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Abstract

We present a sufficient condition for a zero of a function that arises
typically as the characteristic equation of a linear functional differen-
tial equations of neutral type, to be simple and dominant. This knowl-
edge is useful in order to derive the asymptotic behaviour of solutions
of such equations. A simple characteristic equation, arisen from the
study of delay equations with small delay, is analyzed in greater detail.

In the study of the solutions for linear autonomous functional differential
equations (FDE), one can derive important information of its asymptotic
properties from the spectral properties of the infinitesimal generator of the
solution semigroup. Such spectrum is formed by point spectrum only, as
the zeros of an entire function, called the characteristic function. Verduyn
Lunel [12] showed that the solution of linear autonomous FDE of neutral type
can be written down as a series expansion of the solution operator restricted
to the generalized eigenspaces, images of the so called spectral projection into
such invariant eigenspaces. In Frasson & Verduyn Lunel [5], the large time
behaviour of solutions was derived, based on the knowledge of a dominant
eigenvalue, that is, an eigenvalue so that its real part is sufficiently larger,
uniformly, than the real part of all other eigenvalues. Analogous results can
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be obtained for a finite set of eigenvalues which dominates the others. We
observe that characteristic equations of the same type we study here can arise
from other types of FDE, like differential-difference equations with periodic
coefficients. (See for instance [5].)

To show dominance of a root of characteristic equation is often not easy.
Our main result is the presentation of a sufficient condition, given by con-
ditions (9)–(10), for a zero of a characteristic function to be simple and
dominant. This information, combined with results in [5], yields to a precise
description of the large time behaviour of solutions of the FDE. These results
are a generalization of results in [5], where the characteristic equations where
restricted to those with discrete delays, like in equation (7).

The conditions that we derive have been first obtained by Driver et al. [3]
in their study of delay equations with small delay. Following these results,
Arino & Pituk [1] and Faria & Huang [4] provided improvements of results in
[3]. Kordonis, Niyianni & Philos [8] and Philos & Purnaras [10, 9] obtained
interesting results on the asymptotic behaviour of solutions if a zero of the
characteristic equation satisfies the same conditions as we impose. The ad-
vantage of our approach is that not all dominant eigenvalues satisfy those
restrictive conditions, but still one can obtain information about the large
time behaviour of solutions. For instance, all non-simple dominant eigenval-
ues cannot satisfy the conditions. Theorem 7 provides an example of this
situation, where we analyze the dominance of a simple characteristic equa-
tion, and show the dominance of a root, further than the limits of conditions
(9)–(10).

This paper is organized in the following way. In section 1 we present
shortly linear autonomous FDE and the spectral properties associated to the
solution semigroup. In section 2 we prove our main result, namely a sufficient
condition for a zero of the characteristic equation to be simple and dominant,
with an estimate for a spectral gap. We also present an application of the
results in the large time behavior of solutions of FDE, obtained in connection
with results in [5]. In section 3, inspired by [3] and the forecited subsequent
works, we analyze in greater detail a delay equation with one time lag and
constant coefficients, improving results in [3, 8, 5].

2



1 Introduction to FDE

Let C = C
(
[−r, 0],C

)
denote the Banach space of continuous complex-valued

functions from [−r, 0] (r > 0) endowed with the supremum norm. From
the Riesz representation theorem (see for instance Rudin [11]) it follows that
every bounded linear mapping L : C → C can be represented by

Lϕ =

∫ r

0

dη(θ)ϕ(−θ), (1)

where η is a complex valued function of bounded variation on [0, r] normalized
so that η(0) = 0 and η is continuous from the right in (0, r). As usual in
the theory of delay equations, for a continuous complex-valued function x
defined in [−r,∞), we define xt ∈ C by xt(θ) = x(t + θ), −r 6 θ 6 0 and
t > 0.

Consider the scalar linear autonomous functional differential equation

d
dt
Mxt = Lxt, t > 0, (2)

subjected to initial condition x0 = ϕ ∈ C, where L,M : C → C are linear
continuous, given respectively by

Lϕ =

∫ r

0

dη(θ)ϕ(−θ), Mϕ = ϕ(0)−
∫ r

0

dµ(θ)ϕ(−θ). (3)

For more about such differential equations, we refer to [2, 6]. When functions
µ and η are step functions, FDE (2) assumes the form

d

dt

[
x(t) +

m∑
l=1

clx(t− σl)
]

= ax(t) +
k∑
j=1

bjx(t− τj). (4)

