

(
bl(θ)

l−1∑
j=1

1
zl−j

ϕ(θ − jω)
)]
.

We first solve the homogeneous equation (ϕ ≡ 0), i.e.,

(6.16)
dψ

dθ
(θ) =

k∑
l=1

bl(θ)
1
zl
ψ(θ),

and let Ωts(1/z) denote the fundamental matrix solution of (6.16) with Ωss(1/z) = I.
Using the variation-of-constants formula, equation (6.15) becomes

(6.17) ψ(θ) = Ωθ−ω
(

1
z

)
ψ(−ω) +Gϕ,z(θ),

where

Gϕ,z(θ) =
1
z

(
ϕ(θ)− Ωθ−ω

(
1
z

)
ϕ(−ω) +

k∑
l=1

l−1∑
j=0

∫ θ

−ω

1
zl−j

Ωθσ
(

1
z

)
bl(σ)ϕ(σ − jω)dσ

)
.

We can solve ψ(−ω) from the boundary condition in (6.13)

(6.18) ϕ(−ω) = zψ(−ω)− Ω0
−ω
(

1
z

)
ψ(−ω)−Gϕ,z(0).

Hence

(6.19) ψ(−ω) =
[
zI − Ω0

−ω
(

1
z

)]−1(
ϕ(−ω) +Gϕ,z(0)

)
.

Equations (6.17) and (6.19) yield (6.9). To find ψ on [−kω,−ω], we use again
relation (6.12) inductively to obtain (6.10). To finish the proof, note that (6.9) is
well defined for ϕ ∈ C, and we can drop the assumption that ϕ is differentiable. �

The representation for the resolvent of Π yields important information about
the spectral properties of the operator. For example, it follows that the nonzero
spectrum of Π, σ(Π) \ {0}, consists of point spectrum only, given by

σ(Π) \ {0} =
{
z | det

(
zI − Ω0

−ω(1/z)
)

= 0
}
.

Furthermore, questions about completeness of the eigenvectors and generalized
eigenvectors of Π (i.e., denseness of the Floquet solutions in C([−kω, 0],Cn)) can be
answered using resolvent estimates. Furthermore, using the Dunford representation
of the spectral projection Pµ of Π onto a generalized eigenspaceMµ, µ ∈ σ(Π)\{0},

Pµ = Resz=µ(zI −Π)−1,

we can explicitly compute the spectral projection of Π using residue calculus. In
particular, if µ is a simple eigenvalue of Π, the spectral projection onto the one-
dimensional eigenspace is given by

Pµϕ = lim
z→µ

(z − µ)(zI −Π)−1ϕ.

Together with Lemma 6.2, this yields a formula for Pµϕ on [−ω, 0], namely,

(6.20) (Pµϕ)(θ) = Ωθ−ω(1/µ)
[

lim
z→µ

(z − µ)
(
zI −Ω0

−ω(1/z)
)−1
](
ϕ(−ω) +Gϕ,µ(0)

)
,
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where Gϕ,z is given by (6.11). The extension of Pµϕ to [−kω,−ω] can be found
using (6.10). So, if we can compute the residue of [zI − Ωθ−ω(1/z)]−1 at µ (which
is a question about ordinary differential equations), we can find an explicit formula
for Pµ. Like in the autonomous case, the existence of a simple Floquet multiplier µd
that dominates the others (in the sense that µ 6= µd ∈ σ(Π(s)) implies |µ| < |µd|)
allows us to give an explicit formula for the large time behaviour of solutions.

Corollary 6.2. If µd 6= 0 is a simple and dominant eigenvalue of Π, then the large
time behaviour of the solution x( · ; 0, ϕ) of (6.7) is given by

lim
t→∞

Ωt−ω
(

1
µ

)
x(t; 0, ϕ) = Resz=µ

[
zI − Ω0

−ω
(

1
z

)]−1(
ϕ(−ω) +Gϕ,µ(0)

)
where Ωts

(
1
z

)
is as in Lemma 6.2.

In the scalar case, we can solve Ωts(1/z), namely,

(6.21) Ωts
(

1
z

)
= exp

(
k∑
j=1

z−j
∫ t

s

bj(σ)dσ

)
.

The poles of resolvent [z − Ω0
−ω(1/z)]−1 are the zeros µ of the equation

(6.22) µ− exp

(
k∑
j=1

µ−j
∫ 0

−ω
bj(σ)dσ

)
= 0.

Define

Bj =
1
ω

∫ 0

−ω
bj(t) dt.

For µ ∈ σ(Π) \ {0}, we can write µ = eλω and (6.22) can be reduced to a simpler
form

(6.23) λ−
k∑
j=1

e−jλωBj =
2k(λ)πi

ω
.

If a Floquet exponent satisfies (6.23) for k(λ) 6= 0, then λ̃ = λ−2k(λ)πi/ω is also a
Floquet exponent which satisfies (6.23) with k(λ̃) = 0. Since we are only interested
in the real part of λ, it suffices to consider the equation

(6.24) ∆(λ) def= λ−
k∑
j=1

e−jλωBj = 0.

So, in the scalar case, we can again find the large time behaviour of the solu-
tions of (6.7) when µd is a simple dominant eigenvalue of Π. (See Appendix B for
conditions for the existence of such a µd.)

Corollary 6.3. Consider the scalar periodic equation given by (6.7). If µd = eλdω

is a simple real dominant eigenvalue of Π, then the large time behaviour of the
solution x(t; 0, ϕ) is given by

lim
t→∞

Ωt0
(

1
µd

)
x(t; 0, ϕ) =

[
1 +

k∑
j=1

jµ−jd ωBj

]−1(
ϕ(0)

+
k∑
l=1

∫ 0

−lω

1
µld

Ω0
τ

(
1
µd

)
bl(τ)ϕ(τ)dτ

)
,
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where Ωts(1/µd) is given by (6.21).

Proof. The fact that µd = Ω0
−ω(1/µd) yields

lim
z→µd

(z − µd)
[
z − Ω0

−ω
(

1
z

)]−1 =
[ d
dz

(
z − Ω0

−ω
(

1
z

))∣∣∣
z=µd

]−1

=
[
1 +

k∑
j=1

jµ−jd ωBj

]−1

.

Since we can also compute

ϕ(−ω) +Gϕ,µd(0) =
1
µd
ϕ(0) +

k∑
l=1

∫ 0

−lω

1
µl+1
d

Ω0
τ

(
1
µd

)
bl(τ)ϕ(τ)dτ,

it follows that Pµd , defined by (6.20), is given by

Pµdϕ(θ) = Ωθ0
(

1
µd

)[
1 +

k∑
j=1

jµ−jd ωBj

]−1
(
ϕ(0) +

k∑
l=1

∫ 0

−lω

1
µld

Ω0
σ

(
1
µd

)
bl(σ)ϕ(σ)dσ

)
.

Note that from the representation for Pµdϕ(θ), it follows that Mµd is spanned by

ϕ1(θ) = Ωθ0
(

1
µd

)
, −kω 6 θ 6 0.

Furthermore Pµϕ = c(ϕ)ϕ1 with c(ϕ) given by

c(ϕ) =
[
1 +

k∑
j=1

jµ−jd ωBj

]−1
(
ϕ(0) +

k∑
l=1

∫ 0

−lω

1
µld

Ω0
σ

(
1
µd

)
bl(σ)ϕ(σ)dσ

)
.

A direct computation shows that(
T (t, 0)ϕ1

)
(θ) = Ωt+θ0

(
1
µd

)
.

and P (t), defined in (5.5), is given by

(6.25) P (t)(θ) = e−λd(t+·)Ωt+·0

(
1
µd

)
.