In order to ensure existence and uniqueness of solutions of (2) for t > 0,
one can impose the additional hypothesis that

lim
θ↓0

µ(θ) = 0, (5)

which is fulfilled, for instance, when the operator M is a difference operator,
or equivalently when µ is a step function. This hypothesis is sufficient, but
not necessary. See [5] for more. Our results on the dominance are indepen-
dent of hypothesis (5).
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Let T (t) be the strongly continuous semigroup defined by T (t)ϕ = xt,
where x(·) is the solution of (2) subjected to the initial condition x0 = ϕ and
letA be its infinitesimal generator. It is known that there is a close connection
between the spectral properties of A and the characteristic function ∆(z)
given by

∆(z) = z
[
1−

∫ r

0

e−zθdµ(θ)
]
−
∫ r

0

e−zθdη(θ). (6)

When FDE (2) is in the form (4), the characteristic function takes the form

∆(z) = z

(
1 +

n∑
l=1

cle
−zσl

)
+ a+

m∑
j=1

bje
−zτj . (7)

One can compute explicitly the resolvent of A and derive that the spectrum
σ(A) of A is point spectrum only, formed by the zeros of ∆(·). For each
eigenvalue λ ∈ σ(A), its ascent kλ is the order of λ as zero of ∆(·), and
one has the decomposition C =Mλ⊕Qλ. The generalized eigenspaceMλ =
ker(λI−A)kλ and Qλ are invariant under T (t) andMλ is a finite dimensional
subspace of C, of dimension kλ. In Kaashoek & Verduyn Lunel [7] and in
Section IV.3 of Diekmann et al. [2] a systematic procedure has been developed
to construct a canonical basis forMλ using Jordan chains. From the spectral
theory, it follows that the spectral projection Pλ into Mλ is the residue of
(zI − A)−1 at z = λ. See [13] and [5, sec. 3] for more.

An eigenvalue λd of A is said to be dominant if there is an ε > 0 such
if λ 6= λd is another eigenvalue of A, then <λ < <λd − ε. Such ε is called
a spectral gap for ∆(·). From [13] (see also [5, Lemma 2.1]) we obtain a
characterization of the large time behaviour of solutions of FDE (2) as follows.
Let λd be a dominant eigenvalue of A. Then for a spectral gap ε > 0, there
exists K > 0, such that

‖(I − Pλd)xt(ϕ)‖ 6 Ke(<λd−ε)t‖(I − Pλd)ϕ‖, t > 0, ϕ ∈ C. (8)

2 Sufficient conditions of dominance of roots

of characteristic equations

Consider the characteristic function ∆(·) given by (6). For such a function,
define the auxiliary function V : C→ [0,∞) by

V (z) =

∫ r

0

(
1 + |z|θ

) ∣∣e−zθ∣∣ d|µ|(θ) +

∫ r

0

θ
∣∣e−zθ∣∣ d|η|(θ), (9)
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where |µ| and |η| denote respectively the total variation functions of µ and η
in (6). Our main result is the following theorem.

Theorem 1. Suppose that z0 ∈ C is a zero of ∆(·) in (6) such that

V (z0) < 1. (10)

Then z0 is a simple dominant zero of ∆(·).

Proof. In order to show that z0 is a simple zero of ∆(·), we compute

d

dz
∆(z) = 1 +

∫ r

0

e−zθ(−1 + zθ)dµ(θ) +

∫ r

0

θe−zθdη(θ).

Then we can estimate∣∣∣∣ ddz∆(z0)

∣∣∣∣ > 1−
∣∣∣∣∫ r

0

e−z0θ(−1 + z0θ)dµ(θ) +

∫ r

0

θe−z0θdη(θ)

∣∣∣∣
> 1− V (z0) > 0,

what shows that z0 is a simple zero of ∆(·). It remains to prove that z0 is
dominant. In order to do so, let 0 < δ < 1 such that

V (z0) < δ. (11)

We can rewrite (11) to obtain

1− 1

δ

∫ r

0

∣∣e−z0θ∣∣ d|µ|(θ)
>

1

δ

[
|z0|
∫ r

0

θ
∣∣e−z0θ∣∣ d|µ|(θ) +

∫ r

0

θ
∣∣e−z0θ∣∣ d|η|(θ)]. (12)

Let ε > 0 such that

1 < eεr 6
1

δ
, (13)

and let Λ be the right half plane given by

Λ = {z ∈ C : <z > <z0 − ε} . (14)