Applying Corollary 5.1, evaluating the functions involved at θ = 0, and using the
fact that P (t) in (6.25) is invertible, we arrive at

lim
t→∞

Ωt0
(

1
µd

)
x(t; 0, ϕ) = c(ϕ).

�

Appendix A. Theoretical foundation of the Hale bilinear form

An autonomous neutral equation (2.1) can be translated into a renewal equation
by integrating the equation and isolating the part that explicitly depends on the
initial condition, the forcing function, see [4]. The forcing function belongs to the
space F defined by the set of functions f : R+ → Cn which are of bounded variation,
right continuous and satisfying f(t) = f(h) for all t > h. The resulting renewal
equation is given by

(A.1) x(t) +
∫ t

0

[
dµ(θ − t) + η(θ − t)dθ

]
x(θ) = Fϕ(t),

where F : C → F , defined by

(A.2) Fϕ(t) = Dϕ+
∫ −t
−r

dµ(θ)ϕ(t+ θ) +
∫ t

0

[∫ −s
−r

dη(θ)ϕ(s+ θ)
]
ds, t > 0,
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maps the initial condition ϕ ∈ C into the correspondent forcing function of (A.1).
Equivalently, we can write

x(t) = dk ∗ x+ Fϕ,

where the Borel measure dk is given by

k(θ) = µ(θ) +
∫ θ

0

η(τ)dτ.

For each f ∈ F , the equation

(A.3) x+ dk ∗ x = f

has a unique solution x( · ; f) defined on R+ (see Chapter 9 of [4]). We can define
a semigroup {S(t)}t>0 on F by

(A.4) S(t)f = Fxt( · ; f),

that is, S(t)f is the forcing function correspondent to the solution xt( · ; f) of (A.3).
By construction, for ϕ ∈ C, the solution x( · ;Fϕ) of (A.1) also satisfies (2.1). So
the following diagram commutes

C F−−−−→ F

T (t)

y yS(t)

C −−−−→
F

F

Let C∗ denote the dual space of C and let Cn∗ denote the real row matrices
of dimension n. By the Riesz representation theorem, the elements of C∗ can be
represented by functions of bounded variation g : R− → Cn∗ that are left continuous
on (−r, 0) and satisfy g(0) = 0 and g(s) = g(−r) for s 6 −r. The duality pairing
between C and C∗ is given by

〈g, ϕ〉 def=
∫ 0

−r
dg(θ)ϕ(θ), ϕ ∈ C.

If we define T ∗(t) = T (t)∗ for t > 0, then T ∗(t) defines a semigroup (however, gen-
erally not strongly continuous; see [1]). One could ask for the differential equation
of which T ∗(t) is the solution semigroup and it turns out that there is indeed a close
connection between T ∗(t) and ST(t), the semigroup defined in a similar manner as
S(t), but starting with the transposed equation (2.5).

Similarly as before, we rewrite the transposed equation (2.5) as a renewal equa-
tion

(A.5) y(s) +
∫ 0

s

y(σ)
[
dµ(s− σ) + η(s− σ)dσ

]
= F

T
ψ(s),

where

(A.6) F
T
ψ(s) = D′ψ +

∫ s

−r
ψ(s− ξ)dµ(ξ) +

∫ 0

s

∫ σ

−r
ψ(σ − ξ)dη(ξ)dσ.

The map FT maps ψ ∈ C′ onto the space of forcing functions F ′ defined by the vec-
tor space of functions g : R− → Cn∗ that are of bounded variation, left continuous
and satisfying g(s) = g(−r) for all s 6 −r.

As before, for each g ∈ F ′, the equation

(A.7) y − y ∗ dk = g,
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has a unique solution y( · , g) defined in R−, and we can define a semigroup S
T(t)

on F ′ by
S

T(t)g = F
T
yt( · , g),

that is, ST(t)g is the forcing function corresponding to the solution yt( · , g) of (A.7).
By construction, for ψ ∈ C′, the solution y( · , FT

ψ) also satisfies (2.5) and therefore
the following diagram commutes

C′ F
T

−−−−→ F ′

T
T

(t)

y yST
(t)

C′ −−−−→
F

T
F ′

One can show that ST(t) = T ∗(t) and therefore

(A.8) F
T
T

T(s)ψ = T ∗(s)FT
ψ, ψ ∈ C′.

Relation (A.8) suggests the introduction of a special bilinear form between C and
C′. For ψ ∈ C′ and ϕ ∈ C, define

(ψ,ϕ) def= −
〈
F

T
ψ,ϕ

〉
= −

∫ 0

−r
d[FT

ψ(θ)]ϕ(θ)

= ψ(0)ψ(0)−
∫ 0

−r
dθ

[∫ θ

−r
ψ(θ − ξ)dµ(ξ)

]
ϕ(θ)

+
∫ 0

−r

∫ θ

−r
ψ(θ − ξ)dη(ξ)ϕ(θ)dθ.

This is precisely the Hale bilinear form (3.1). Note that with respect to (3.1), the
transposed operator AT satisfies

(ψ,Aϕ) = (AT
ψ,ϕ), ψ ∈ D

(
A

T)
, ϕ ∈ D

(
A
)
.

So the bilinear form (3.1) allows us to use the duality between A and A
T, instead

of, between A and the much more complicated operator A∗.

Appendix B. Properties of roots of characteristic equations

In this appendix, we collect some general properties of roots of characteristic
equations. Consider a characteristic equation of the form

(B.1) ∆(z) = z
(

1 +
m∑
l=1

cle
−zσl

)
− a−

k∑
j=1

bje
−zhj ,

where a, bj (j = 1, . . . , k), cl (l = 1, . . . ,m) are real numbers, and hj (j = 1, . . . , k),
σl (l = 1, . . . ,m) are positive real numbers.

Given equation (B.1), we introduce a function V : R→ R, defined by,

(B.2) V (λ) =
m∑
l=1

|cl| (1 + |λ|σl)e−λσl +
k∑
j=1

|bj |hje−λhj , λ ∈ R.

This function plays a role on estimates of the derivative of ∆(z) (compare [9, Eq.
P(λ0)]). The next lemma states a sufficient condition for a real root of (B.1) to be
simple and dominant.
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Lemma B.1. Suppose that there exists a real zero λ0 of equation (B.1). If

(B.3) V (λ0) < 1,

then λ0 is a real simple dominant zero of (B.1).

Proof. Without loss of generality, we can assume that λ0 = 0. Therefore, we have

∆(0) = a+
k∑
j=1

bj = 0

and condition (B.3) becomes

(B.4)
m∑
l=1

|cl|+
k∑
j=1

hj |bj | < 1.

The proof consists of four parts. First we prove that λ0 is a simple zero of (6.4).
Since

d

dz
∆(0) = 1 +

m∑
l=1

cl +
k∑
j=1

hjbj ,

it follows from (B.4) that∣∣∣∣ ddz∆(0)
∣∣∣∣ > 1−

∣∣∣∣∣
m∑
l=1

cl +
k∑
j=1

hjbj

∣∣∣∣∣ > 0.

Thus λ0 = 0 is a simple zero of ∆(z).
Now we prove that there are no other zeros on the imaginary axis. Suppose that

for some ν 6= 0, z = iν is a zero of ∆(z). From the equations for the real and
imaginary part of ∆(iν), it follows thatν

∑m
l=1 cl sin(νσl)− a−

∑k
j=1 bj cos(νhj) = 0,

ν(1 +
∑m
l=1 cl cos(νσl)) +

∑k
j=1 bj sin(νhj) = 0.

Since ν 6= 0, we obtain from the equation for the imaginary part that

(B.5)
(

1 +
m∑
l=1

cl cos(νσl)
)

+
k∑
j=1

bj
sin(νhj)

ν
= 0.