For z ∈ Λ and 0 6 θ 6 r we have that

|e−zθ| 6 e−<z0θeεθ 6

∣∣e−z0θ∣∣
δ

. (15)
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If z ∈ Λ, let γ the line segment that connects z0 to z, which is contained in
Λ. Therefore, for 0 6 θ 6 r, from (15),∣∣e−z0θ − e−zθ∣∣ =

∣∣∣∣∫ z

z0

θ e−wθdw

∣∣∣∣ = θ

∣∣∣∣∫
γ

e−wθdw

∣∣∣∣ 6
∣∣e−z0θ∣∣
δ
|z − z0|θ. (16)

Since ∆(z0) = 0, we obtain that

z0 = z0

∫ r

0

e−z0θdµ(θ) +

∫ r

0

e−z0θdη(θ), (17)

which we can use to rewrite ∆(z) as follows.

∆(z) = (z − z0)
[
1−

∫ r

0

e−zθdµ(θ)
]

+ z0 − z0

∫ r

0

e−zθdµ(θ)−
∫ r

0

e−zθdη(θ)

= (z − z0)
[
1−

∫ r

0

e−zθdµ(θ)
]

+ z0

∫ r

0

(
e−z0θ − e−zθ

)
dµ(θ) +

∫ r

0

(
e−z0θ − e−zθ

)
dη(θ).

Hence we can estimate

|∆(z)| > |z − z0|
∣∣∣∣1− ∫ r

0

e−zθdµ(θ)

∣∣∣∣
−
∣∣∣∣z0

∫ r

0

(
e−z0θ − e−zθ

)
dµ(θ) +

∫ r

0

(
e−z0θ − e−zθ

)
dη(θ)

∣∣∣∣ . (18)

For z ∈ Λ, from (15), we get∣∣∣∣1− ∫ r

0

e−zθdµ(θ)

∣∣∣∣ > 1−
∣∣∣∣∫ r

0

e−zθdµ(θ)

∣∣∣∣ > 1− 1

δ

∫ r

0

∣∣e−z0θ∣∣ d|µ|(θ). (19)

From (12) and (19), we obtain∣∣∣∣1− ∫ r

0

e−zθdµ(θ)

∣∣∣∣ > 1

δ

[
|z0|
∫ r

0

θ
∣∣e−z0θ∣∣ d|µ|(θ) +

∫ r

0

θ
∣∣e−z0θ∣∣ d|η|(θ)]. (20)

Using (16), we estimate∣∣∣∣z0

∫ r

0

(
e−z0θ − e−zθ

)
dµ(θ) +

∫ r

0

(
e−z0θ − e−zθ

)
dη(θ)

∣∣∣∣
6
|z − z0|

δ

[
|z0|
∫ r

0

θ
∣∣e−z0θ∣∣ d|µ|(θ) +

∫ r

0

θ
∣∣e−z0θ∣∣ d|η|(θ)]. (21)
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Finally, if z ∈ Λ and |z − z0| > 0, from (18), (20) and (21) we get

|∆(z)| > 0. (22)

Hence the only zero of ∆(·) inside the right half plane Λ is z0. This completes
the proof.

Remark 2. Estimate (8) shows that an estimate for the spectral gap provides
an estimate of the order (exponential type) in which the solution approaches
the predicted asymptotic behaviour. Under the condition V (z0) < 1, from
equations (11), (13), (14) and (22) we obtain that any ε such that

0 < ε <
1

r
ln
(
V (z0)

−1
)

(23)

is a spectral gap for the dominant root z0.

The analogous result for the particular case where FDE has the form (4),
with characteristic function (7), was presented in [5]. However, its proof was
shown to have mistakes. Theorem 1 presents a correct proof for that result,
that we state here as a corollary, without imposing the restriction of z0 to be
real.

Corollary 3. If z0 is a zero of (7) such that

n∑
l=1

|cl|(1 + |z0|σl)
∣∣e−z0σl∣∣+

m∑
j=1

|bj|τj
∣∣e−z0τj ∣∣ < 1, (24)

then z0 is a simple dominant zero of (7).

Proof. The characteristic function ∆(·) given in (7) can be put in the form
(6) if we set the functions η and µ as step functions respectively with “jumps”
of size cl at σl and bj at τj. Hence the total variation functions |η| and |µ| are
equally step functions with jumps of size |cl| at σl and |bj| at τj respectively.
Then condition V (z0) < 1 on Theorem 1 reads as (24) and the result follows
from that theorem.