We can estimate

(B.6)

∣∣∣∣∣1 +
m∑
l=1

cl cos(νσl)

∣∣∣∣∣ > 1−

∣∣∣∣∣
m∑
l=1

cl cos(νσl)

∣∣∣∣∣ > 1−
m∑
l=1

|cl| >
k∑
j=1

hj |bj | .

On the other hand, using | sin(x)| 6 |x|, we have∣∣∣∣∣
k∑
j=1

bj
sin(νhj)

ν

∣∣∣∣∣ 6
k∑
j=1

hj |bj | .

Thus we obtain from (B.5) and (B.6) that
k∑
j=1

hj |bj | <

∣∣∣∣∣1 +
m∑
l=1

cl cos(νσl)

∣∣∣∣∣ =

∣∣∣∣∣
k∑
j=1

bj
sin(νhj)

ν

∣∣∣∣∣ 6
k∑
j=1

hj |bj | .
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A contradiction to the assumption that z = iν, ν 6= 0, is a zero of ∆(z). This proves
that λ = 0 is the only zero on the imaginary axis.

Next we show that there are no zeros of ∆(z) with Re z > 0. Suppose that
z = α + iν satisfies ∆(α + iν) = 0. The equations for the real and imaginary part
read

(B.7)


α
(
1 +

∑m
l=1 cle

−ασl cos(νσl)
)

+ ν
∑m
l=1 cle

−ασl sin(νσl)
−a−

∑k
j=1 bje

−αhj cos(νhj) = 0,

−α
∑m
l=1 cle

−ασl sin(νσl) + ν
(
1 +

∑m
l=1 cle

−ασl cos(νσl)
)

+
∑k
j=1 bje

−αhj sin(νhj) = 0.

If ν = 0 and α > 0, then the first equation of (B.7) yields

α
(

1 +
m∑
l=1

cle
−ασl

)
= a+

m∑
j=1

bje
−αhj =

m∑
j=1

bj(e−αhj − 1).

So ∣∣∣∣∣1 +
m∑
l=1

cle
−ασl

∣∣∣∣∣ =

∣∣∣∣∣
m∑
j=1

bj
e−αhj − 1

α

∣∣∣∣∣ 6
m∑
j=1

|bj |hj .

On the other hand, using (B.4), we find∣∣∣∣∣1 +
m∑
l=1

cle
−ασl

∣∣∣∣∣ >
m∑
j=1

|bj |hj .

A contradiction to the assumption that ν = 0. Thus we can assume that α > 0 and
ν > 0. We claim that

(B.8)
m∑
l=1

cle
−ασl sin(νσl) < 0.

Suppose first that the claim holds. Then it follows from the second equation of
(B.7) that

1 +
m∑
l=1

cle
−ασl cos(νσl) < −

k∑
j=1

bje
−αhj sin(νhj)

α
6

k∑
j=1

hj |bj |.

On the other hand, using (B.4), we have

1 +
m∑
l=1

cle
−ασl cos(νσl) > 1−

∣∣∣∣∣
m∑
l=1

cle
−ασl cos(νσl)

∣∣∣∣∣ > 1−
m∑
l=1

|cl| >
k∑
j=1

hj |bj |.

A contradiction. Thus, if (B.8) holds, there are no zeros of ∆(z) with Re z > 0.
To prove (B.8) (still assuming α > 0), we first take the following combinations

of (B.7). The combination α times the first plus ν times the second equation of
(B.7) yields

(B.9) (α2 + ν2)
(

1 +
m∑
l=1

cle
−ασl cos(νσl)

)
+ α

k∑
j=1

bj
(
e−αhj cos(νhj)− 1

)
+ ν

m∑
j=1

bje
−αhj sin(νhj) = 0,
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and the combination ν times the first minus α times the second equation of (B.7)
yields

(B.10) (α2 + ν2)
m∑
l=1

cle
−ασl sin(νσl)

+ ν

k∑
j=1

bj(e−αhj cos(νhj)− 1)− α
m∑
j=1

bje
−αhj sin(νhj) = 0.