Once the dominance of a root of the characteristic equation

∆(z) = 0

is obtained, where ∆(z) is given in(6), we can apply Corollary 4.1 of [5] to
obtain the following characterization for the large time behaviour of solutions
of FDE (2).
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Theorem 4. Let x(·) be the solution of (2), subjected to the initial condition
x0 = ϕ ∈ C. If λd is a zero of the characteristic equation ∆(z) given by
(6) such that V (λd) < 1, where V (·) is given by (9), then the asymptotic
behaviour of x(·) is given by

lim
t→∞

e−λdtx(t) =
1

H(λd)
G(λd, ϕ), (25)

where

H(λd) = 1 + λd −
∫ r

0

e−λdθdµ(θ) +

∫ r

0

θe−λdθd[λdµ(θ) + dη(θ)] (26)

and

G(λd, ϕ) = Mϕ+

∫ 0

−r
[λddµ(τ) + dη(τ)]

∫ −τ
0

e−λdσϕ(σ + τ)dσ. (27)

Furthermore, for any ε such that

0 < ε <
1

r
ln
(
V (z0)

−1
)
,

we have that

e−λdtx(t)− 1

H(λd)
G(λd, ϕ) = o(e−εt) (28)

as t→∞.

Proof. The result follows from Corollary 4.1 of [5]. Alternatively one can
compute the spectral projection on the one dimensional space Mλd and use
estimate (8) to compute the large time behaviour of the solution as described
in (28).

Remark 5. In Theorem 4, if the FDE is the particular form (4), then condition
(10) reads as (24), and H(λd) in (26) and G(λd, ϕ) in (27) assume the form

H(λd) = 1 +
m∑
l=1

cle
λdσl − λd

m∑
l=1

clσle
λdσl +

k∑
j=1

bjτje
λdτj

and

G(λd, ϕ) = ϕ(0)−
m∑
l=1

clϕ(−σl) +
m∑
l=1

λdcl

∫ −σl
0

e−λdsϕ(s+ σl)ds

+
k∑
j=1

bj

∫ −τj
0

e−λdsϕ(s+ τj)ds.
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3 A simple discrete FDE

Now let us restrict our attention to the FDE

ẋ(t) = ax(t) + bx(t− τ), t > 0 (29)

where a, b ∈ R are real numbers and b 6= 0. The asymptotic behaviour of the
solutions of this functional differential equation has being studied by Driver
et al. [3] and Kordonis, Niyianni & Philos [8]. Its characteristic equation
reads as

λ− a− be−τλ = 0. (30)

Applying Corollary 3 and results in [5], we are able to reproduce the forecited
works. However, investigating further the dominance of the real roots of (30),
we can extend these results.

For x ∈ [−1,∞) we have that x 7→ xex is a strictly increasing function
with range [−e−1,∞). We denote its inverse as w(·)1. In symbols,

y = xex, x > −1 ⇐⇒ x = w(y). (31)

For −e−1 < y < 0, the equation

y = xex (32)

has two real solutions. We observe that w(y) is the larger one. If y < −e−1

then (32) admits no real solution x.

Theorem 6. If −e−1 6 bτe−aτ , then the equation

∆(z) = z − a− be−τz (33)

has a real dominant zero z = λd given by

λd = a+
1

τ
w(bτe−aτ ), (34)

where the function w is given by (31). Furthermore, if −e−1 < bτe−aτ ,
then λd is a simple root of (33); if −e−1 = bτe−aτ , then λd is a double

1Function w(·) is known as the Lambert W function. In the computer algebra systems
Maple and Mathematica, we can access this function under the names LambertW and
ProductLog respectively.
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root; if −e−1 > bτe−aτ then there are no real roots of (33). Furthermore, if
−e−1 < bτe−aτ < e, then we have that every ε such that

0 < ε <
1

τ
ln
(
|w(bτe−aτ )|−1

)
(35)

is a spectral gap for λd.

Proof. We can rewrite ∆(z) = 0 in the following equivalent way

(z − a)τe(z−a)τ = bτe−aτ . (36)

Then representation (34) for λd and the non existence of real roots of (33)
when −e−1 > bτe−aτ follow from the discussions about the function w. Dif-
ferentiating ∆(z) with respect to z, evaluating it at z = λd and using the
properties of the function w(·), we get

d

dz
∆(λd) = 1 + w(bτe−aτ ).

Therefore d
dz

∆(λd) = 0 if and only if −e−1 = bτe−aτ . We have | d2
dz2

∆(z)| > 0
for all z ∈ C. Hence we have shown the statements about the order of λd as
zero of ∆(z). Notice also that it follows from representation (34) that b 7→ λd
is a strictly increasing function of b, and λd = a for b = 0.