From the first equation of (B.7) and the fact that 1 +
∑m
l=1 cle

−ασl cos(νσl) > 0, it
follows that

(B.11) ν

m∑
l=1

cle
−ασl sin(νσl) 6

k∑
j=1

bj(e−αhj cos(νhj)− 1).

From the second equation of (B.7) and the fact that 1 +
∑m
l=1 cle

−ασl cos(νσl) > 0,
it follows that

(B.12)
k∑
j=1

bje
−αhj sin(νhj) < α

m∑
l=1

cle
−ασl sin(νσl).

From (B.9) and the fact that 1 +
∑m
l=1 cle

−ασl cos(νσl) > 0,

(B.13) α

k∑
j=1

bj(e−αhj cos(νhj)− 1) < −ν
k∑
j=1

bje
−αhj sin(νhj).

From (B.11) and (B.13), it follows that

αν

m∑
l=1

cle
−ασl sin(νσl) < −ν

k∑
j=1

bje
−αhj sin(νhj)

and hence

(B.14)
k∑
j=1

bje
−αhj sin(νhj) < −α

m∑
l=1

cle
−ασl sin(νσl).

From (B.12) and (B.14), it now follows
k∑
j=1

bje
−αhj sin(νhj) < 0

and hence, from (B.10),

(B.15) (α2 + ν2)
m∑
l=1

cle
−ασl sin(νσl) < −ν

k∑
j=1

bj(e−αhj cos(νhj)− 1).

Finally, from (B.11) and (B.15), it follows that
m∑
l=1

cle
−ασl sin(νσl) < 0

and this proves the claim (B.8).
Thus we have proved that λ0 = 0 is the only zero of ∆(z) with Re z > 0. To

complete the proof of the lemma, it remains to prove that λ0 = 0 is dominant.
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Suppose to the contrary that, for every δ > 0, there exists a zero of ∆(z) in the
strip −δ < Re z < 0. Since ∆(z) is an entire function, its zeros cannot have a finite
accumulation point. So it follows that ∆(z) has a sequence of zero’s λn such that
Reλn tends to zero and |Imλn| tends to infinity. From (B.4) it follows that for
Reλn sufficiently small, there exists an ε > 0 such that∣∣∣∣1 +

m∑
l=1

cle
−λnσl

∣∣∣∣ > 1−
m∑
l=1

|cl| e−Reλnσl > ε.

Thus

(B.16) ε |λn| < a+
k∑
j=1

|bj | e−Reλnhj .

As n tends to infinity the left hand side of (B.16) tends to infinity while the right
hand side of (B.16) remains bounded. A contradiction to the assumption that,
every δ > 0, there exists a zero of ∆(z) in the strip −δ < Re z < 0. This completes
the proof that λ0 = 0 is dominant simple zero of ∆(z). �

Remark B.1. Actually, condition (B.3) is sharp. This can be seen by considering
the following example

(B.17)
d

dt

[
x(t)− 1

2
x(t− 1)

]
=

1
2
x(t)− 1

2
x(t− 1).

The characteristic equation associated with (B.17) is given by

z
(

1− 1
2
e−z
)

=
1
2
− 1

2
e−z.

So c1 = −1/2, a = 1/2, b1 = −1/2, σ1 = 1 and h1 = 1. Thus a+ b1 = 0 and λ0 = 0
is a real zero. Since |c1| + h1|b1| = 1, condition (B.3) fails, and if we differentiate
the characteristic equation, it follows that λ0 = 0 is not a simple zero.

The next lemma gives sufficient conditions for the existence of a simple and
dominant real root of (B.1).

Lemma B.2. If there exists γ such that

∆(γ) < 0 and V (γ) 6 1,

then there exists a unique real root λ0 of ∆ in (γ,∞) such that V (λ0) < 1. Therefore
λ0 is a simple real dominant root of (B.1).

Proof. First of all, we observe that V is positive and strictly decreasing. Indeed,
since the functions h1(x) = e−x and h2(x) = (1 + |x|)e−x are positive and strictly
decreasing for real x, we obtain that functions defined by linear combinations with
positive coefficients of h1 and h2, with possible positive rescales of the variable x,
are positive and strictly decreasing.

Computing the derivative of ∆ for λ > γ, we obtain that

d

dλ
∆(λ) = 1 +

m∑
l=1

cle
−λσl − λ

m∑
l=1

clσle
−λσl +

k∑
j=1

bjhje
−λhj

> 1−
( m∑
l=1

|cl| (1 + |λ|σl)e−λσl +
k∑
j=1

|bj |hje−λhj
)

= 1− V (λ) > 0,
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since V (λ) < V (γ) 6 1. Therefore ∆(λ) is strictly increasing for λ > γ. It is easy
to see that

lim
λ→∞

∆(λ) =∞.

This together with the fact that ∆(γ) < 0 implies the existence of a unique real
root λ0 of ∆ with λ0 > γ. Since V is strictly decreasing, it follows that V (λ0) < 1.
The last assertion now follows from Lemma B.1. �

In a simpler case, we can improve the conclusions of Lemma B.2 even further.
The next lemma is used in Theorem 6.1 and improves the results in [2] and [9].

Lemma B.3. If −e−1 < bτe−aτ , then the equation

(B.18) ∆(z) = z − a− be−τz

has a simple real dominant zero z = λd.

Proof. Suppose first that −e−1 < bτe−aτ < 0. This implies that b < 0. If we define
γ = a− 1/τ , then

∆(γ) =
1
τ
− be−aτ−1 < 0,

and (recall equation (B.2))

V (γ) = |b| τe−aτ+1 = −bτe−aτ+1 < 1.

So the hypotheses of Lemma B.2 are satisfied and the existence of the simple real
dominant zero λd of ∆ follows.

Before we continue with the case b > 0, we need to study how the location of
the real roots of ∆ depends on b. If λ is a real zero of ∆, then

λ = a+ be−τλ.

Observe that, if b < 0 then λ < a and if b > 0, then λ > a.
Moreover, for b > 0, such real λ always exists, is simple and unique, because

∆(a) < 0,
lim
z→∞

∆(z) =∞

and for all z real
d

dλ
∆(z) = 1 + bτe−τz > 0.

Denote this root by λd. Fix a and consider λd as a function of b > 0. If we
differentiate ∆

(
λd(b)

)
with respect to b, we obtain

dλd
db

=
e−τλd

1 + bτe−τλd
> 0.

Therefore b 7→ λd(b) is strictly increasing on [0,∞).
With these preliminaries, we can now show that in case b > 0, the root λd is also

dominant. Suppose that z = x+ iy is another zero of ∆ with x, y real numbers and
y > 0. The equations for the real and imaginary parts for z are given by

x− a− b cos(τy)e−τx = 0,(B.19)

y + be−τx sin(τy) = 0.(B.20)

Define b̄ = b cos(τy). Equation (B.19) becomes

(B.21) x− a− b̄e−τx = 0.
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If b̄ 6 0, then (B.21) and the arguments just given imply that x 6 a < λd. If b̄ > 0
then equation (B.20) and y > 0 imply that τy 6= kπ for all k integer and therefore
b̄ < b, but this again implies that x < λd.

In order to show that there exists an ε > 0 such that actually all roots with
z 6= λd ∈ C satisfies Re z < λd−ε, we argue by contradiction and suppose that such
ε does not exist. So there is a sequence zn of zeros of ∆ such that Re zn → λd. Since
∆ is an analytic function, its zeros are isolated, and therefore the only possibility is
that |Im zn| → ∞, but (B.20) shows that Im zn is in fact bounded. A contradiction.
Therefore also in the case b > 0, λd is a simple real dominant zero of ∆. This
completes the proof of the lemma. �
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