If −e−1 > bτe−aτ , the proof that λd is a dominant zero of (30) is contained
in [5, Lemma B.3]. Recalling (9), we have

V (λd) = |b|τe−λdτ = |w(bτe−aτ )|. (37)

When −e−1 < bτe−aτ < e, we have that |w(bτe−aτ )| < 1. From (37) and
from Remark 2, we obtain estimate (35).

It only remains to show that λd is dominant in the case −e−1 = bτe−aτ .
Here we have λd = a − 1/τ . From the continuity of roots with respect of
parameters a and b and the discussion in the previous cases, we have that
there is no zero z of ∆(z) = 0 such that <z > a − 1/τ . Suppose that
z = (a − 1/τ) + iy/τ is a root of (36), so that (z − a)τ = −1 + iy. Taking
the equations for the real and imaginary part of (36) we obtain respectively

cos y + y sin y = 1, − sin y + y cos y = 0.

Squaring both equations and summing, we obtain that y = 0. Therefore all
roots z 6= a− 1/τ of ∆(z) = 0 satisfy <z < a+ 1/τ . The spectral gap always
exists in the case of retarded FDE, since there is a finite number roots z such
that <z > γ, for every γ ∈ R. This completes the proof of the theorem.
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We finish applying Theorem 6 to obtain asymptotic behaviour of solutions
to the FDE (29).

Theorem 7. Let x(t) be the solution of FDE (29) subjected to the initial
condition x0 = ϕ ∈ C([−τ, 0],C).

1. if −e−1 < bτe−aτ , then the asymptotic behaviour of x(t) is given by

lim
t→∞

e−λdtx(t) =
1

1 + w(bτe−aτ )

[
ϕ(0) + b

∫ τ

0

e−λdsϕ(s− τ)ds

]
, (38)

where λd = a+ w(bτe−aτ )/τ ;

2. if −e−1 = bτe−aτ , let λd = a − 1/τ ; then the asymptotic behaviour of
x(t) as t→∞ is as follows

(a) if ϕ(0) + b
∫ τ

0
e−λdsϕ(s− τ)ds 6= 0 then

lim
t→∞

e−λdt

t
x(t) =

2

τ

[
ϕ(0) + b

∫ τ

0

e−λdsϕ(s− τ)ds

]
,

(b) otherwise

lim
t→∞

e−λdtx(t) =
2

3

[
ϕ(0) + b

∫ τ

0

(
1− 3s

τ

)
e−λdsϕ(s− τ)ds

]
.

Proof. From Theorem 6, if −e−1 6 bτe−aτ , then λd = a + w(bτe−aτ )/τ is
a dominant root of the characteristic equation associated to FDE (4), given
by (30). Item 1 follows from Theorem 4 and Theorem 6. Furthermore, from
Theorem 6, if −e−1 < bτe−aτ < e, we can estimate the size of the spectral
gap and obtain an estimate of type (35).

For item 2, from Theorem 6, it follows that λd = a − 1/τ is a dominant
double root of the characteristic equation (30). We can compute the spectral
projection Pλd , as explained in [5, Section 3.2], into the two-dimensional
generalized eigenspace Mλd . We have that Pλd is given by

(
Pλdϕ

)
(θ) =

2

3
eλdθ

[
ϕ(0) + b

∫ τ

0

(
1− 3s

τ

)
e−λdsϕ(s− τ)ds

]
+

2

τ
θeλdθ

[
ϕ(0) + b

∫ τ

0

e−λdsϕ(s− τ)ds

]
. (39)
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From (39) it follows that Mλd = span{φ0, φ1} where φ0, φ1 ∈ C([−τ, 0],C)
are given respectively by φ0(θ) = eλdθ and φ1(θ) = θeλdθ. If ψ = c0φ0+c1φ1 ∈
Mλd , then the solution y(t) of (29) subject to initial condition y0 = ψ is given
by

y(t) = c0e
λdt + c1te

λdt.

For ϕ ∈ C, from (39) we obtain that Pλdϕ = c0(ϕ)φ0 + c1(ϕ)φ1, where

c0(ϕ) =
2

3

[
ϕ(0) + b

∫ τ

0

(
1− 3s

τ

)
e−λdsϕ(s− τ)ds

]
,

c1(ϕ) =
2

τ

[
ϕ(0) + b

∫ τ

0

e−λdsϕ(s− τ)ds

]
.

The condition in item 2 is equivalent c1(ϕ) 6= 0. From the discussions in
the end of Section 1 (see [5, Lemma 2.1]), the asymptotic behaviour of x(t),
described in item 2 follows.
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